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CREEP EFFECTS IN THE FINITE ELEMENT ANALYSIS
OF THERMO-MECHANICAL PROBLEMS

T. NIEZGODA (WARSZAWA)

A finite element method is employed to analyse creep of a structure under mechanical
and thermal load. Theoretical considerations are illustrated by a numerical test in which
the effect of temperature on the stress relaxation is analysed.

1. INTRODUCTION

In general, application of load leads to a time-dependent stress and strain
states in structures. However, such effects can also be encountered in struc-
tures under constant load due to creep of material. In metal structures creep
becomes pronounced at elevated temperatures (above 300° C, according to
{10]) whereas the phenomenon of creep in structures made of lightweight
alloys and some man-made materials can be observed at room temperatures
as well. For instance, pressurized, overheated to 400-500° C, steam pipes
are known to have gradually thinner walls and larger diameters. These
changes in dimensions are accompanied by a certain relaxation of stresses.
The problem becomes increasingly important in flange connections operat-
ing at elevated temperatures since the stress relaxation in bolts may lead to
the loss of tightness of the whole union. Considerations on creep problems
and their analytical solutions can be found in [5,10,14]. '

It is, however, the finite element technique that eénables the creep effects
to be determined in structures of arbitrary shapes and under complex initial-
-boundary conditions, account being at the same time taken of the physical
nonlinearity of materials and the temperature dependence of material con-
stants such as the yield point. Additivity is here assumed of elastic, plastic,
thermal and creep strains (2,8,9,11,13] and a creep stress-strain relation-
ship must be formulated. It is more often than not that a creep law for the
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three-dimensional situations is established with the help of a relationship
valid for uniaxial test {2,9,11,13, 15].

The paper is aimed at employing FEM to analyse creep effects in a ma-
terial of which a cantilevered beam is made. The beam free end is subjected
to a time-independent load at various temperatures. Calculations were per-
formed with the use af a nonlinear thermomechanical analysis program writ-
ten for an IBM P C-compatible microcomputer.

2. CONSTITUTIVE RELATIONSHIPS

Analysis of thermo-elastic-plastic problems with creep effects can be ob-
tained from the constitutive relationship in the form [1,2,6,8,13,15]

(2.1) oi; = Cijnl (Ekl - 855’) eff) - EP) )

where a;; — stress tensor, Ci;pr = Adij8p+pe(8ir 650+ 81651, ) — elastic constants
tensor, A, u — Lamé’s constants, §;; — Kronecker’s delta, ¢4 ~ total strain
tensor, sg) ~ plastic strain tensor, sﬁ?) — thermal strain tensor, eﬁ) — creep
strain tensor. : : : T
To determine the plastic strain rate é,f-;-’} a flow law is used associated
with the yield eriterion in the form '

(2:2)- f(oi;,04) = F(oi;) — oy (é(”),@) = 5050‘5 ~oy=6-a,=0,

where o, denotes the uniaxial yield point, & stands for a stress intensity,
05 =05 — =0nn;; is astress deviator and £(P) is an effective plastic strain.

3

Under the above a.ssumptlons the plastic strain rate e(p) can he éalciilated
from the equation '

. . 21 30
(2.3) - 53’) = “(nklakl)nu [, 359 i7
where an isothermal strain-hardening parameter % is defined as
2 da |
2.4 =% ,
( ) 3 ggv) ©@=const

ni; = \/- % is a normal to the yield surface and 5(3") f \/—E(P)S(P) dt is

an effective plast;c strains.
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Accounting for Eqs.(2.1), (2.2) and (2.3), the constitutive relationship
for the stress rate tensor becomes

Cijst nsthrklnpr
h+ 1y Crantutey

(2.5) Gij = (Cz‘jkl ~ ) (ék:— a (0)6 ~ éfﬁ))
+ 553' + 5,
where . :
* . c
(2.6) o= Cijul (Ekf = 655) - Ei?) - EE:[)) ’

2190,

. *
_'nprcprstnst a L O apr npr d
B O 3500 \ﬁl_"z'
(2.7) oi= Cijungu T V3530

3. CREEP LAWS

Creep strain rate that enters Eq.(2.5) is, in the general case of combined
stress state, proportional to the stress deviator [1,2,9,13) and can thus be
expressed as

3.1 e = 202,
where a scalar multiplier A amounts to

3 g(c)
(3.2) A= 5= -

The stress intensity & was defined in Eq.(2.2), £ is the creep strain intensity
rate depending on the temperature @ and the time ¢ as follows:

(3.3) £9(3,£,0,1) = \/gé,(j-)ég;) ,

For the 3D creep law to be formulated it is necessary to find the creep strain

intensity function
(3.4) | £ = g1(5,1,0)

from a uniaxial creep test.
A differential increment of the creep strain vector for an instant ¢ can be,
in matrix notation, shown as

(3.5) del?) = kDo dt,
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~ where D is a matrix operator transforming a stress vector ¢ into its deviator
oD, ‘
As creep effects can be assumed [14] to depend on stress, time and tem-

perature in a separate manner, the following expression follows

(3.6) _ £ = fi(0) fo(t) f2(0).

In expressions (3.7) to (3.12) are presented (written by the author of
paper {14]) some forms of functions fi(o), f2(t) and f3(@) (see Eq.(3.6))
and names of their authors obtained for uniaxial test under the assumption
of constant strain.

The function f;(o) was proposed by Norton and Bailey to have the form

(3.7) 0 = Ko™ |

whereas Odquist suggested a relationship

‘ . d o™ o\*
(38) £ = a (0_—60) + (O'c) ¥

where K, m, 0., 0.0, 7, 7 are constants.

To describe creep strain as a function of time {f3(¢)) the following rela-
tionships can be used:
(3.9) e@ = e

proposed by Bailey, and
(3.10) e = Gl - &™) + It

presented by Mc Vetty.

- Fyn,G,qand H in Eqs.(3.9) and (3.10) represent some constants. When
the creep strain depends on temperature, the form of function f3(@) can be
adopted as proposed by Penny and Mariott

(3.11) - £ = [texp(-Q /RO fi(a),

where () denotes an activation energy and R is a gas constant.

Effect of temperature changes is usually taken into account by making
the material constants depend on temperature or allowing for structural
changes in the material. Increase in temperature is known to accelerate the
velocity of creep. To describe creep in metals a law proposed by Nutting,
Scott-Blair and Veinglou is often employed in the form ‘

(3.12) ele) = AgPt®,
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where A, p,n are temperature-dependent parameters. The authors of pa-
per [11] make an additional assumption that the parameter A in Eq.(3.12)
depends on the temperature. Specifically,

(3.13) A = Ayexp(A;/0),

where A; and A; denote constants obtained from a uniaxial creep test and
© is measured in Kelvin degrees.

Similar approach is proposed in [12] whereas in {3] all parameters that
appear in Bq.(3.12) are assumed to be temperature-dependent. The parame-
ters that enter relationships (3.7)—(3.12) should all be found experimentally.
Equation (3.12) can, in a particular case, describe temperature-independent
creep (it can be derived from Eqs.(3.7) and (3.9)). Then the parameters
K,pand » remain constant.

4. INCREMENTAL FINITE ELEMENT EQUILIBRIUM EQUATION

On using an incremental description of the deformation process {1, 2, 4,
6, 13, 15} in its finite element formulation for the small strains, the relevant
equilibrium equation assumes the form

(4.1) / BICBydV

Vv

Au = HAR fB}j R dy
Vv

or, in a compact manner,
(4.2) : "KAu = &R —'F,

where

K = [f BICBy, dV] secant stiffness matrix,
v

Au - nodal displacement increments,
'F = [BT B dV nodal forces vector corresponding to the body stress
7 .

state,
B - geometric, strain-displacement matrix,
C - elasticity matrix corresponding to a constitutive tensor of material
properties, _
'Y — current stress vector.
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Two methods have found broad applications in the solutions of physically
nonlinear incrementally formulated problems — the variable stiffness method
and the initial stress method {2, 6,15]. Each is being used in various modi-
fications to allow for specific features of particular problems. In the initia}
stress method the elastic-plastic matrix *K that enters Eq.(4.2) is expressed
as a difference of matrices corresponding to elastic {(K¢) and plastic (K?)
behaviour of a considered material, '

(4.3) ‘K =K°*-K".
Then the equilibrium equation can be shown to be
(4.4) K°Au=AR-J.

The vector J is termed an initial load vector. The initial stress method
has it that at a given loading step the stiffness matrix is calculated and
inverted only once at the cost of many multiplications of this matrix by the
initial load vector. Thus the vector Au has the form

(4.5) Au=(K*)"'(AR - J)

and it is from this vector that the stress and the plastic strain increments
are calculated followed by a check on the convergence of the latter,

5. NUMERICAL EXAMPLE

Consider a cantilever beam loaded by a concentrated force at its free end,
Iig.1, and heated to the temperature T = 300° C. Material characteristics

r4
Y
X

|

A-A

o

F1G. 1. The model of cantilever beam (T = 300 ° C).
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Table 1.
strain- thermal
Tempe- | Young’s | hardening expansion yield
rature | modulus | modulus coeflicient point
E [MPa] | Er [MPa] Jij af [MPa)
100°C | 182222 5467 0.1115-10~* 231.3
500°C 151111 4533 0.1141-10™* 143.2

of the material depend on its temperature and vary linearly between 100
and 500° C, Their values at 100 and 500° C are shown in Table 1.

The yield point shown in the last column of the table varies according to
the function given in [7], '

51 o7 = i- (58],

where g, = 235 [MPa] is a yield point in the reference temperature and A@
is a temperature increment. ,

A thermo-elastic-plastic problem with isotropic strain-hardening was deals
with in which the tangent modulus Er = 0.03E. ,

The considered cantilever was assumed to be in plane stress, its dimen-
sions being denoted as: length /, depth h and thickness b. Finite element
mesh consists of 120 two-dimensional four-node elements. Clamped end
of the cantilever was modelled with the help of hinged supports free to
travel in the direction perpendicular to the beam axis with the exception

z
Y
X

1 13 19 25 3
2 “ 20 2% 32
3 15 P 27 33
4 10 % 22 2 34
5 7 17 23 2 3
) 12 18 24 o 38

F1G. 2. The model of cantilever beam (T = 300 ° C).
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of midhight hinge that was fixed. Stresses were calculated at four Gauss
integration points. In Fig.2 a fragment of the mesh near the supports is
shown on which the numerical results will be presented. The dimensions
were assumed: | = 1m, h = 0.1m, b = 0.075m. Poisson’s ratio was taken
as v = (L3,

Propagation of plastic zones was obtained on the basis of equivalent
stresses oy according to the Huber yield criterion. The load P increased
linearly at each step to reach Ppay.

Plastic zones propagated from the clamped end and their evolution js
shown in Fig.3 for the initial temperature Ty = 100°C and in Fig.4 for
To = 300° C. Plastic zones can be seen to initiate earlier and to propagate
faster for the higher initial temperature.

z
Y
X B=32kN  B=35kN

220.00 220.00

22p00 22000

FIG. 3. Cantilever beam ~ plastic zones (T = 100 ° C).

z
Y
X ,
B=20kN  B=32kN  B=35kN

7

- Oy 200.00 200.00 20000
e —
20000 200,00 200,00

FiG. 4. Cantilever beam - plastic zones (7" = 300 ° C).

Creep effects in the cantilever were investigated under a constant load
P = 34kN. Creep strains for uniaxial test were assumed to vary in an
exponential way according to Nutting, Scott-Blair and Veinglou

(5.2) el = Ag™™ .
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Material constants, according to the authors of [11], are to be calculated
from the formula

r

where A@ is a temperature increment, n,m, ¢, r are constants. For A@ =
300°C the parameters of creep law (5.2) are: A = 3.77.10~1, n = 3. 142
m = 0.615. Time is measured in hours, stress in N/mm?2.

z
14
X =0 =R f=100h
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T 7 7
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|
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]

FIG. 5. Cantilever beam ~ steady creep (T = 300 ° C).

z
Y ,
X t=100h  tp<10h ty=1h

%000 76000 %000
y=toh [ [t=108 [t,=1h

F1G. 6. Cantilever beam - steady creep (T =300°C).

Suitable calculations supplied the time-dependent nodal displacements
and siresses at the Gauss points in each element. Initial situation and the
deformation of the cantilever for ¢, = 10h and t3 = 100k are shown in
Fig.5. Changes in time of the equal stress lines are depicted in Fig.6. Re-
laxation of the longitudinal normal stress o, at a selected point is shown
diagrammatically in Fig.7.
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The following conclusions can be drawn from the above graphical pre-
sentation of results:

o deformations increase faster at the initial stages of the process,

e the equal equivalent stress lines vary in time in such a manner that
their gradient in the lateral direction decreases,

¢ stress relaxation stabilizes as soon as rapid initial changes are over.

Two ranges or the behaviour can be distinguished; I - nonsteady creep
characterized by rapid changes in displacements and stresses, 11 — steady
creep in which those magnitudes change much slower.

6. CONCLUSIONS

The presented FEM creep analysis of a structure under mechanical and
thermal loading shows its practical applicability. The crucial points is the
availability of material characteristics derived from experiments and their
dependence on temperature. The knowledge of a temperature-dependent
creep law for uniaxial test is also necessary. The finite element technique
makes it possible to analyse the strength of structures with complex geome-
tries such as layered beams and sandwich plates as well as the occurrence
of local Zones with permanent deformations.

When a nonstationary temperature field is to be tackled, there is a pos-
sibility to account for the effects of current temperatures on the material
characteristies and creep of structures.



CREEP EFFECTS IN THE FINITE ELEMENT ANALYSIS ... 385

However, to analyse the creep of structures over prolonged periods of time
a necessity atrises to continue calculations for a large number of time steps.
This is especially the case when a comparative analysis with various time
steps is required. Different lengths of time steps can result from considerable
differences in creep strain rates at certain temperature ranges. It is the loss
of numerical stability of the calculation process that can result from too
long time steps. Special techniques are known to have been used in such
situations, for instance a subdivision of time steps into finer intervals [13].

An improvement of stability and accuracy is reached at the cost of much
longer computation times. '

10.

11.

12.
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