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DISCRETE MODEL OF WAVE PROPAGATION IN A ROD
WITIH RIGID UNLOADING CHARACTERISTIC

Z. SZCZESNIAK (WARSZAWA)

A principle of construclion and action of a discrete model of a rod with rigid char-
acteristic of unleading is proposed, Hs applications are shown for loading that varies
arbitrarily with time. Propagating waves in this case cause multiple effects of rigid un-
loading and reloading in each cross-section of the rod. These effects are highly nonlinear
and very difficult to describe analylically. Numerical algorithm is given. Its eflectiveness
is demonsirated on an example and solution errors are discussed.

1. INTRODUCTION

Problems of plastic wave propagation must be ana,lysed with the use of
properly formulated physical relationships in which the loading and unload-
ing processes are distinguished. Experimental evidence has shown that the
stress-strain unloading branches for soils and other bodies can be success-
fully approximated with rigid behaviour [1-3].

Deformation models of materials that become rigid on unloading are of
considerable practical importance [4-10,17,18]. Many engineering prob-
lems have been found to have relatively simple solutions with the use of
such a model. Good agreement with experiments have also been found
[4,6-8,11]. -

However, the obtained solutions deal with particular, simplified load-
ing patterns [4,6,7,10,11]. Solutions for arbitrary time-dependent applied
loadings are fraught with serious difficulties. The reason is that the unload-
ing process is generally described by a nonlinear differential equation with
- nonstationary boundary conditions, e.g. [17,18].. Accounting for layered
“structure of a body makes the problem practically unsolvable.

... In this paper a one-dimensional problem of wave propagation will be dealt
_with. Boundary loads can vary in an arbitrary manner and the unloading
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characteristic is assumed to be rigid. A discrete method leading to effective
solutions will be presented. Its foundations as applied to linearly elastic
loading and unloading behaviour were given in [12] and developed in [13].
The method consists in a discrete model whose performance is based on a
finite difference approximation that generates 10 errors. Similar model is put
forward in this paper to cover situations in which unloading can be treated
as rigid. This type of approximation works well in the loading processes but
cannot be applied to the rigid unloading processes, in which waves cease to
be propagated.

The proposed discrete model, together with the model described in (12},
forms a basis to construct complex discrete models of wave propagation when
the stress-strain relationships are nonlinear. Tn this case these relationships
ought to be approximated in a piece-wise linear manner.

9 (ENERAL PHYSICAL CHARACTERISTICS OF THE PROBLEM

Consider a semi-infinite rod with constant cross-section made of a ma-
terial whose & — ¢ relationship is shown in Fig.1. The material behaves as
linearly elastic on loading whereas its internal constraints make it impos-
sible to deform on unloading - thus it stays rigid. Some soils have been
found to behave in such a manner. Various models for soils can be found
in the literature [3,4, 14-20]. Some soils are treated as three-phase media,
not infrequently strain-rate sensitive ones. The physical law adopted in this
paper does not allow for viscous effects.

¢
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A free end of a rod is subjected to an arbitrary, piece-wise monotonic
load p(t), Fig.2a. Two regions are generated in the rod: a loading Tegion 1
and a rigid unloading region II, Fig.2d. The regions are determined by two
time-dependent interfaces ¢ — a and ¢ — ¢.




DISCRETE MODEL OF WAVE PROPAGATION IN A ROD © 331

pit)
plt) a —
Rigid
1 unleading
_ X region
? ® a,<0
Unloadir
—— =yC fGant ™

b c |
plt) oft) — a,>0
: Laadmg
[ region

T gt 7
_ga,

Fia. 2.

In the region I the wave propagation problem is described by the equation

(21) 8_23 1 a2u =0 1
o2 dz?

where u = u(z,1) denote displacement of section 2 and suitably formulated
boundary conditions. Decreasing load p(t) causes an unloading process in
the region II. However, due to the assumed constraints no decrease in strains
is possible and the waves begin to fade in the region II which becomes
completely rigid and undergoes a rigid translation with the velocity v.
The motion equation in the region II has the form

vy o
_ _ Pt T os
The interface c—c moves with variable velocity a. according to the dynamic
states of neighbouring regions. The signs of velocity a. characterize two
different situations. '

(2.2)

SiTuaTION 1. @, > 0

. Decreasing load p(t) is accompanied by decreasing velomty vy and a rigid
region grows at the cost of shrinking loading region. The process depends
on the current values of dynamic parameters that characterize the loading
region.
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SITUATION 2, a. <0

Increasing load p(t) is accompanied by increasing velocity vy and the
rigid region contracts. The loading region expands in accordance with the
velocities a; and az. This effect will be called an activation of the rigid
region. A certain part of this region becomes activated depending on its
state reached on prior loading. Basic parameters of this state are: maximum
stress ol , Fig.1, and an associated maximum mass velocity L.

An arbitrary load, Fig.2a, can result in' that the same region of the rod
becomes activated and rigid again in a cyclic way. For a particular type of
loading shown in Fig.2b it is only the rigid unloading region that is propa-
gated along the rod and a, = a1. Load p(t) shown in Fig.2c generates
the Joading region alone. From the above it follows that Eq.(2.2) contains
two unknowns: the velocity vir and the length of region 1I. The continuity
condition at the interface ¢ — ¢ is

(2.3) vl = o] or ol=al.

For a rigid. process vl and ol denote current parameters corresponding to
tlie loading region. TFor an activation process the following equalities should
;-'A'(:_pounti'ng._for_ a suitable c_ontil_ﬁity condition leads to a nonlinear dif-

- ferential equation. Tt is only for very simple loadings p(?) that closed form
solutions can be arrived at..

. .3. DISCRETE MODEL OF A ROD WITH RIGID UNLOADING .
' CHARACTERISTIC '

A discrete model of a considered rod is similar to that described in [12].
It consists of a series of lumped masses Am, Fig.3, whose motions are con-
trolled by suitable weightless constraints, sensitive to the sign of a displace-
ment increment (or rate). These ratchet-type constraints can be visualized
as "pike’s tecth”. On loading the'teeth deform elastically whereas on un-
loading they lock. L

Performance of the model upon loadinig process results from the criterion
of an exact difference approximation [12].. This means that spatial discretiza-
tion Az and temporal discretization: At satisfy a relation’ Az = a Al Per-
formance of the discrete model upon rigid unloading is- different since the
unloading part of the rod becomes an undeformable body. The length of
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FiG. 3. 1) Aviigr = v — vi41; 2) Aviiyr 2 0 - loading; 3) Aviiys < 0 - does not
apply - rigid unloading.

this part can increase or decrease, in accordance with the dynamic condi-
tions of a problem in question. Thus a procedure is necessary to determine
the length of rigid part and the transmitted stresses.

A discrete model for the case of growing rigid region is depicted in Fig.4.
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Dynamic parameters of a front of unloading region, located at the mass
Am = pAz numbered j, will be designated with a subscript ¢, j. These are:
velocity of the rigid region front aZ ;, mass velocity vZ; (constant within the
whole rigid region) and the stress o7 ;3 they constitute basic unknowns in
the problem. Velocity of the unloading region front is variable and depends
on the current dynamic parameters. Iis variation and, at the same time,
the length of rigid region are characterized by a parameter K = 1,2,3...
denoting a distance K Az covered by the front over the time At. Parameter
K will vary, from one time step to another, in an irregular manner as a result
of variations in the mass velocity v%;. Velocity v:'}'l
be calculated with the use of momentum conservation principle which can
be expressed, for both rigid unloading and activation, as follows:

at an instant "1 can

(31) i IM+ AM(K)]) = Mv?; + AIM(K) + Ao™(K)At,

where M = Am(j — i+ 1). The remaining terms in Eq.(3.1) assume the
{form:

* For SITUATION 1 - rigid unloading (a2; > 0), the mass velodity vg;
decreases

AM(K) = KAm,
. s=j+K
(3.2) AITMK) = O, Amdg,
s=j+1
Ae™(K) = 04— oK -

The stress o7, g and velocities v™ correspond to the current region of loading.
Tor SITUATION 2 — activation (a?; < 0), the mass velocity v; increases:

. AM(K) = —Kbm,
(3.3) AH"'(I() = —KAmv?,j,
AcMK) = o}y —Omi-K-

The stress oy, g attains the maximum value that was determined on the
loading of the cross-section j — K.
It can be seen that, if Az — 0 and At — 0, then AM{(K) — 0,

AIIM(K) = 0, Aoj(K) — %% , and Eq.(3.1) will be transformed to as-

sume an appropriate differential form, see Eq.(2.2). This means that both
the difference and the differential approaches to the problem coincide. The
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value of paraneter K in the formulae (3.1)-(3.3) should be found in an it-
erative manner. Starting with K = 1, subsequent locations of the rigid
region front are analysed till the calculated stress a“'*‘_:k or a;"j_l K satisfies®
the following condition for the first time:

“in the rigid region:

' +1 Ln+l
(3.4) ?J-}-I\ 200k

in the activated region:

ot M+t
(3.5) Otk 2 Oplink -

The stress a;“ﬂ & ou the rigid region face can be calculated from the follow-

ing set of equations.

11-!-1 — R
ﬁn,n+1 - vc,g-E-I\’ v3+K
e f+K = At ?
nntl _ nw-1,n nntl 2
(3.6) citk = Bugip + AT AL
' ntl _ .m nn+l
UK = Uegpk T OU
n+l 1.1+1’
P Uitk — Wik E
itk Az ’
where u::;fl'_’}},, Aul ;‘:‘}1, ”2}-}-1{ denote acceleration, displacement incre-

ment and displacement itself of a considered mass designated j + K. In the
case of activation the subscripts j + K should be replaced by § — K and
in Bq.(3.6)1 v} g by vZ;_ k. It must also be remembered that Uyas o
in Eq.(3.6)4 applies to the activation process, hence maximum stresses ol
should be used determined in the loading process.

Stresses o1 + a"f}(_l, in the rigid region, shown in Fig.4, can be cal-

culated from the formula

vl —op
(3.7) of t = ofHl - Am

‘wherei <I<j+ K —1.

In the loading region the described model performs according to the rules
given in [12]. Similar discrete model can be constructed for a nonprismatic
bar.

Both boundary and initial conditions are formulated as in {12]. Gen-
cral form of the boundary condition is written for a layered rod in this
cross-section that separates its segments with different impedances a.pr and
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¢r41pr4+1- The condition was shown in [12] to be identically satisfied pro-
vided the boundary mass Amy amounts to

(3.8) 7 A'I’TM; = 0.5A'l'.([l,-p-r <4 ar+1pf+1) .

From the above it follows that a free edge of the rod should be modelled
with the mass Amg, = 0.5At a,p, since a,41pr41 = 0. Remaining interior
masses will be Am, = a,p,At. The edge mass cannot be directly acted
upon by a discrete form Pa(t") of the applied load p(t). A specific form of
the load P,(i*) must be here employed, namely

0.5 Pa(t9), for n=0,

(3‘9) Pz(tn) = PA(tn-l) - 0.5 [PA(tﬂ-l-) — PA(tn)] , for n= 1,2, 3, eas

When the transmission of edge load is considered with no effects of wave
reflections from the other edge of the rod, the edge mass can be equal to
Am, and acted upon directly by the load Pa(#").

4. ACCURACY OF THE PROPOSED MODEL

* The presented model performs in the loading process in the same manner
as. does the linearly elastic model described in [12]. In that paper a condi-
tion: Az = a; At was shown to ensure modelling of the loading process to
within an accuracy of truncation errors. Such an accuracy is not, however,
possible for the rigid unloading process. In general, the space-lime course
of unloading is nonlinear and that is why a location of the unloading wave
front I j+x = (j + K)Az does not necessarily have to agree with the exact
solution. The above remark also applies to all other parameters referred to
the front of the unloading wave. In this situation the truncation errors can-
not be avoided. Mowever, a numerical analysis of the problem shows that a
finer discretization, with respect both to spatial and temporal coordinates,
is an effective method to keep these errors as small as possible. Numerical
algorithm of the method has turned out to be very effective. Thus a number
of solutions for various discretizations can be readily obtained and suitable
conclusions on their convergence can be drawn. ' '

The errors will be assessed with the help of a problem whose exact so-
lution is given in [6]. A semi-infinite rod made of a material with rigid
unlqdding characteristic is considered. At an edgez =0 a load is applied
that increases linearly in time to suddenly disappear at an instant 7, Fig.5.
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The unknowns of the problem are the changes in length of the rigid unloading
region and the stress at its front. The following data arc assumed: py =
0.095MPa, r = 0.125s, ay = 101.4m/s, py = 1800kg/m3.

The exact solution of the problem [6] indicates that, for the assumed type
of load p(t), the front of rigidly unloaded region propagates with fast varying
velocity, especially at the first stage beginning at ¢ = 7. From the viewpoint
of high accuracy of numerical solution, this fact is very disadvantageous. The
problem is now solved with the use of discrete model described in Sec.3.

In the solution for 0 < ¢ < 7 (loading process) there will be the truncation
errors only. For ¢ > 7 the error analysis will concern the length I, of the
unloaded region of the rod and the stress o, at its end. The errors are
defined as follows:

1. Error in the length I,

L L
§7(1,) = _Dl_n;_fl 100,

2. Error in the stress o,

n T
67(a.) = =2 TN 10
ac,D

where I2 ps 0fp denote values obtained from the exact solution for ¢ =
n AL, 12y, o2y stand for the corresponding values taken from the numerical
solution. '

The obtained computational results for Az = 1.305m are depicted in
Tig.6 from which it follows that the largest errors exist at the beginning
of the unloading and refer to the length of unloaded part. However, the
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errors oscillate around zero and decrease very rapidly. Yor a large step
Az =-1.305m the greatest error is — 9.1 % and after 26 time steps At is
contaitied within 1%. For ¢ = 150At¢ the error is as small as — 0.17 %.
Ertors in stresses are found not to exceed 0.5%. All the above errors can
be diminished by decreasing a spatial step Az or a corresponding time step
At. For instance, Az; = 0.1 Az resnlts in that an initial ervor 6"=1(l;) is
reduced to — 1.25 %.

It is worth noting that, due to the absence of wave propagation in the
unloaded region, the errors are of a local character only.

Selection of suitable steps Az or At, leading to a desired level of errors,
does depend on the specific conditions and individual requirements of a
problem in question.

It is often encountered in the engineering practice that the load p(i)
increases very abruptly at the very beginning and continually decreases ac-
cording to a certain function, Fig.2b. Let a free edge of a semi-infinite rod
be subjected to a load p(t) = po(1 —t/71), 71 = 0.5s. Let material con-
stants be @) = 104.4m/s, p; = 1800kg/m3. It is only the rigid region that
is present in the considered rod since the loading region shrinks to an edge
cross-section and hecomes, at the same time, a front of the rigid region.
Velocity of propagation of this front is equal to e; which means that the
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length of rigid part is calculated with no error at all. Certain errors are only

involved in the stresses ¢7. Table 1 shows that these errors are negligible,

Table 1.
a(z)/po; Az =1.305m

i=-L exact numerical
Az solution solution

1 0.987500 0.987500

2 0.975001 0.975001

3 0.962501 0.962501

. 38 0.525014 0.525014
39 0.512514 0.512515
40 0.50:0014 0.500015

5. NUMERICAL EXAMPLE

Efficacy of the proposed method will now be demonstrated. Consider
a semi-infinite rod made of a material whose stress-strain relationships is
shown in Fig.1 and whose constants are a; = 150 m/s, pi = 1800kg/m>.
A free edge of the rod is assumed to be subjected to the following time-
dependent load p(t), Fig.7a:

{
(p1(2£—§2), €=~1-;, for 0<t<n,
T9 — 1t 3
¥ ) for 4 <t< 7y,
T —7T 2 .
t—-T2
" = ’ { <t
60 =1 m(Z=2) o m<isn,
O'Oy for T3_<_t$1'4,
t—Tq
P3(T5_T4), for y<t<y,
. 0.0, for t> 7.

The following data are to be substituted into Eqs.(5.1): py = 0.2MPa,
p2 = 0.3MPa, ps = 0.4MPa, 1y = dms, & = 6.7ms, 13 = 14.6ms,
T4 = 18 ms, 75 = 21.3ms.
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Let-us analyse the deformation process in the rod by means of the discrete
model described in Sec. 3. The steps along the rod are assumed Az = 0.1 m.
To obey the condition for an exact difference approximation in the loading
process; they corfespond to the time step At = 0.6667ms. The solution is
presented in the phase plane, Fig.7a. Characteristic regions are designated
as follows: O — a region with no load, I —loading region, II — rigid unloading
region. Regions I and II are separated by an interface which is here termed
a rigid unloading wave and describes changes in the location of the front of
rigid region. A diagram of rigid unloading wave is seen to be in accordance
with the program of variable load.

It is not a single occurrence of rigid unloading of a certain part of the rod
that is observed. Due to a complex time-dependence of p(t) a certain length
Iz becomes rigid and activated in an alternating manner. No computational
difliculties arise in the applied method of solution.

Permanent strains in the rod are shown with dotted line in Fig.7a.

Time-dependent stress o.(t) at the front of the rigid unloading region
is depicted in Fig.7b. The stress, together with the wass velocity of the
growing rigid region, are both seen to decrease. The stress o.(t) and the
mass velocity are found to increase as the rigid region contracts.

Ten times shorter step Az is not found to appreciably alter the solution.




DISCRETE MODEL OF WAVE PROPAGATION IN A ROD 341
6. CoNcLUSsIONS

In [12] a discrete model was proposed for one-dimensional wave propa-
gation in the linearly elastic material insensitive to whether loading or un-
loading process takes place. _ :

In this paper a similar model is put forward to reflect the unloading
process which proceeds in an ideally rigid manmer, i.e. with no recovery of
strains. As shown in Sec.5, effective solutions to complex problems can be
arrived at, '

Models described in {12] and here enable such problems to be solved in
which the stress-strain relationship is unilinear for both loading and un-
loading. They can be thus termed the basic elastic and plastic models,
respectively. Automaitic calculations enable to avoid the difficulties typical
for analytical solutions so the models can be successfully employed in com-
plex situations. It is also possible to combine the models in such a way that
the wave propagation problems could be analyses for piece-wise multilinear
approximations of the stress-strain relationships on both loading and un-
loading. This is particularly important for such media as soils sub jected to
arbitrary dynamic loading programs. Plane, cylindrical and spherical situa-
tions can be dealt with in which waves propagate and reflect. The propesed
model seems also suitable for the discretization of the "plastic gas” problem,
as described in [19]. It was also used in [20] to analyse the propagation of
waves in soils under very high pressures. Another field of application can
be found in the soil-structure interaction problems in which cavitation and
layered structure of subgrade could be allowed for.
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