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ROLE OF FLUID INERTIA IN POROUS MATERIAL
SUBJECT TO DYNAMIC LOADINGS

S.7. KOWALSKI and G. MUSIEL A K (POZNAN)

“The paper is aimed at analysing the dynamical properties of fluid-filled porous media
in which the inertial coupling effect (due to the complexity of the pore structure) is taken
into consideration. Particular attention is given to the influence of the mass coupling
coefficient p12 = —pa on the wave propagation velocities in fluid-filled porous medium,
on the natural frequencies of fluid-filled porous cylinder, and on transmission of forces
through such a cylinder, what is important for the determination of vibration-isolation
properties of the medium.

1. INTRODUCTION

Any motion of fluid in a porous material is impeded even when the pore
dimensions are relatively large. This is because of at least two reasons: first,
the complexity of the pore structure makes the rectilinear motion of the fluid
impossible and second, the fluid viscosity (adhesion) involves a resistance at
the fluid-solid skeleton interface. The first reason represents some kind of
inertial resistance of motion of the skeleton when it is accelerated, as for
example by vibrations. The phenomenon is similar to that of a tank filled
with fluid (we should consider it to be a large pore) and accelerated by a
truck transporting it. During acceleration the fluid presses on the back wall
of the tank and causes inertial effect which counteracts the motion of the
truck. I the back wall of the tank could open during its accelerated motion,
then the inertial resistance would fall down to zero.

- A permeable porous medium with a complex pore structure, in which
a free motion of the pore fluid with respect to the skeleton is impossible,
is considered in the paper. In such a medium a part of the pore fluid
participates in the inertial effect, and the rest of it is free and can move with
respect to the skeleton.
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Division of the pore fluid into free and non-free (constrained) was pro-
posed by DERSKI [2]. KuBIk [7] introduced a concept of "structural per-
meability” which made it possible to describe the fluid division mentioned =
above by structural parameters. KOWALSKI (3], using a two-parameter char-
acteristic of the pore sctructure (the volume porosity and the structural
permeability), derived a set of two coupled equations of motion for fluid-
filled porous medium. These equations contain the so-called coupling effect -
through masses in the constituent motions. Their linear forms are equwalent -
to those given by Bior [1]. :

The method of mass and momentum balance, used by Kowarski (3] to |
derive the equations mentioned above enables an evident physical interpre-
tation of the coeflicients appearing in these equations, For instance, the
coefficient of mass coupling between fluid and solid pyp can he considered
as responsible for the inertial resistance of pore fluid in fluid-filled porous
medium during its non-stationary motion. Internal interactions like the dy-
namic coupling effect and interaction forces due to mass excha,nge in porous -
medium were also discussed in [8]. _

The aim of this paper is an analysis of dynamical properties of fluid-filled -
porous medium in which the inertial effect is taken into consideration. Par-
ticular attention is given to the influence of the mass coupling coefficient
p1z2 = —p® on the wave propagation velocities in fluid-filled porous medium,
on the natural frequencies of fluid-filled porous cylinder, and on transmission
of forces through such a cylinder, what is important In case of the determi-
nation of vibration-isolation properties of the medium, All these relations
are illustrated by graphs.

2. THE FUNDAMENTAL EQUATIONS

We shall illustrate the role of inertial effects of the fluid moving in a
porous medium by considering one-dimensional problem. We simplify the .
problem and assume that the viscous resistivity existing on the porous solid-
fluid interface is negligible. The Biot equations [1], with the interpretation of
mass coupling coefficient given in [8], are used for description of the motion
of a fluid-filled porous medium. These equations are then referred to a
porous medium with elastic both skeleton and fluid.

Let #; denotes the space coordinate, ¢ time, and uf and u{ denote the
skeleton and the fluid displacements in z; - direction, respectively. The
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equations of motion have then the form:[1]:

62u1 82u1 L0
32u ]
Q a 1 ‘—_ pf 6?:21 atg (11.1 ’U;{) »

where N, A,Q, R are the well-known material constants of the theory of

.' , porous media, p* and pf are partial densities of the porous skeleton and the

pore fluid, respectively, and p® is the mass coupling coefficient (see [1]). In
paper [3] p* is just interpreted as the coefficient representing inertial effects
in relative motion of the porous skeleton and the fluid. In quantitative
formulation this coeflicient equa,Is

c

b

(22) =p g
where pf = p{ f, is the partial densaty of the fluid as a whole, p¢ = pff, is
the free fluid partial density, p° = = pf(f, = f.) is the partial density of the
non-free (constrained by pore structure) fluid. Here pf denotes the real fluid
density, f, — the volume porosity ratio and f, —the'structural permeability
ratio (see [7]). The coefficient p* characterizes both the inertial property
of the pore fluid by density pf and the amount of the constrained fluid
expressed by the ratio : PP
P fv

e fe
The equatlons (2.1) ‘with p* = 0:were used in paper [4] for analysing
the vibration-isolation properties of deformable fluid-filled porous media.
Here, we take into account both the' dilatational coupling characterized by
coefficient ) and the mass coupling determined by coefficient p Thus the.
set of equation of motion is here doubly coupled. - : :
We solve the problem using dimensionless coordinates z, T

(2.3) mz?—l—,.. '_T:i——-~'2N+A
W

and the dimensionless displacements:

(2.4) =T ws=T

where [ is a characteristic length.
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The set of equations (2.1) in the dimensionless coordinates is expressed
as follows:

*u, %uy d%u, a?
+ a1 = + Y155(%s — ug},
2 2 2 2
(2.5) oz Oz or or
Pu,  Huy duy 9?
azw ﬁz_z = TW - 71‘72@(% - 'uf) s
where
(2.6) ay = N+ A’ a2 = R’ T = Y2,
) _ pe _ 2N+ A _ of
N o= 7.0'5;, Yo = B Yo = p_’
The constitutive relations for one-dimensional problems are
d ou
0= Gatagy
(2.7)

a 8 a
o = () m

They will be used to formulate the boundary conditions. The dimensionless
* stresses in the skeleton o, and in the fluid o are related to of and cr{ by

s !
oy oy

aNn+4A' Y TIaNyaA

(28) 0s =

3. GENERAL SOLUTION OF THE PROBLEM

The solution of the problem is searched in a form of series expanded with
respect to eigenfunctions. Applying the method of separation of variables,
i.e. writing displacements in the form

us(z,7) = Uy(2)T(r),
us(z,v) = Up(z)T(r)
and substituting them into (2.5), we obtain _
Uy + aiUf + U + U, - Up)] = 0,

(3.2) aUY + U} + ?[yUs — 1172(Us — Uy)] 0,
T+w?T = 0.

(3.1)
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In the above equations w? is the constant of separation of variables, and
comma and dot over a symbol denote differentiation with respect to the
space and time coordinates, respectively.

We assume exponential form of the eigenfunctions, i.e.

(3.3) Us(z) = A,.exp(m) , Us(z) = Afexp(rz).

After substituting these functions into equations (3.2);,2 we obtain a fourth-
order equation. The solution of it gives us the general shape of the eigen-
functions '

Us(z) = As1exp (if—:z) + A,z exp (-.—i%x)

+ A3 exp (zc%a:) + Asqexp (—z’g-m) ,

w L
(3.4}
Us(z) = Aprexp (*:-i'm) + Agzexp (——i%m)
: " :
+ A3 exp (@-‘%a:) + Aygqexp (—i%z) ,
cw cw
where
e = 4B + \/73 —4(1 - am)ly + 1(7 + 72)]
s = 2 n oy ,
(3.5) | [y +my 72)]
& = Ya -~ ﬁg - 4(1 - alag)[fy'-q- 71(7 <+ 72)]
N \ 2y + My + 72)]

are the dimensionless velocities of longitudinal fast and slow waves, respec-
tively, where the notation is introduced

v3=1+v+mnl+ae+7201+a).

Assuming the mass coupling. coefficient 4; to be zero in relations (3.5), we
obtain dimensionless velocities of fast and slow waves used in [4,5,6]:

¢ = csfa,, et = cyfas

where
' IN+ A

p3

ay =
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denotes the wave velocity in skeleton. Assuming additionally the dilata- -

tional coupling coefficient Q to be equal to zero, ¢* and ¢* will express the

uncoupled dimensionless wave velocities in the porous skeleton and fluid, re- -

spectively. Generally, however, the wave.velocities depend on:the coupling -

coefficients p® and Q.
Functions (3.4) liave to fulfill equations (3. 2) and this 1mphes the follow-

ing relations between constants:

An = &Aa,  Ap = 8Ag,

(3.6)
Aj = GAg,  Ap = hAu,
where _‘ | _
_ 1= 1+ n)es? _ a1 + 7172¢32
61 - T *d - *2 ?
a3 + ek L~ (y+ y1v2)et
(3.7) S Gl i
s 1=+ y1)e? _ e+ Ny}t
_ © + N T—(7+ 1172)e?

The genera,hzed coordmate which results from the solution of dxﬂ'erentaal
equation (3. 2)3, takes the form

(3.8) B T(T) C'smwr + Dcoswr.

Existence of two long1tud1na1 waves in fluid-saturated porous sohd in-
volves two sets of real—va,lued na,tura,l frequenmes in, the case of standing
waves

(3.9) . {w(l)} and {w(z)}  n=1,2,3,.

The first set is related to the fast wave veloczty a,nd the second one to the
slow wave velocity. Consequently, there are two sets of eigenfunctions and
generalized coordinates and the general solutlon of initial- boundary va,lue
problems takes the form’ TR e e '

us(z,7) = z [U(l)(:c)T(l)(T) + U(z)(m)T(z)('r)]

(3.10)
w@r) = 3 [UEIO+ U @O .

n=
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The orthogonality relations for these eigenfunctions are

Gy [@0) - (6 ®)] f {1+ U

+Hy + 7172)0"’@)6’ ()
=1 [UR@VRE) + UV )] ) d
o {[U ) + 0] V)

[U(k)’(:c) + U (@) Us,)(m)}

+H{[a0)+ ) U""(m)

- [azUs(fn)'(ﬂ?) +UR ()] Uf)

fori,k=1,2;n,m=1,2,3,... . Prime over the symbol denotes the ordinary
derivative.

On the basis of the general solution quoted above it is seen that the mass
coupling coeflicient, taken into account in the equations of motion, influ-
ences the wave propa.g;ation"Veldcities,'th'e eigenfunctions, the generalized
coordinates (in a quantitative sense) and the orthogonality relations for the
eigenfunctions. The mathematical form of eigenfunctions and of generalized
coordinates is the same as that for which p® = 0 (see [4]). For this reason we
do not report here the detailed solution procedure of the initial-boundary
value problem at hand. This procedure was presented, for instance, in pa-

per [4].

4. INFLUENCE OF FLUID INERTIA ON VIBRATIONS OF FLUID-FILLED
POROUS CYLINDER

Consider now free and forced vibrations of a fluid-filled porous cylinder
and analyse the influence of fluid inertia on the amplitude of free vibrations
of the cylinder and on the force transmission coefficient in the case of forced
vibrations.- ' '
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Free vibrations

Let us assume that mass M, (e.g. mass of a technical device) is resting
on the porous cylinder (skeleton), and mass My is resting on the pore fluid
for stimulation of the pore pressure (see Fig.1). :

N I o

/ I
/ Mass M,
= A Mass M,
H T 1E3A14A1 - Flui
iy
oK Forous

XXX~ Cylinder

[

X

LS IITI LIPSO A e 7,

" F16, 1. Model of vibroisolator.

The boundary coﬁditions for such a loaded cy]inder; expressed in dimen-
sionless coordinates, are following: ' o

_ Ou,(1,7) dug(l,7) _ u,(1,7)
08(11 T) - 6m + ag am - m& atz k]
1 du,(1,7) 6n;(1,'r)) _ A?ug(l,71)
@D o) = o (az )y ) = o 2T

u,(0,7) = 0, us(0,7)=0

. where

- Ms mye = Mf
= Zolp, ’ I~ Aglp,
are the ratios of masses M, and My related to the mass of the skeleton Aglp,,
where Ag is the cylinder cross-sectional area and ! is the cylinder height.

My
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Separation of variables in boundary conditions (4.1) and substitution
of the functions (3.3), including (3.6) and (3.7), yields the characteristic
equation of the form

(4.2 83 — by 192 (¥4 cos e cos B + yamsmyafsin asin §
f

+[(e2 + &1)m, — (1 + a161)7262my]a cos asin B
+[(1 4 a18;)m 261 — (ag + a)m;)Bsinacos 3 =0

with & = w/c* and § = w/e},. This equation allows us to determine the
natural frequencies w.

We specify the orthogonality relations (3.11) for the boundary conditions
(4.1) and obtain

43 [{a+mUREUR@ + @+ mURETL)

-7 [U(') W () + US)(z) U(k)(a:)]}dm
+m TR LUER) + mULMTEN)

0 for m#n or {#k,

={ M for m=n and i=k

where
1
@y MO = [{a+m) [9@] + @+ m [FE@]
1)

2 U@ D@)} da +m, [URO)] +mg [UO]

The eigenfunctions (3.4) for boundary conditions (4.1) are described by
trigonometric functions,

i () m
v = AD o) sin 7 g b0 sin 2
E i o) £ 3 n cs Cw )

(4.5)

. T .. (@) _ (i)
U(:z = A,(:) 610.,(;) sin “::1 $—62b$.:) sin %’:—x]

3 w

where
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a,frf) = (1+ alﬁz)ﬁ,ﬁ"} cos ﬂ,(f) - msw,f) sin ,6,(:') ,
b = (14 a161)al cos ali? — mwl) sinafl).

Constants A,(,,,) can be assumed to be equal to unity since, finally, they WJII"
appear in products with generalized coordinate constants (Eq.(3.8)) leading -
to other constants C,(L) and D( 94 , Le.

(4.7) - . T(‘)('r) = C(') smw(’)r + D(’]cosw{')'r

The constants C() and D(’) are to be determmed hy means of the mltla.l
conditions. For the initial conditions: written below - . - IR

(4.8) U(2,0) = uslz), ug(z,0) = Ufﬁ.(ﬂ;)a R
4.8 " o |
-‘L'b(:_’—o)— — ’t?_,o(w), B_fa(.r_’O) = 'Ufu(w),

these constants are

@9) oty G
where

G = f{(l +7)vs0(2)USN ) + (15 + 71)”1'0(:6)(1(’)(:1:)

-1 [vfo(a:)U(‘)(m) + vso(a:)U(’)(a:)] } dz
+mevo(1)UD() + mfvfo(l)v(‘)(l) ,

(4.10) '_ | .

o = f {(1 + 1) us0(2)US(2) + (7, + 71)ufo(:v)U},3(fv)
~ 7 [uso(2)UENz) + wo(2)U (=) } dz
+m3’u30(1) (1)(1) + ’m.f'll,fo(l)U(t)(

The eigenfunctions (4.5) and the generalized coordinates (4.7) with the con-
stants defined by (4.6), (4.9) and (4 10) give the solution of the initial-
boundary value problem. :
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Forced vibrations

The forced vibrations of fluid-filled porous cylinder subject to a harmonic
loading (Fig.1) are analysed here to study the influence of fluid inertia on the
vibration-isolation properties of the porous materials. The force is applied
to the mass M,.

The boundary conditions differ slightly from those of (4.1). The dlﬁ'erence
appears in the first of them, which is now

_Qu(l,7) Buy(l,7) E‘)j;_is(l,r) )
(4.11)  o,(1,7)= e -}-al o (T B Josinpr,

where f; denotes the amplitude of the loading force and p is the forced
frequency. The initial conditions for this problem are assumed to be homo-
geneous, i.e.

dus(z,0)  OQuy(z, 0)

(4.12)  us(z,0) = ug(z,0) = 0, 5 = Br

The procedure of solving such a problem has been given in details in previous
authors’ papers, for instance in [4]. This is the reason why we shall present
here only the final solution.

Our task here is to determine how the mass coupling coefficient p® in-
fluences the vibration-isolation properties of fluid-filled porous media. We
will answer this question by analysing the force transmission coefficient .
This coefficient expresses the ratio of the force actmg on the cylinder to the
loading force (Fig.1): 7
_ P(0,7)
~ fosinpr

The dimensionless axial force in the cylinder P(z, ) is equal to

(4.13)

(4.14) P(z,7) = o,(x,7) + 04(z,7).

The final form of the force transmission coefficient g is then as follows:

RO L O N G O
(4.15) =(1+a) l:n_,+p ZZ (—— -l)l

ot (w ))2 c* e,

o (') () {1) (i)
14+
+ ,7“2)[ ) peu (51“ - )]

i=1 n= 1(!’.0 ))2 3 C*

8
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where
ke = (1—myp?)
(1= msp?)(1 — myp?) — aray’
a2
4.16 =
(4.16) " (1~ m,p?)(1 — myp?) — ayay’
1
i 1 ; i
LY = ARG { ] [G,zUE(z) + Gall ) (z))dz
n
0
+mos U1+ mys UDM}
and .

(417)  Ge=(t+m)ks —mrg,  Gr=(v+m)es—nks

are the notations used.

5, ANALYSIS OF RESULTS

The main aim of this work is the analysis of influence of the mass coupling '_:ﬁ_
coefficient p® on dynamical properties of the fluid-filled porous medium, i.e.
on the wave velocities, on the natural frequencies of a fluid-filled porous
cylinder, and on the force transmission coeflicient (in the case of forced
vibrations}). - o

The solution of the problem was given in the form of a series of éigen- -
functions. The first thirty terms of the series were taken into account in
numerical calculations (greater number of those terms have not influenced -
the final values).

The values of material constants used in numerical calculations are simi- -
lar to those used in [4,5,6], i.e.

ey = 0.02, as = 1.0, 7, = 0.1,

5.1
(5-1) m, = 1000, my = 0.5

and the coeflicient v, responsible for the inertia of the pore fluid was arbi-
trarily selected from the range

(52) 11=0+1,

where y; = 0 corresponds to the case of uncoupled constituents motions via *
mass cross-couplings, and 4;'= 1 is a theoretically admissible value of this
coefficient.
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Cs» L

F1G. 2. Velocities of dilatational waves versus parameter 7;.

The dimensionless wave velocities (fast ¢* and slow ¢},) versus parameter
71 are shown in Figure 2 for the material constants (5.1).

On the basis of this figure it may be observed that both the fast ¢ and
the slow ¢}, wave velocities decrease with the increase of the mass coupling

w

off \\\\\\\\Eﬁ\\\
\\\\

ol

#n 1

FiG. 3. Natural frequencies of vibroisolator model versus parameter 1.
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coefficient. The influence of this coefficient is rather small in the case of the
fast wave velocity and significant in the case of the slow one. This influence
is clearly reflected in the natural frequencies for the porous cylinder analysed -
above (Fig.3). :

An increase of coefficient 7, causes a decrease of the natural frequencies.
The decrease is insignificant for the natural frequencies corresponding to the *
fast wave, but is considerable for those corresponding to the slow wave.

tr2s
i
wﬂ

U . A

FIiG. 4. The first two natural frequencies of vibroisolator model versus parameter v1.

An exception of this rule is represented by the first frequencies from both
sets of the natural frequencies (Fig.4), where the first natural frequency of
fast vibrations decreases more than the first one of the slow vibrations. We
can observe this effect in the force transmission coefficient p versus p/w{z)
which is shown for some values of ¥, in Fig.5.

On the basis of this figure and Fig.4 it can be observed that an increase
of inertia of the pore fluid, i.e. an increase of 41, reduces the practically
very important distance between the first and the second resonance of the
fluid-filled porous cylinder. It means that the vibration-isolation properties
of the cylinder are reduced in the range between two resonances and, in
some cases, for material constants other than (5.1), these properties vanish.
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I
]130 S—

bt

plwl®

F1q. 5. The force transmission coeflicient p for different values of parameter vy,

Summing up we can say that the inertia of pore fluid coupled mechan-
ically (through complex pore structure) with the skeleton influences the
velocities of waves propagating through fluid-filled porous medium. In the
one-dimensional problem analysed here, there are two longitudinal waves.
Both these waves decrease with an increase of 73, however, the slow wave
velocity decreases more than the fast one. In the extreme case of closed
pores, what means that the whole fluid is moving together with the skeleton,
the coefficient 1 tends to infinity and the slow wave disappears (¢, — 0).
The only one longitudinal wave propagates then through the medium and
has the velocity ¢, = \/(2N + A4+ R42Q)/(p* + p)/as. The fluid-filled
porous medium becomes then a composite with one kinematics, and there-
fore more "rigid”. It explains thus the reduction of vibration-isolation effect
between the first and the second natural frequencies of the cylinder with
the growth of ;. If the difference between the natural frequencies w{l)

and w§2) is maximum, then the phase distance between impulses (loadings)
transported by the fast and slow waves also reaches a maximum. The large
phase distance between the impulses is the necessary condition of a good
vibration-isolation effect in fluid-filled porous medium.

As the mass coupling phenomena reduce the vibration-isolation effect,
we should choose for construction of vibroisolators a porous material with
minimal value of parameter 7;.
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