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FINITE TIMOSHENKO-TYPE BEAM ELEMENT WITH A CRACK

M. KRAWCZUK (GDANSK)

‘The paper presents a method of constructing the stiffness matrix of a Timoshenko-type

middle of its length. The crack was modelled by adding an additional flexibility matrix to

solutions available in literature. Very good agreement between the presented model and
the analytical solution was obtained. The element presented in the paper may be applied
to the static and dynamic analysis of many types of structural elements with faults in
form of fatigne cracks. The method of formation of the stiffness matrix described in the
paper, allows to create finite elements of a beam with various types of cracks (double-edge,
circamferential, internal, etc), provided their stress intensity factors are known.

1. INTRODUCTION

Cracks occurring in structural elements of machines lead to local changes
in stiffness [1] and alter their dynamic characteristics, This problem was a
subject of many papers, the review of which is given by WAUER [2]. First
attempts were devoted to the analysis of simple cracked structures such as
beams, shafts, frames with a constant cross-section [3-12], Real structures
are more complicated and the analytical methods described in the cited pa-
pers are useless. For this reason some of investigators have started to apply
FEM for modelling the damaged complex structures. DIRR and SCHMAL-
HORST [13] applied for modelling cracked shafts, 3-D, 20-node isoparametric
finite elements. The crack was modelled by separating the nodes on both
sides of the crack. A similar model was applied by OsTacHOWICZ and
KrawcCzUK [14-15] in papers devoted to the dynamic analysis of cracked
beams and turbine blades. SHEN and PIErRE [16] applied the 2-D isopara-

natural vibrations of the beams with double-edge cracks.

finite beamn element with a single nonpropagating transversal one-edge crack located in the
the flexibility matrix of the uncracked element. The terms of the additional matrix were

evaluated according to the laws of {racture mechanics. The element was used to perform
several numerical tests, the results of which were compared with results of the analytical

metric finite elements with the singular shape function for the analysis of
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Gther authors use the finite elements with cracks [17-20] for static and
dynamic analysis. In the case of a beam finite element, the Bernoulli- =

Euler theory was applied. HAISTY and SPRINGER [17] elaborated the finite
beam element with an open double-edge crack. The crack was modelled by
springs, the stiffness of which was calculated by comparing the strain energy
of the springs with the corresponding stress intensity factors. QIan [18] and -

GOUNARIS [19] modelled the crack in a beam by additional compliances,

the values of which were calculated on the basis of fracture mechanies. The
method of constructing the stiffness matrix for the rectangular plate finite
element with an internal open crack was described by QIAN [20]. In this
case, the Kirchhoff - Love theory was applied.

The main purpose of the present paper is to design the finite beam ele-
ment with an open one-edge crack. The model of the element should account
for the effects of shear deformation (Timoshenko beam). The element can
be used for static and dynamic analysis of cracked beams, shafts, frames
and columns. In the order to verify the presented model, the numerical
calculations were carried out. The results of numerical investigations were
compared with the analytical solutions and experimental data.

2. CONSTRUCTION OF THE STIFFNESS MATRIX OF CRACKED,
TIMOSHENKO-TYPE BEAM FINITE ELEMENT

FIG. 1. Cracked beam finite clement with two nodes and six degrees of freedom at the
node.
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The finite-beam element with two nodes and six degrees of freedom at
the node is presented in Fig.1. Taking into account that the stress field is
affected only in the region adjacent to the crack (principle of Saint-Venant),
the strain energy of the element U is

(2.1) U=U°+07,

where U9 is the strain energy of the element without a crack, U! is the
additional strain energy due to the crack.
The strain energy of the uncracked element U° is

(2.2)
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where [ is the léngth of the element, N is the axial force, M,, M, are the
bending moments, M is the-torsional moment, F,, P, are the shear forces,
E is Young’s modulus, G is shear modulus, A is the area of the cross-
section of the element, Jy, J, are the geometrical moments of inertia of the
cross-section of the element, Jy is the polar moment of inertia of the cross-
section of the element, 3,, 8. are the shear coefficients of the cross-section
of the element (for typical shapes of the cross-section the values of the shear
coefficients are given in [21]).
Inserting the following relationships (see Fig.1):

N = Sla M, = 84,
(2.3) : My = 85 + Sal, M, = Sg + 84,
. V Py = 523 P, = 5,

into (2.2) and integrating with respect to the length of the element, the
strain energy of the uncracked element is
S22 85551 S3B Sq Ss85)l

S
L+ + +
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The additional strain energy U' due to the crack [22]

1 1=6 i =6 ] t=6 i :
(2.5) ! = Ef [E KL+ 3 Kf+ (1 +v) Y Kyl dF,
F i=1 i=1 =1

where E/ = F for plane stress, E' = E/(1 — v)? for plane strain, v is
Poisson’s ratio, F is the area of the crack, Ky, Ky, Ky are the stress
intensity factors corresponding to three modes of crack deformation [22]
(nonzero stress intensity factors for circular and rectangular cross-sections,
the dimensions of which are given in Fig.2, are presented in Appendix 1).
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F1a, 2. Cross-sections of the finite element at the crack.

The flexibility coefficient of the cracked beam finite element ¢;; is a sum
of the flexibility coefficient of the uncracked element ¢, and the additional
flexibility coeflicient due to the crack ¢}

(2.6) eij = ef; + ef, i=1,6; j=1,6,
where
c%- = §2U°/05;05; C,!j = 8%U1/08.8S;.

Taking into account relations (2.4), (2.5) and (2.6), the flexibility co-
efficients ¢;, ¢}; are obtained. The coefficients are used to construct the
stiffness matrix of the element.
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The flexibility matrix of the uncracked beam finite element takes the
form

'ﬁ 0 0 o 0o o |
B L1 2
0 3Er* 'gﬁ 0 0 0 2EJ,
BBy 12
(2.7) C°= 0 0 3EJ,  GA * 2ET 0
: = z RE
0 0 0 ar O 0
2 !
0 0 SET, o Fp O
g !
77 A ¥ &

and the matrix of the additional flexibilities can be written in the form

11 0 0 0 a5 s ]
0 Ca2 0 Co4 0 0

(2.8) 01 0 0 €33 C34 0 0

i

0 Cq2 €43 Caq 1] 0

ecsg O 0 0 es5 58

cgg O 0 0 ce5 Cos i

The relations used for calculating the terms of the additional flexibility
matrix C! in the case of circular and rectangular cross-sections are presented
in Appendix 2 and 3. The graphs of the dimensionless flexibilities ¢;; at
the crack for the circular and the rectangular cross-sections are presented
in Fig.3 and 4. Having derived the flexibility matrix of the cracked finite
element and taking the principle of virtual work into account, the stiffness
matrix of the element can be written in the form

(2.9) K.=T'c'T,

where C = C° 4+ C1, T -~ the matrix obtained from the statical equilibrium
conditions of the element, assuming that the crack is located in the middle
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FIG. 3. Nondimensional flexibility coefficients for finite beam element of circular
cross-section due to the crack.
08 - 3 OB )
0‘7:_ —; 07 ; E
asf 4 esf 3
sk 3 osf T Ci= T 3
sruk E 3
oLE E E
osf E K
oaf 3 :
o1 |- ] 3
ok Lol Lo e
C o 03 07 w-! [ L 102 0l
h
0'8: T T 0.!: T
o7 E 3 o E
o5 | 1 o5k
0s — E
%YH [ F
04 £ 4 'os F E
a3t 4 e 3
0z | 1 o2 3 E
o1 | E oy E ]
ot PP I TR SR T B T
wh w03 0-? wl 00 w' p? 102 10 0o _ 10!
373 Cij

FIG. 4. Nondimensional flexibility coefficients for finite beam element of rectangular
cross-section due to the crack.
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of the element,

-1 0 0 0 0 0]
6 -1 0 0 0 0
0 0 -1 0 0 O
0 0 0 -1 0 0
0 0o I 0 -1 0
0 1 0 0 0 -1
(2.10) T= i 0 0 0 0 0
60 1 0 0 0 O
0 0 1 0 0 O
0 0 0 1 0 0
0 0 0 0 1 O
0 6 0 0 0 1 ]

In case when the terms of the flexibility matrix due to the crack are ne-
glected, we obtain the stiffness matrix identical with Przemieniecki’s matrix
{23] (assuming that the coefficients 8, 8, correspond to the ratio AfA; in
Przemieniecki’s matrix). In the case when coefficients 8, = 8, = 0 we obtain
the stiffness matrix identical to Bernoulli-Euler’s beam finite element.

The method of formation of the stiffness matrix described in the paper
may be used to construct finite beam elements with various types of cracks
(double-edge, circumferential, internal, etc.), provided their stress intensity
factors are known.

3. NUMERICAL TESTS

The numerical calculations were carried out in order to verify the pre-
sented model of the finite element. The results of numerical investigations
were compared with analytical solutions and experimental data. The iner-
tia matrix was assumed in the same form as for the uncracked Timoshenko
beam finite element [23].

§.1. Natural vibrations

Natural vibrations of the linear elastic body, discretized by FEM (damp-
ing and preloads being disregarded) are described by the well-known equa-
tion [26): .

(3.1) Mg+ Kg=0,
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where M is the global matrix of inertia, K is the global matrix of stiffness,
and ¢, § are the global column matrices of generalized accelerations and .
displacements.

In order to determine the natural frequency of vibrations, the Eq.(3.1)
should be transformed to the standard form [26]. In the present paper the
standard form of Eq.(3.1) was solved by the QL-method [27].

Test 1

For a cantilever beam of circular cross-section, the influence of coupled
bending and torsional vibrations due to the crack of the first natural bending
frequency was analyzed. The calculations were carried out for various ratios
of the beam radius R to the beam length {, and for various one-edge crack
depths a/D, at a constant position of the crack /3 /! = 0.2. The beam was
discretized by 10 finite elements of Timoshenko-type beam. The beam was
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. FIG. 5. Relative changes of the first natural bending frequency of a cantilever
Timoshenko beam as a function of relative depth of the crack a/D and slenderness ratio
R/l The crack position is I /I = 0.2 {wo1 is the first natural bending frequency of the

uncracked beam). ‘
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made from steel of the following properties: E = 2.1x 10! N/m?, G = 8.07 %
10 N/m?, p = 7860 kg/m?3, v = 0.3. The results obtained were compared
with the results of the analytical calculations giver by PAPADOPOULOS and
DiMArROGONAS [6] — Fig.5.

Next the analysis of the effect of one-edge crack depth a/D and its posi-
tion on the variation of the first natural frequency of bending for the beam
with constant ratio £/ = 0.0125 was performed. The obtained results, pre-

sented in Fig.6, are compared with results of the analytical solution given
in [6].
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FIG. 6. Relative changes of the first natural bending frequency of a cantilever
Timoshenko beam as a function of relative depth d/D and relative position I /I of the
: crack. The slenderness ratio is R/I = 0.8125,

Test 2

For a simply supported beaim of circular cross-section (R/! = 0.1), the
variation of the first natural bending frequency for various one-edge crack
depths a/D and positions /; were calculated. The material characteris-
tics and discretization method were assumed as in Test 1. The results of
calculations, compared with the analytical results given by RaJAB and AL-
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SABEEH (7], are presented in Fig.7."
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FiG. 7. Relative changes of the first natural bending frequency of simple supported
Timoshenko beam as a function of relative depth /D and relative position § /1
of the crack. The slenderness ratio is R/l = 0,1,

Test &

For a cantilever beam of rectangular cross-section Bx H = 0.01x0.02m
and length { = 0.4 m, the changes in the first natural bending frequency for
various one-edge crack depths a/H and constant position I3/l = 0.2 were
calculated. The obtained results were compared with the analytical results
(for a Bernoulli-Euler beam) and with the experimental data [24] - Fig.8.

Next, for the same beam, the influence of two one-edge cracks on the
variation of the first natural bending frequency was analyzed. The same
depths of the crack a3 /H = a/H = 0.5 and constant position of the first
crack !y /l = 0.05 were assumed. The position of the second crack I3/l was
varied. The results obtained were compared with results of the analytical
calculations (for a Bernoulli-Euler beam) and with the experimental data
[24] - Fig.9. -
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FIG. 9. Relative changes of the first natural bending frequency of a cantilever beam with
two cracks as a function of relative position of the second crack I3 /1,
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3.9. Forced vibrations

Forced vibrations of the linear elastic body, discretized by FEM (neglect-
ing the damping and preloads) are described by the well-known equation [26]

(3.2) Mg +Kq= P(t),

where P(t) is the global column matrix of the excitation forces.

In the case of harmonic excitation, Eq.(3.2) can be transformed to a sys-
tem of algebraic equations, the roots of which are the vibration amplitudes.
In the present paper the system of algebraic equations was solved by the
Gauss elimination method [27].

Test 4

For the cantilever beam of circular cross-sectionk D = 0.064 m and length

[ = 0.8 m, the amplitudes of the bending and longitudinal vibrations were

calculated. The free end of the beam was subjected to harmonically variable -
axial force, the amplitude of which was equal 100 N. The frequency of the
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excitation force was changing from 0 to 500 wo; (where wp; is the first
natural bending frequency of the uncracked beam). The material data and
discretization of the beam were assumed as in Test 1. The obtained spectrum
of amplitudes of the bending and longitudinal vibrations of the beam end for
various depths of the one-edge crack a/ D, and at the constant position I, /I =
0.3, is presented in Figs.10-11. The crack produces additional resonant
frequencies (corresponding the natural bending frequencies) in the spectrum
of the longitudinal vibrations. Additional resonant frequencies also appeared
in the spectrum of the bending vibration. Similar results were obtained
analytically by PAPADOPOULOS and DIMAROGONAS [4].
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FIG 11. Coupled longitudinal vibrations for several crack depths. The crack posmon is
: ' L{l=03.

. Test 5

For a camtllever beam of c;rcula,r cross-section D = 0. 064 m and length
!l = 0.8:m, the a.mphtudes of torsional and bending vibrations were calcu-
lated. The free end of the beam was subjected to harmonically variable
torsional moment, the a,mphtud_e of which was equal to 100-Nm. Frequency
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of the excitation moment was varied from 0 to 500 wg (where wg; is the
first natural bending frequency of an uncracked beam). The material data
and discretization pattern of the beam were assumed as in Test 1. The
obtained spectrum of amplitudes of the bending and torsional vibrations of
the beam end for various depths of the edge crack a/D and at constant po-
sition I3/l = 0.3 is presented in Figs.12-13. The crack produces additional
resonant frequencies (corresponding to the natural bending frequencies) in
the spectrum of torsional vibrations. Additional resonant frequencies also
appeared in the spectrum of the bending vibration. Similar results were
obtained analytically by PAPADOPOULOS and DIMAROGONAS [5].

4. CONCLUSIONS

The paper presents a method of calculating the stiffness matrix of the
Timoshenko-type finite beam element with an open nonpropagating one-
edge crack. The method described in the paper allows to design finite beam
elements containing other types of cracks {double-edge, circumferential, in-
ternal, etc) if their stress intensity factors are known. Results of the nu-
merical tests prove that this element may be used for dynamic analysis of
cracked structures. Very good agreement between the results of numerical
investigations and the analytical solutions and also the experimental data
was obtained. The described element may be used for the static and dynamic
analysis of beams, frames, shafts and columns with cracks.

APPENDIX 1

Nonzero stress intensity factors for circular and rectangular cross-sections:

K; circular cross-section rectangular cross-section
Ku %m Fi(afR) %\/ﬁ? Fi(a/H)

Kis | 322 V1a Fa(afh) 1Se2 VTTa Fao/ H)
Kis ;‘;fi VI~ Vi Ra/b) | 526 VITa Fia/H)
K f;ﬁ; V@ Fu(a/h) B5s /e Fu(o/ H)
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Ky circular cross-section rectangular cross-section
K | 2 VI Fr(a/n) | $.0,VTa Fa(a/H)
Kun f;;: JTaFu(a/l) Bu3s VITa Fule/ B)
Kuu ;%4 A Fin(a/k) | Sibo/Ta Fui(a/H)

where: @, &, - functions describing the distribution of stresses during
torsion of the rectangular cross-section [25]. _
The correction functions assuming finite dimension of a circular cross- -
section (4] have the form '

Fi = yftanA\/A[0.752 + 2.02(a/h) + 0.37(1 - sin A cos A,

ytan A/A [0.923 + 0.199(1 — sin A)"] /cos X,

1 o= [1.122 ~ 0.561(a/h) + 0.085(ce/h) + 0.18(a/h)3] /\J1-a/k,
Fin = 4/tanA/A where )= IIa/Qh,

and for a rectangular cross-section [5],

B

R = y/tan A/ [0.752 +2.02(e/h) + 0.37(1 - sin AP / cos ),

F, = yftanA/) [0.923 + 0.199(1 - sin )\)4] [cos A,
Fu = [1.30-0.65(a/H)+037(c/H) + 0.28(c/H)| //1- o/H,
o = /v/siny where A= IHa/2H, 5 =2\

APPENDIX 2

‘The relations used for calculating the additional ﬂeXmety coefficients ¢},

(circular cross- section, plane state of strain):
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) d b
41 —-v)_ _ _ N Is -
c11 = -LETI-R—)CH where &1 = faFf(g) da]dz
. o o
2 2 g :
Coa = 4‘8’153111_]: }Egg where @22 = '/&Fﬁ(ﬁ) d&fdi
0 a
2 2 ¢ 5
48:(1 —
a3 = ﬁyl(')HRV )Eaa where &3 = f&Flle(ﬁ) dﬁ’fdi’
0 0
16(1 = »? :
Caa = m..SiTRi;_)E“ . where Gi4 = (1 4 V)A + B
d b d b
A= faFf’n(g) daf(lm 7%)dz, B= faFﬁ(g)d&/z’dz
0 ) 0 o
. Ed [
55 = %‘;—)@55 where @ = /&Fé(g) d&ffgdz
0 0
d 5
_ 2
Cee = 911:%——1;;)555 where g = f&Ff(gj) d&f(l - Zz)df
0 o
. d b
16{1 —
C15 = —_%TH—RI;_)EH where &5 = /&F1(§')Fz(§) d&]fdi
0 o
. d B
16(1 — N s 3=
16 = -_éﬁ'ﬁ];—)ém where &35 = fc‘rFf(g) daf/ V31— 3%z
0 0
2 d 3
Cse = %}I—I_-R-%)Esa where Css = ./&Fl(g)Fz(ﬁ) d&/ Vi— £2Edz
0 0
R d b
£aq = %_1624 where & = /aFﬁ(g) d&fzdz
' 0 o
2 —
Cas = 88,(1+v)*(1 — v) Ea4 where

EITR?

a 1
Gag = /aFﬁI(g) da/(/l-z?dz
0 o

where: @ = a/R,d = d/R, b = b/R, Z = z[R, § =
dZ = dz/ R, notations the same as in Fig.2a.

alh, da = do/R,
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APPENDIX 3

The relations used for calculating the additional flexibility coefficients ¢},
{(rectangular cross-section, plane state of strain):

a 172
_ .2
C11 = il_{%_ﬂllan where &n = ]&Ff(&)d&fdi
: 0 0
a 1/2
2 2
= ﬂg_}ng_’”_lan where &3y = f aFi(a)da / dz
I 0
2 2 F 1y
4681 (1 ~
caz = —%;—)633 where &3 = /&Fﬁl(ﬁ)dﬁfdf
- 0 0
= 3
£44 = %_-;)_I“iau where &= (1+v}A+ B
& ) 1/2 1/2
A== j adl Fa(a)da j dz, f adl Fii(a)da f
o o o
j 1f2
2
Css = ﬂ%é_”_)ass where @55 = f&Ff(&)dﬁr 52dsz
0 9
& 1/2
2
ces = %11;2—”-663 where g = jﬁFf(&)d& dz
9 o
a /2
2
15 = g—%—%ﬁ#als where &5 = / aF (a)Fa{a)da f zdz
o o
a 1/2
2
16 = %ﬂam where &1 = j aF}(a)da | dz
o 0
a 1/2
_ 2
esp = %-5-”——)&“ where  Gse = / aF;(a)Fy(a)da | zdz
0 0
& 1/2
2
Cos = ME(I—y)En where ©aa = ./&Q,,.Fu(&)d&./
0 o
a 1/2
2 ey
can = 84, ITH(1 -EV) @ ”}634 where € =fa¢,Fﬁ;(a)d&fdz
‘ o o

where: 2= z/B,a=«af/H,@=a/H,dZ = dz/B, da = da/H, notations as -
in Fig.2b.
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