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UNIVERSAL ALGORITHM FOR GENERATION OF MATRICES USED
IN DYNAMICS OF CIRCULAR TIMOSHENKO SEGMENTS

B. OLSZOWSKI (KRAKOW)

The paper deals with a numerical generation of the basic solutions for a set of ordinary
differential equations governing the plane vibration of a circular Timoshenko segment and
having the normal Cauchy’s form. The generation algorithm arose as further development
of author’s method described in [1] and enables to analyse the stationary harmonic mo-
tion of the segment for any boundary conditions and arbitrary values of physical parame-
ters. Numerical calculations are restricted to the analysis of simply supported segments
only. For testing purposes, however, this analysis is performed for three types of models:
Rayleigh - Timoshenko (RT) and Bernculli - Euler models with extensible (BEe) or inex-
tensible (BEi) axis. The results of eigenfrequency calculations are plotted and tabulated.

NoTATIONS
v = U/L radial displacement,
W = W/L tangential displacement,
¢ = & angular displacement,
Q = I*Q/ED shear force,
N = LEN/(ED axial force,
M = LM/ED bending moment,
p? = pAL*w?/(EI) circular frequency,
f = dp/=t comparative frequency,
T = J/(AL?) moment of rotary inertia,
vi = 1, = EI/(L*EA), vs = EIJ(I?kGA),
& coordinate measured along the axis,
200 subtending angle of the arc.

1. INTRODUCTION

Applications of the displacement method in dynamical analysis of com-
plex bar structures performing stationary and harmonic vibration are known
from the early 1940’s [2]. Advantages of this method, leading to accurate
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results without any approximations (within the framework of the accepted °
theoretical model), was the reason that it has been applied and developed
successfully by many authors. Some Swedish papers dealing with this sub- -
ject are of particular interest.

In 1972, B. Axrsson, H. TAGNFoRrs and O. JOHANNESSON published
a detailed description [3] of an exact displacement method and its applica- __
tions in dynamics of beams and frames analysed within the framework of the
Bernoulli- Euler theory. Two years later B. Akesson and H. TAGNFORS de-
scribed in [4] a computer program PFVIBAT for dynamical analysis of plane
frames, making use of the Wittrick - Williams general algorithm [5]. In 1978 -
and 1980 new versions of programs PFVIBATII and SVIBATII were worked
out. Further application of the method for Rayleigh-Timoshenko bars in
space taking into account vibration damping was discussed by R. LUNDEN
and B. AKEsson in [6]. P.O. FRIBERG |7, 8] described generalizations for
uniform beam elements of an open thin-walled cross-section derived from
Vlasov’s or Euler - Bernoulli - Saint Venant’s theories. Papers [3-8] contain
exhaustive specification and discussion of the corresponding literature.

Applications of the Rayleigh - Timoshenko theory in dynamics of circular
rings were described and recapitulated by M.S. Issa, T.M. Wang and B.T.
Hs1ao in [9] and T.M. WANG and M.S. Issa in [10].

The aim of the present paper is the discussion of further applications of
the algorithm described in [1] and used there in dynamical analysis of circular
Timoshenko rings, It appears that this algorithm may be rearranged in a
simple way to become a universal generator of the basic solutions for a set
of the ordinary differential equations having the normal Cauchy’s form and
governing the natural vibration of the Timoshenko segment. Universality
of the generator consists in the fact that it may be used in three different
ways: 1) for solving eigenproblems of single segments with any boundary
conditions, 2) for generating dynamic stiffness and 3) dynamic flexibility
matrices of the segments. Thus a basic tool for numerical computation was
created, enabling us to improve and widen the range of application of the
Wittrick - Williams general algorithm [5] in the dynamical analysis of the
complex bar structures in both the displacement and the force versions.

Because of the variety of the base-generator application problems, frame-
work of the present paper has been restricted to the analysis of single seg-
ment eigenproblems only, but with arbitrarily chosen boundary conditions.
Numerical computations were realized in more narrow range, namely for
simply supported segments only. For testing purposes these computations
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were performed for three types of models: 1) Rayleigh-Timoshenko (RT)
and Bernoulli-Fuler models with extensible (BEe) or inextensible axis (BEi).
The results of computations were plotted and tabulated as functions of the
subtending angle 2o of the arc.

2. GENERAL ALGORITHM

Construction of the algorithm is based on the normal Cauchy set of
ordinary differential equations [1] '

(2.1) X'(8) = L(w)X(B)

governing the stationary harmonic vibration of a plane Timoshenko segment
with circular frequency w. The unknown vector function

(2.2) X(B) = [U(B), W(B), B(8), Q(8), N(8), M(B)]"

represents the state vector of the cross-section with angle coordinate 3.
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Let us consider a segment of circular Timoshenko ring shown in Fig.1,
with subtending angle 2a. Length of the segment is 2. For convenience we
introduce a new normalized dimensionless coordinate £ = #/a = s/L, taking
its values from interval —1.0 < £ < +1.0 and we change, in comparison
with [1], the sign convention for @ and N forces. Consequently, we have to
introduce into Eq.(2.1) the relationship 8 = af and to transform adequately



216 B. OLSZ0OWSKI

the matrix L. Using the sign convention as shown in Fig.1 and denoting by
Lo, Xo the matrices occurring in [1], we have :

X =TXy, T = diag(1,1,1,-1,-1,1),

L L 0 —-a 1 0 —a 0
L=TL0T=[L” LHJ’ Li=|a 0 0}, Ly={a 0 0
21 22 0 o 0 -1 0 0

Li; = —diag(vs, va,11), Lo = pP’M = pzdia,g(l, 1,7).
We assume that solutions of Eq.(2.1} have the general form
(2.3) X(€) = ae

Substituting (2.3) into (2.1) we get the following algebraic matrix equation 'f
for the unknown vector a |

(2.4) [L{w) — AD)Ja =

having nontrivial solutions for some discrete values of A only. These values
are related by formula A = £, /¥ to the roots of equation

(2.5) det[L(w) — M} = x® + Kox? + Kix + Ko = 0.

The coefficients K; are real and depend on physical parameters of the model :j;_
as follows:

Ko =20 + (rn + v VS)P2 s
(2.6) Ky =o'+ [o(a—2)(ve + va) + 1 (207 — 1)]p?
| +Hvavs + rvi(vg + va)lp?,
Ko = ip*{a®(ra® + 1) = [va + ra(2 — a)(v2 + v3)Ip* + rineap?}.

Solution of the algebraic eigenproblem (2.4) is composed of six eigenpairs
(Ar,ar) k=1,2,...,6 defining six linearly independent basic solutions

(2.7) Xi(€) = are™t, k=1,2,...,6.
Introduction of matrices

(2.8) A = diag(Ar, A2,y ..., Ae), A = (ay,a,...,a6),
enables us to represent the solution basis as

(2.9) X (&) = Aehe = (age™€ aze™t .. agels).
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This basis may be decomposed into the displacement and force components,
and in this case we have

- e oo | R(E || A M | A

: (2‘10) X(E)‘“‘ l S(E) ] - { Al € 5 A= A |7

Assuming that £ = —1.0 and § = +1.0, respectively, we obtain two different
vector bases related to both boundary cross-sections of the bar

» o [RrRewo)] _[aAr] A
X(-L0) = [S(-Lo)}”[A”]e ’

* R(+1.0) A | A
1.0} = = .
X (+1.0) [ S(+1.0) ] [ A" |©
Generation of these two bases is the main operation of the algorithm
because it provides all information necessary for computation of the eigen-
spectra and of both the dynamical stiffness and flexibility matrices of the
vibrating segment.

(2.11)

2.1. Solution of eigenproblems

Let us use the following definition
e; = (0,0,...,0,1;,0,...,0)
and the binary selection matrix d(%, 7, k) of dimensions 3 X 6 defined as
d7(i,5,k) = (el el ef), 1<i,5,k<6.

In order to fulfil any segment’s boundary conditions we have to solve a
set of homogeneous algebraic equations

(212) . d(“‘"}]vk) )*( (_1'0) ce=0.
d(l, m,n) X (+1.0)

This equation is generated by means of two selection matrices correspond-
ing to the given boundary conditions. Equation (2.12) has non-trivial vector
solutions c; for a discrete set of parameter values p = (p1, p2, . ..) represent-
ing the eigenfrequency spectrum of the segment under consideration. The

corresponding set of vector solutions ¢ = (¢4, €g,...) represents, in turn, the
generalized eigenmodes of the segment according to the formula

(2.13) Xi(€) =X (O,  1=1,2,3,....
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2.2. Generation of dynamic stiffness matriz

Let us rearrange bases (2.11) assuming d; = d(1,2,3), d; = d(4,5 6)
in order to obtain two new bases

R = [ a1 X (~10) | _ [R(—I.O)J
| di X (+1.0) R(+1.0) |’

dy X (~1.0) :[spmm]
| -_—dg )*( (+1.0) _S(+10) .

e
1

Minus sign in the last formula takes into account the sign convention used
in the displacement method.
Any boundary displacement vector Ry may be represented as

E 4
Rr =R ¢

H
using its coordinates in relation to basis R setting up a vector
RN |
cx={R Rg.

Let us consider now a set of vectors {R;} k = 1,2,....,6 equivalent to the
unit matrix I. In such a case the corresponding set of vectors {ci} creates

evidently a matrix (1’55,)"1 denoted below as C. We have now the formulae
RC=1, §C=K

enabling the following interpretations. Matrix K is a base matrix composed
of the boundary forces corresponding to the unit base matrix composed
of boundary displacements. Therefore, matrix K may be treated as the
dynamical stiffness matrix of the segment corresponding to a fixed value of
the circular frequency w.

2.3. Generation of dynamic flexibility matriz

A reasoning anologous to the foregoing one leads to the following repre-
sentation for any boundary force vector

»>
S5t =Scg.
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-1
Therefore we obtain ¢ = [ 8 Sk, k=1,2,...,6. If we consider now
a set of vectors {S;} equivalent to the unit mairix I, we shall obtain the
-1
. *®
corresponding set of vectors {c;} forming the matrix (S) . Denoting this

. matrix by C we obtain the formulae
§Cc=1, RC=D,

and we may introduce the following interpretations. Matrix D is a base
matrix composed of the boundary displacements corresponding to the unit
base matrix composed of boundary forces. Therefore, matrix I} may be
treated as the dynamical flexibility matrix of the segment corresponding to
a fixed value of the circular frequency w.

3. ANALYSIS OF ROOTS X:(p)

=00
o =10
A a cx-%ﬂ
{ =340
Tﬂjgﬂﬂ — :;:5
5000
B =40
i, =30
o =20
E a=10
r a=00
- 5000
- 10{100 C J I I O O I I I | N T T O Iy I | - I I I I l Y T T T I} : Ty .
0 2000 4000 6000 wﬂ ’

[Fig. 2a]



B. OLSZOWSKI

16000

=10
=10
=20
=30
=40

5000

'}
(13

Y
/

o r =00
~8000 |- =10
- =20
r a=3.0
L =40
-10&00_J|‘i|IIII[IIIIIIIIIIIlllllllllll ok -
0 2000 40,00 60.00 Waaa p
N =
Xid x-a0
=20
0,00 — ‘;=3.0
o =47
O—

00

-50.00

Illlllliillllllllllill 1 llGII}lIIIIIlllIIIII B

2000 4000 ' \\ 8000 10000 p

Fia. 2.

~100.00
o

{220]




UNIVERSAL ALGORITHM FOR GENERATION OF MATRICES 221

Construction of the universal generator of base solutions required a de-
tailed analysis of the functions x;(p) ¢ = 1,2,3. Dependences x; on p are
- plotted in Figs. 2a,b,c for three models (BEi, BEe and RT) as the corre-
gponding families of curves in relation to parameter a. These plots reveal
~ that Eq.(2.5) has not always three real roots. For parameter values belong-
ing to the interval [p/(a), p,(a)] there exists one real root only and a pair of
complex conjugate ones. '

In the case of a straight RT-bar (e = 0), the coeflicients (2.6) are defined
by simpler formulae

Ky = (rv +v2 + v3)p?, Ky = —iyp? + [vavs + rin (1 + v3)lp?,
Ko = ni1apt(rvap® — 1)
and Eq.(2.5) takes the form
(x + vap®){x* + (rvn + va)p’x + 1P (rvap® = 1)] = 0

enabling an independent calculation of the eigen{requencies corresponding
to extensional or bending vibration of the bar. In the case of a BEe-model
there is r = v3 = 0, and we obtain the simplest equation

(x+v2p*)(x* - p*) = 0
represented in Fig. 2a by three lines x1 = —p, x2 = —tup?, x3 = p.

4. BASE GENERATION ALGORITHM

In order to generate all elements of the base (2.9) we have to solve a com-
plex eigenvalue problem (2.4). In such a case the solution may be obtained
efliciently by means of a slightly generalized author’s method [1].

For calculation of the eigenvalues we shall use Eq.{(2.5). There are three
possible cases (Fig.?): 1) when xix > 0, we have Agk—1 = pr, Aop = —pi;

2) when xr < 0, we have Agp_y = iog, dyp = —iog; 3) when xi is a
complex root then there exists also the corresponding complex conjugate
root X and we have Agp_1 = pp + 10k, Agk = pr — 10k, Agkp1 = —pi — i0,

Adkyz = —pg + 0. ,

Calculation of the eigenvector ay corresponding to the eigenvalue A will
be done by denoting for simplicity Ag == A and a; = a. The calculations are
simplified by introducing the transformation [1]

4.1)  X(&) = PU(E), N(€), M(&), W(¢), 8(€), Q©)JT, a=Pb,
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in order to change Eq.(2.4) to the form
(4.2) [L*(w)—Allb=10

more convenient for the analysis. In Eq.(4.2) we have denoted

0  Li(w)
4.3 * = p7T — 1
(4.) L*(w) = PTL(w)P [L;(w) § ]
—-a 1 ~u3 a —v, 0
(44) Li(w)=}1 p» 0 a |, Lw)=|0 0 -u»n
0 rp? -1 P -a O

Eq.(4.2) may be rewritten in a more convenient form
(4.5) — by + Li(w)by =0, *(w)by ~Abz =0, (b, bl)=0bT

enabling proper elimination of the unknowns and yelding two independent
equations
(4.6) Ll(w)b1 =0 N Lg(w)bz =0.

In Eq.(4.6) we have denoted

[ k3 a(ip+rva) -n
(4.7) Tn = L{Li{-XI=| 2ap —ky 0 |,
| —p? a —k1
| K9 a —a(re + vs)
(4.8) L, = LILI - A= 0 —x " ,
| —2ap* PP —K3

(4.9) k1 = MN4rnp?, k=2 4o+, ks = A2+ a4+ vap? .

It is easy to verify that in case when X is an eigenvalue of Eq.(4.2) it has

a general nontrivial solution defined by the formula

Ki1K2
20k p?

(202 — k2 )p?
aky(Kz — 2w2p?)/ A
(kg — 2a2)p? /A
| k1(ke — 26%)p% /2 ]

(4.10) b=
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Table 1.
Complex roots Imaginary roots Real roots
A o+ o —p—io ic p ;p
X p—io —p+ i —~ia
b b'+:ib” bl + ib¥ B! +iBY b’ bk
b b’ — ib* b, —ibY B} — B}

b1 b} by by
P r "o__ "o__
b - [ bé ] ) bt - [ - ,12 ¥ b = bg H bt - _bg

b=b'+b", B = (b'+bl), Bf=1(b"-b)

Owing to the fact that every pair (), ) of complex conjugate eigenvalues
_ of Eq.(4.2) is related to the corresponding pair (b,b) of its eigenvectors
- (Table 1), we may always transform a pair of complex conjugate solutions
 of Eq.(2.1)

©(X(6),K(6)) = P (Y(), Y(6)) = P(be, b,

~ into the equivalent pair of their real solutions (F(£), G(£)).
This' complex transformation has the form

(F(6), G(6)) = 5(Y(6), 7(©)) [ L ]
= {e**[Re(b) cos(af)—Im(b) sin(0'€)], e*¢[Im(b) cos(o&)+ Re(b) sin(af)]} ,

. with p = 0 in the purely imaginary case.

Thus, having calculated all the six eigenvalues Ax from Eq.(2.5) at an

. arbitrarily assumed, fixed value of parameter p and the six corresponding

_ eigenvectors by from formula (4.10), we can always transform the complex
solution basis created for Eq(2.1) into the equivalent real one.

5. RESULTS OF COMPUTATION

The range of computation and its results discussed below were limited to
the eigenfrequencies of simply supported arches only. The values of physical
parameters vy, 1y, v were assumed (see [1]) to be: vy = 1 for all types of
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models, 7 = vy = 13 = 0 for BEi, v; = 0.0049, r = v3 = 0 for BEe and_'f
r = vy = 0.0048, v3 = 0.01536 for RT.

In order to simplify the comparative analysis we have introduced a new
frequency parameter, the so-called comparative frequency f. This parameter -
is related to p by the formula : o

f=d4p/n?.

Hence the circular frequency is

w= f(x*/(2L)*)y EI[(mA),

and the eigenspectrum for BEi-model when a = 0 is represented by a con-
venient sequence of the squares of successive natural numbers: 1, 4,9, 16,

The curves f;, ¢ = 1,2,3,..., representing functional dependences of -
successive eigenfrequencies on the value of angle o are shown in Figs. 3a, 3b-f.f:
and 3¢, respectively, for models BEi, BEe, RT and values a < 3.0, f; < 20.0.
The calculated frequencies are listed and compared in Ta,ble 2 for certa,m:}.f"'
values of parameter a. y

Table 3 contains a comparison of results obtained by means of the new
algorithm with those calculated from Goldenblat’s formulae [11]. The most
compatible results (error less than 0.05%) in the whole range of values a
we observe for the eigenfrequencies corresponding to antisymmetrical, one-
node vibration modes. We may recognize as quite satisfactory too the results

£d a
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[Fig. 3a]
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Table 2.

o= 0.5 1.0 1.5 2.0 2.5 3.0
0.425508 | 1.70203 | 2.37872 | 1.59727 | 0.861202 | 0.182342
3.75841 | 3.14740 | 3.82957 | 6.08024 | 5.00909 | 3.91005
BEn | 8.35962 | 7.84036 | 7.05177 | 6.80813 | 10.6377 | 10.2070
] 15.7545 | 15,0903 | 14.1317 | 12.9641 | 11.6412 | 15.3183
18.8603
0.420201 | 1.62219 | 2.29825 | 1.54501 | 0.836503 | 0.177893
2.76010 | 3.06104 | 3.46093 | 5.56153 | 4.65492 | 3.66762
2.89489 | 4.99762 | 6.05388 | 5.76678 | 8.39099 | 9.05232
371582 | 5.78978 | 8.68467 | 11.0095 | 10.1985 | 11.2215
8.83922 | 8.57231 | 9.27580 | 11.3197 | 13.4355 | 14.6274
9.47983 | 10.3482 | 11.0795 | 11,5796 | 14.4745 | 17.3693
15.8409 | 15.4842 |'15.3432 | 15.9883 -| 17.2820 | 18.6694
18.4049 | 18.9354 | 19.4450 | 19.4690 | 19.0456 | 19.1696
0.424174 | 1.68048 | 2.13674 | 1.43746 | 0.776960 | 0.164632
2.75755 | 2.83488 | 3.71879 | 4.87384 | 4.06789 | 3.21164
2.92489 | 4.88850 | 5.44558 | 6.45189 | 8.37353 | 7.38263
3.41750 | 5.84978 | 8.77467 | 9.23487 | 9.75353 | 12.0215
RT | 7.45238 | 7.44863 | 8.81043 | 10.9684 | 12.3281 | 13.4624
9.47155 | 9.93134 | 9.84479 | 11.6996 | 14.6245 | 16.3058
12,1540 | 12.3463 | 13.2170 | 14.5485 | 15.5842 | 17.3355
16.9585 | 16.4536 | 15.8524 | 15.3145 | 15.7943 | 17.5493
18.7159 | 19.4608

BEx

obtained for @ > 1.0 in the case of symmetrical nodeless vibration modes.
For values oo < 1.0 there is a rapid increase of error combined even with the
change of sign. This is most probably caused by a qualitative change in the -
dynamical behaviour of vibrating segment disregarded by the Goldenblat’s .
formulae. Frequencies of two- or three-node vibration modes reveal several
percent errors. For antisymmetric three-node vibration, however, when a <
1.5, the results may be recognized as quite satisfactory again.

On the basis of Fig.3 we may state that the models considered and, espe-
cially the RT-model, reveal quite complex dynamical properties as functions
of angle a, represented by their eigenspectra. This complexity causes sub-
stantial problems in complete verification of the numerical results, especially .
for RT-model, because no adequate references in the corresponding litera-
ture can be found thus far. :

Variable structure of eigenspectra (appearance of multiple or very close __
eigenfrequencies) observed in the models under consideration makes the ap-
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plication of approximate methods (Ritz, FEM) unreliable and demands spe-

cial care,
Table 3.
Mod I symmetrical | antisymmetﬁcal
ode (nodeless) {one-node)
o BEr GOL A% BEn GOL A%
0.0 0.0000 1.0000 4.0000 4.0000 0.000

0.5 3.7158 | 3.0627 | —17.6 | 3.7584 3.7585 0.003
1.0 5.7898 | 5.87535 1.48 | 3.1474 3.1480 0.019
1.5 8.6847 | 8.7421 0.66 | 2.3787 2.3798 0.046
2.0 11.580 11.623 0.37 | 1.5973 1.5981 0.051
2.5 14.474 | 14.509 0.24 | 0.86120 | 0.86147 | 0.031
3.0 17.369 17.398 6.17 | 0.18234 | 0.18235 | 0.005

II symmetrical IT antisymmetrical
{two-node) (three-node)

a BEr GOL | A% { BEn GOL A%
0.0 9.6000 } 9.0000 ] 0.00 | 16.000 | 16.000 0.00
0.5 8.3596 | 8.84251 | 5.57 | 15.755 | 15.750 | —0.03
1.0 7.8404 | 8.3207 | 6.13 | 15.090 | 15.034 | -0.37
1.5 7.0618 | 7.5401 | 6.92 | 14.132 | 13.943 | —1.34
2.0 6.0802 | 6.5533 | 7.78 | 12.964 | 12.592 | —2.87
2.5 5.0091 ] 5.4299 | 8.40 | 11.641 | 11.08% | —4.74
3.0 3.9100 | 4.2281 | 8.14 | 10.207 9.5190 | —6.74

Mode

Note: GOL ~— results from [11]

6. FINAL REMARKS

The concept of the new universal algorithm for base generation discussed
in the present paper was verified in computational practice and proved to
be numerically very efficient. This efficiency was used effectively in the
eigenproblem analysis for simply supported circular arches (segments) in
order to reveal complex functional dependences of their eigenspectra on the
subtending angle 2. The plots of these functions reveal true complexity
of dynamical eigenproblems of circular arches and enable us to create a
foundation for verification of the results obtained by approximate methods.

Calculation of the eigenspectra of arches with boundary conditions other
than simply supported and application of the base generator in computing
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their stiffness and flexibility matrices require separate description and are
out of the scope of the present paper.
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