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PARAMETRIC OPTIMIZATION OF A ROD SUBJECT TO FORCED
TORSIONAL VIBRATION

A.S. FORYS (KRAKOW)

Torced torsional vibration of a rod made-of a Kelvin-Voigt viscoelastic material is
" analyzed. The rod has the form of a truncated cone. One end of the rod is loaded by
a harmonically variable torque, the other end is rigidly fixed, Vibrational amplitude of
the cross-section subject to external excitation is the objective function; its minimum
- determines the optimum shape of the rod. The results derived are based on the solution
consisting of the first term of its expansion due to the Galerkin method; the results are
illustrated by graphs.

1. INTRODUCTION

The problems of optimization of the shape of elastic rods performing free
torsional vibrations were analyzed by M.H.S. ELvANY and A.D.S. BARR (1,
2]. Similar problems concerning torsional vibration of elastic rods subject to
" harmonic excitation were presented in [3]. The present paper deals with the
problem of optimization of a visco-elastic rod performing torsional vibration
under the action of harmonically time-dependent torque applied to one end
of the rod, the other end being rigidly fixed. An analogous boundary-value
problem for a prismatic rod was solved in [4). The rod to be considered
in the present paper has the form of a truncated cone. The optimality
condition consists in the requirement that the vibration amplitude of the end
of the rod subject to excitation should reach a minimum; rod’s resistance
to forced vibration reach the maximum. The analysis of the results derived
(limited to the first term of the corresponding series expansions) yields the
conclusion that (among all rods of the considered form) the optimum result
is achieved when the truncated cone is fixed at the larger basis. The results
are illustrated by graphs.
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2. FORMULATION OF THE PROBLEM
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A right conical rod of circular cross-section (Fig.1) made of the Kelvin- ;
Voigt-type visco-elastic material is fixed (built-in) at the end z = 0. The
other end # = { of the rod is acted on by torque, M(t) = Mysinwi, where
My and w are positive constants. Vector of the moment of force M(t) has -
the direction of rod’s axis which coincides with the z-axis, Length ! of the *
rod and its volume V" are fixed. Radius R(z) of the cross-section is given by -
the formula, .

(2.1) R(z) = Ro(1 + e?) = Ro#(z),

with parameters Ry > 0 and ¢ € (-1, c0) determining the shape of the rod;
for a prismatic rod ¢ = 0. Parameters Ry and ¢ satisfy the relation (cf. [5])

(2.2) - R(]:\/ vV

w1+ e+¢€2/3)°

Thus, only one of them is independent. In what follows, € will be treated as
the optimization parameter.
The equa.tion of torsional vibration of the rod is written in the form [6]

3y de { Oy Iy
(2.3) @(:c) (G +15 2Gt)ﬂtT(G%+ 157 3t) po(z )3t2 )

where (z,1) is the angle of twist of the cross-section z at time ¢, G is the
modulus of rigidity, 7 is the internal damping coefficient and p — density of
the material.
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The boundary conditions assumed have the form

(24) 0(0,8) = 0
(2.5) Iy(l) ( ¢ = + (‘? gt) (I,t) = Mpsinwt,

. oo 1
Jo(z) denoting the cross-sectional moment of rotary inertia; Ip(z) = 5«1{3

x®@%(z). The initial conditions are not formulated here since the problem
 considered is stationary.

The problem consists now in determining the solution of Eq.(2.3) with
- the boundary conditions (2.4), (2,5), i.e. the solution describing station-
ary vibration. Then the torsional vibration amplitude of the cross-section
. subject to excitation will be determined. Under fixed material constants
his amplitude — the objective function-depends on the optimality param-
ter €. The value of £ at which the objective function reaches a minimum
. determines the optimal shape of the rod.

3. SOLUTION OF THE PROBLEM
Following the procedure outlined in [4], introduce the notation
8y
(3. F(t) = 2°
~ what makes it possible to write the boundary condition (2.5) in the form

(32) L(l) [G F(t) + nk(t)] = Mosinwt ,

My
: (3.3) F(t)= T (G2 1 72%)

(G sinwt — nw coswt) = esinwt + beoswt ,

- where the term which decreases exponentially with time has been disre-
: garded, the considerations being limited to stationary vibration.

* Solution of the boundary-value problem (2.3)-(2.5) is sought for in the
orm (e £ 0)

(1 + E)“l [

(3.4) o(e,t) = @iz, 0) + — 573(a)] P(1),
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¢1(z,t) being the unknown function which, due to Eq.(2.3), satisfies the
equation '::

9% 1 de [ 0p1 0%y

S (G 5a? +n6:c28t) T (G'a'f;+ "ot

92 1 l
P1 p( +e)? [

= p#(z) 5 &(z) - & 2(c)| ()
and, in view of Egs. (2.4), (2.5), the boundary condltlons

(3.6) @0.0=0, =

The solution of the case ¢ = 0 is given in the paper [4]. :

The boundary-value problem (3.5), (3.6) will be solved by means of the
Galerkin method. Assume that function ¢q(2,t)} may be expanded into a
series of eigenfunctions occurring in the solution of an analogous problem
concerning prismatic rod [4], '

N
(3.7) p1(z,t) = Z ¢m (t) sin Az,

where A, = M, m=1,2,...,N, and ¢,(t) are the functions of

time to be determined. Substitution of (3.7) into (3.5) yields

(3.8) Z (Phm + A2 G + GAZ gm )B(2) sin A

m=1

p(1+e)l

- Z (NGm + Ggm ) Am cOs Az = — P [@( ) — _2(93)] F(t).

m=1
This equation is now multiplied by sin A,z and integrated with respect to z
between the limits 0,1, what leads to the set of ordinary differential equations

N
“ G 2¢ . .
(39) G+ n)‘g'%. + Aiqn B > Lnn(GAL G + DA i + Plim)
m=1 C .
214t .
T o, Mn L E)
e MaF(D)

pl,'z E Jmn)\m(GQm + TFQm) = - k
n=1,2,....,N,

with the notations
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{
Lon = /:r: sin A zsin Az dx,
0

!
Jon = /sin Anz cos Az dr,

0
{

/ [515(:1:) - 515‘2(:1:)] sin Az de.
0
The results known from the analysis of prismatic rod indicate that the

M,

first term of expansion (3.7) is of principal importance, since the succeeding
terms are proportional to (2m — 1)~* (cf. Egs.(4.18) in paper [4]). 1t is
assumed that in the present case the situation is similar.

The solution of the set of differential Fqs.(3.9) will be presented in the
first approximation under the assumption that only ¢;(¢) ¢ 0. Retaining
the first term of expansion (3.7) and using Fq.(3.9), we obtain

G, 2e G ..
@1 a+ n)\ ih+— /\ nt g TRt (.——-\%gh + EAEQ’I + QI)
| 2(1+¢)!
pl2 = Tah(Car +nin) = (3—)M F(t).

Following the assumption of stationary forced vibration, the solution of the
above equation is written in the form

- (3.12) q1(t) = esinwt + d coswi .
Further calculations yield the constants ¢ and d
o A W,

(3.13) C—-—W", d_W,

where the following notations have been introduced:

2 2,2
(3.14) W:(%ﬁ—ﬁ)+"“A;

4 G
G- o (B1-9) - Eu,

+’7 Wt )\2 ()\2111 - 4)\1J11 }
p?
2

4g? G e
+li4 { [In (—A§ - wz) - —/\IJll]

+";“’2 CHAETI }
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(3.14) A2 Mow® My 2 { ( 2)
o) oS TG ) (1+e+e /3)
2,,2
o i ($5-) - o)
P P p

l\J

—“;-“()\1111 — 4A1J11)] }

An 2 Mow My (1+¢+£%/3)? [ - ﬁ)\?

W = 3eV2(G? + nw?)

26 8G [
7] ( My - Iw? - ——)\1J11)] .

The first approximation of the solution describing the stationary vibration E
of the rod considered has, in view of Eqs.(3.4), (3.7), the form

4
(3.15)  ofx,t)= {csin %:;-: + i(—l—};l [1 - 45'“3(3:)] } sin wi
. mz b1+ )4l _
+ {d sin —27 + T [1 ¢

where the vibration amplitude is

3(:::)] } coswt = A(z)sinfwt + 6(z)],

. a{l + &)l _3 2
(3.16) A(z) = { [cs in —é-l— + L_i.g.‘?l_ ( - ¢ (az))l

4 2
+ [dsin’;—‘;’ + I—’Q—%—E)—I (1 - !15'3(3:))] } :

and tangent of the phase shift angle equals

B

3ed sin %‘l"- + b(1 + &)H[1 ~ $-3(x)]

3.17 8(z) = ’
(3.17) 0(z) 3acsin%lai+a(1+6)4l[1—¢'3($)]

Both the vibration amplitude and the phase shift angle depend substantially
on the value of parameter ¢ determining the shape of the rod.

4, PARAMETRIC OPTIMIZATION

By assuming z = ! in the formula (3.16) we obtain the amplitude of forced
vibration of the lower end of the rod, at which the excitation is applied,.
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'_: (41) A= {[c—i—a(l—l—e) (1+£+§) I]

Y
+[d+b(1+£)(1+£+%)l}} .

This formula is now used to perform the parametric optimization of the
shape of the rod in consideration of minimum of the amplitude.
In order to perform the numerical analysis of the solution, let us define
the dimensionless parameters {cf. [4]}

2 2
(4.2)  w= ?\/gw, Br= —/pG .

L/}
The first one plays the role of a dimensionless frequency. The analysis is
performed for four different values of $; : 3, 5, 10 and 15, and under a fixed
value of the optimization parameter £ € (—0.75,0.75)\{0}. In each of the
cases considered, the guantity

- TGV?
(4.3) A= IG—WAU)

proportional to A(l) is evaluated as a function of the dimensionless fre-
quency v. Thus the maximal value of the amplitude occurring in the res-
onance is determined. In the case ¢ = 0 Eq.(4.21) of paper [4] is used.
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The maximum value of A as a function of the optimization parameter
£ is presented in Iig.2. Positions of minima of those functions depend on
the value of §; and they determine the optimum value of the optimization
parameter £qp¢, i.€. the optimal shape of the rod. For §; = 3, ggpt = —0.35,
for 81 =5, eope = —0.45, for 81 = 10 and By = 15, g4p¢ = —0.5. The results
are shown in Fig.3. Moreover, Fig.4 represents the dependig of A on the
dimensionless frequency » for the cases of four optimal shapes of the rod.

Al
0 -

5. CONCLUSION

The results derived in the paper demonstrate that the optimal shape
of the rod depends on the parameter §;, i.e. on the material constants
of the rod. For the rod made of a Kelvin-Voigt material of small viscosity
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coefficient, i.e. when the elastic properties of the material play the dominant
role, £opt = —0.5. For the rod with great viscosity coefficient £,p¢ increases
to reach —0.35 for #; = 3. In both cases the truncated cone is buili-in at
the larger base, the smaller one being subject to excitation.
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