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1. A bit of history

Exactly 80 years ago1), in one little known engineering journal, appeared
a paper by a young scientist – “Właściwa praca odkształcenia jako miara wytęże-
nia materiału” [Specific work of strain as a measure of material effort M.T. Hu-
ber [1]]. The author’s destiny was to become in future a founder of the Polish
school of solid deformable bodies mechanics. The article contained one of the
classic assertions of contemporary mathematical theory of plasticity – the limit
condition for isotropic bodies, which we nowadays use to express as

(1.1) s · s ≤ 2k2,

where s is a deviatoric part of the stress tensor σ, k denotes the limit value of
pure shear stress (the notation is specified in Appendix 1).

We should notice that condition (1.1), gained popularity in scientific en-
vironment only ten years later being rediscovered by R. von Mises [2], and
subsequently, additionally explained by H. Hencky [3]. This story has been
discussed in 1924 at the I-st International Congress of Applied Mechanics in
Delft, and found a reflection in, perhaps the first, methodical elucidation of the
mathematical theory of plasticity given in 1927 by H. Mierzejewski [4].

After another decade it become clear that the yield condition (1.1) was
clearly formulated by J.C. Maxwell in a private letter to prospect lord Kelvin [5].
After the explanation of the matter of the problem, the author of the letter ad-
ditionally asserts: “I think this notion will bear working out into a mathematical

1)Written in 1984.
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theory of plasticity when I have time . . . ”. It is a pity, that such a chance did not
come about, we should remember however, that Maxwell’s attention has turned
to more important problems.

The mentioned above co-authors of the condition (1.1), (except for R. von
Mises) based it on the charming in their simplicity, considerations on the energy.
Let us recall the matter of the problem.

In a linearly elastic body under small strain ε, the stored elastic energy is
equal to the work performed by the stress σ on the strain ε and can be expressed
as a quadratic form of stresses,

(1.2) Φ(σ) ≡ 1
2
σ · ε(σ).

If a body is isotropic, then this form should be invariant. Any quadratic in-
variant of the symmetric tensor, however, can be expressed as follows:

(1.3) Φ(σ) = Aσ2 + Bs · s,

where

(1.4) σ = σ1 + s, σ ≡ 1
3
1 · σ.

Indeed, σ, s · s and det s comprise a complete (both functional and polynomial)
system of invariants on the space of symmetric tensors S , and (1.3) is the
only possible quadratic expression which can be created using them. Giving
a meaning to the constants, one obtains:

(1.5) Φ(σ) =
1

2K
σ2 +

1
4G

s · s,

where K – compressibility modulus, G – shear modulus. It means that

(1.6) Φ(σ1 + s) = Φ(σ1) + Φ(s),

i.e. the elastic energy is the sum of the energy of the volume change Φ(σ1)
and the energy of the shape change Φ(s). Having performed this decompo-
sition, J.C. Maxwell wrote: “I have strong reasons for believing, that when Φ(s)
reaches a certain limit. . . , then the element will begin to give way. . . . Condition
of not yielding

(1.7)
1
h

Φ(s) ≤ 1,

where h ≡ k2/2G. We took the liberty to change only the author’s notation for
the sake of similarity of the expressions (1.7) and (1.1).
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Arising in that place and at that time (Cambridge, middle of the XIX cen-
tury) of the ideas about the limit capacity of the elastic body for cumulating the
energy of shape change seems to us by no means accidental. Some years earlier,
one of the professors of that university, J. Green, laid the notion of the elastic
energy in the foundations of the very definition of the elasticity [6]; J.G. Stokes
pointed out quite clearly on the two kinds of the elasticity: the one trying to
restore the volume, and another one tending to restore the shape [7].

M.T. Huber quotes the decomposition (1.6) referring to H. Helmholtz [8]
and writes: “. . . można z wielkim prawdopodobieństwem uważać Φ(s) za miarę
wytężenia materiału” [1] [“. . . one can in all probability consider Φ(s) as a mea-
sure of material effort” – p. 185, [1] (English translation)]. He communicated
his supposition to A. Föppl, who wrote in his well-known at that time text-
book [9]: [“Endlich ist noch darauf hinzugeweisen, daß mit den bisher genan-
nten noch keineswegs alle Möglichkeiten erschöpft sind, die für die Bemessung
der Bruchgefahr von vornherein offen stehen. Es ist auch sehr wohl möglich, daß
wenigstens für gewisse Stoffe eine dieser anderen Möglichkeiten dem wirklichen
Verhalten near kommt als die früheren. Namentlich liegt es nahe, in irgendeiner
Weise die bezogene Formänderungsarbeit mit der Anstrengung des Stoffes in
Verbindung zu bringen, da in ihr sowohl die auftretenden Spannungen als die
von ihnen hervorgerufene Formänderung zur Geltung kommen”].

“In der Tat hat man dies wiederholt versucht, und eine besondere Form dieser
Annahme, die von Herrn Professor Huber an der Technischen Hochschule in
Lemberg aufgestellt wurde, erscheint durchaus beachtenswert, weshalb hier noch
etwas näher darauf eingegangen werden soll. Die ursprüngliche Veröffentlichung
von Huber ist uns nicht zugänglich, da sie in der polnischen Muttersprache ihres
Verfassers geschrieben ist; wir können uns aber nach einer brieflichen Mitteilung
mit einem ausführlichen Auszuge aus der Abhandlung richten, die wir Herrn Hu-
ber verdanken“ [p. 50 [9] (Finally, one should mention that the before discussed
measures of the risk of fracture by no means exhaust all possibilities that are at
our disposal. It is also very possible that at least for certain materials one of the
other possibilities approximates better the real behaviour than the earlier ones. It
is namely conceivable to relate in some way the derived [specific] work of strain
with material effort as well as to arrive at the assessment of induced stresses
and the resulting deformation.

In fact one has it repeatedly attempted and certain particular form of such
an approach, which was exhibited by Professor Huber of the Technical Univer-
sity in Lemberg [Lwów Polytechnic] appears entirely worthy of our attention.
Therefore, it should be brought closer here. The original publication of Huber is
not accessible for us, for it was written in Polish mother tongue of the author.
However, we can be guided by the comprehensive excerpt by letter, which we owe
to Mr Huber.) – translation by sc. ed.].
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R. von Mises proposed condition (1.1) starting from purely formal scheme of
the quadratic approximation of the Tresca-Saint Venant yield condition. But as
soon as the quadratic form is proposed, and a body is isotropic, then the limit
function assumes form (1.3) and, discarding the influence of the hydrostatic
pressure, one obtains (1.1), i.e. (1.7).

For completeness of the image we should mention, that E. Beltrami in
1885 [10] proposed boundedness of the complete elastic energy Φ(σ) as a limit
criterion. This proposition was repeated later by B.P. Haigh [11]. Another old
presumptions concerning the limit conditions one can find in the surveys by
W. Burzyński [12] and M.M. Filonenko–Borodich [13].

Comment: as it is known, the condition (1.1) can be for isotropic body also
differently interpreted. Particularly, V.V. Novozhilov [14] found, that the
term s · s is proportional to the, averaged over all planes, square of the shear
stress value.

2. Statement of the problem

According to the traditions of the old papers, we believe that it is justified,
at a certain stage of the knowledge, to consider the form of limit criterion, un-
derstood as the bounding imposed on some measure of the stress intensity
(called by M.T. Huber miara wytężenia [material effort ]), without specifying the
origins of the “element failure”. The last can mean the transition to nonlinear
elasticity, arising of permanent deformations (plastic, viscous, viscoplastic), dis-
integration on the micro- or macro-level, destruction of the composite structure
configuration, attaining intolerable extent of deformation and so on.

Nowadays we know, more than the old time masters did, about the mech-
anisms of numerous effects. However in the same time, the following facts of
the matter remain essential. Firstly: all the time increases the manifold of the
engineering materials: of alloys, polymers, ceramics, concrete, composites, work-
ing mechanisms of their structures remaining as a rule inadequately recognized.
Frequently thorough studies on them would be costly and time-consuming. Sec-
ondly: essentially, different structural effects can on the macro-level materialize
quite similarly. For example, small strain crystal elasticity and elasticity of the
solid polymers are based on quite different structural mechanisms, but their
“macro-scale output” is identical. From there, the actuality and necessity of the
phenomenological approach in the framework of the rational mechanics of mate-
rials comes out. Particularly, this remains true with respect to the limit criteria
under consideration.

In this context, a phenomenological condition (1.7), for which the choice of
the stress intensity measure is based on the fundamental notion of physics –
a concept of energy, preserves in our opinion its heuristic attractiveness. Basing
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on this start point, we set as our task, in the present paper, a comprehensive,
from the formal viewpoint, clarification of the possibilities of direct generalization
of the energy-based Maxwell–Huber condition (1.7) on linearly elastic anisotropic
bodies of arbitrary symmetry.

3. On the answer given by W. Olszak and W. Urbanowski

It seems to be evident, that the first attempt to enlighten the posed problem
was taken by successors of M.T. Huber. My tutors, W. Olszak and W. Ur-
banowski proceeded on the way of extracting from the complete elastic energy
of some its part, being an analogue of the energy of the shape change in isotropic
body [15]. This study was continued lastly by J. Ostrowska in the lecture de-
voted to the memory of W. Olszak [16].

Let us consider an arbitrary elastic body described by the quadratic elastic
potential

(3.1) Φ ≡ 1
2
σ · ε =

1
2
σ · S · σ =

1
2
ε ·C · ε.

Here S is a compliance tensor, C – stiffness tensor,

(3.2) CT = C, ST = S, C ◦ S = S ◦C = I

(see Appendix 1). From there, in virtue of Hooke’s law, it follows:

(3.3)
σ = ∂εΦ = C · ε,

ε = ∂σΦ = S · σ.

The idea suggested in [15] is attractive mainly because of its stimulating
difficulties. Let us try to accomplish it with the aid of the standard decompo-
sition (1.4). Unfortunately, this does not lead to the decomposition of the elastic
energy. One has:

(3.4) Φ(σ) =
1
2
(σ1 + s) · S · (σ1 + s) =

1
2
σ21 · S · 1 + σ1 · S · s +

1
2
s · S · s.

The first term

(3.5)
1
2
σ21 · S · 1 = Φ(σ1) ≥ 0

describes the work of hydrostatic pressure σ1 on the evoked by this stress state
deformation σS · 1, while the last one

(3.6)
1
2
s · S · s = Φ(s) ≥ 0
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represents the work of the deviatoric part s on the deformation caused by it
S · s. However,

(3.7) Φ(σ) 6= Φ(σ1) + Φ(s),

since there exists an additional term, which depends both on σ and s

(3.8) σ1 · S · s,

representing the sum of the work of σ1 on the deformation S · s and, equal to
it, work of s on the deformation σS · 1. Let us notice that 1 · S · s describes
a change of volume generated by the deviatoric part of load s; it can be positive
or negative depending on the sign of s. An example of the case of pure shear is
shown in Fig. 1. Difference Φ(σ)− Φ(s) does not represent energy of any stress
state and it can assume negative values. Thus the use of Φ(s) as a measure of
stress intensity appears out in general to be unsatisfactory.

Fig. 1. Volume change 1 · S · s under the deviatoric load s depends on the orientation
of s with respect to the elastic body.

Let us try to proceed on another way. We shall decompose the strain tensor

(3.9) ε = ε1 + e, ε ≡ 1
3
1 · ε

and represent the elastic energy as follows:

(3.10) Φ(σ) = Φv(σ) + Φf (σ),

where

Φv(σ) ≡ 1
2
σ · e =

1
2
s · e =

1
2
s · S · s +

1
2
σ1 · S · s,(3.11)

Φf (σ) ≡ 1
2
σ · (ε1) =

3
2
σε =

1
2
σ21 · S · 1 +

1
2
σ1 · S · s.(3.12)

Term Φf (σ) is equal to the work of the stress σ on the shape change, while
Φv(σ) represents the work of the stress σ on the volume change. In general, one
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can choose load σ in such a way, that one of the pair of terms Φf (σ) and Φv(σ)
becomes negative, while total energy Φ(σ) remains positive. Neither Φf (σ) nor
Φv(σ) represents an elastic energy of any state of stress. Thus Φf (σ) can not be
used as a measure of stress intensity [material effort].

Let us notice that these difficulties disappear with vanishing of the term
(3.8), i.e. for the elastic bodies fulfilling the condition

(3.13) 1 · S · s = 0,

for all deviatoric tensors s.
This condition was, perhaps for the first time, proposed by the student of

M.T. Huber – W. Burzyński [12]. In his opinion, it could turn up to obey in
general for all elastic bodies and to replace the famous A. Cauchy condition
[17], which evoked vigorous disputes in XIX century [18]. This is not true, of
course. In [19] we have called the bodies obeying (3.13) volumetrically-isotropic.
Condition (3.13) means that the hydrostatic load produces only volumetric de-
formation.

(3.14)

S · 1 =
1

3K
1,

1
K
≡ 1 · S · 1,

i.e. the unit tensor 1 is a proper elastic state. Isotropic bodies are volumetrically-
isotropic, because in this case

(3.15) S =
1

3K
IP +

1
2G

ID ,

where

(3.16) IP ≡ 1
3
1⊗ 1, ID ≡ I− 1

3
1⊗ 1

and (3.13) holds since IP · 1 = 1, ID · 1 = 0 [19]2).
Let us come back however to the general case, when (3.13) does not hold.

The authors of [15] passed over one idea which flashed across the thesis [12] (see
p. 30), written under direct supervision of M.T. Huber. W shall attribute, for
the beginning, a necessary clearness to this idea. Let us consider, beginning from
this point, the stress σ as being related to some standard one and hence, being

2)Obviously, (3.13) is fulfilled for any incompressible material, since in this case 1 ·S ·σ = 0
for any stress tensor σ. Such a case is (from the formal viewpoint) not covered by equalities
(3.14) (Translator’s remark).
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dimensionless. This enables us to consider σ and ε as elements of the space of
symmetric tensors S .

Definition. Two stress states α, β we shall call energy-separated for a given
elastic body, if they decompose its elastic energy, i.e. if

(3.17) Φ(α + β) = Φ(α) + Φ(β).

Two subspaces A , B in S we shall call energy-separated if all pairs α ∈ A
and β ∈ B are energy-separated. The first example of the energy-separation is
already known to us: for every isotropic linearly-elastic body, a one-dimensional
space of spherical tensors P and five-dimensional space of deviators D

(3.18) S = P ⊕D ,

are energy-separated according to (1.6).
We have not assumed in our definition that a body is linearly-elastic, we

should mention however that utility of the introduced notion in general case is
rather doubtful. In the case of linearity, though it works excellently, as we shall
make evident. Here

(3.19) (α + β) · S · (α + β) = α · S · α + β · S · β + 2α · S · β
and the energy-separation condition takes the form

(3.20) α · S · β = β · S · α = 0.

Thus, for the case of linear elasticity, energy-separation of α and β means that
the stress α does not perform work on the strain caused by the stress β, and
equally: β does not work on S · α.

Now, everything is ready for a description of the following simple case. As-
sume that, for the class of elastic bodies under consideration, there exists such
a tensor α, that the stress cα of any intensity c does not cause a failure of the
element (in the particular sense under consideration). We shall call the states
cα the safe ones. They constitute a one-dimensional space

(3.21) E ≡ {cα | c : arbitrary number}.
Let us introduce its orthogonal complement

(3.22) E ⊥ ≡ {β | β · α = 0}.
We choose now all states energy-separated from α. They constitute a five-
dimensional space

(3.23) E ⊥̇ ≡ {ω | ω · S · α = 0}.
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Evidently

(3.24) E ⊥̇ = C · E ⊥ = {C · β | β · α = 0}.

The state α is a normal of E ⊥ while the state S · α is a normal of E ⊥̇, Fig. 2.

Fig. 2. E – space of safe states, E ⊥̇– space of the states energy-separated from the safe ones,
E⊥ – space of the states orthogonal to the safe states.

Let us introduce a decomposition into a direct sum

(3.25) S = E ⊕ E ⊥̇

i.e. we shall represent every stress σ as a sum of energy-separated parts, the
first of them being a safe state

(3.26) σ = σ◦ + σ∗, σ◦ ∈ E , σ∗ ∈ E ⊥̇.

The component σ◦ will be called the safe part of the stress σ, and the compo-
nent σ∗ – the hazardous one. Making use of the condition of energy-separation
σ◦ · S · (σ− σ◦) = 0, one obtains

(3.27) σ◦ = σ◦α, σ◦ ≡ α · S · σ
α · S · α .

Operation σ → σ◦ is a projection, parallel with respect to the space E ⊥̇, on
the straight line E . It is performed with the aid of projector E◦ ∈ T , which is
uniquely defined as follows:

(3.28) E◦ · σ = σ◦ for all σ ∈ S .
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It is not difficult to show that the projector E◦ is equal to

(3.29) E◦ =
1

α · S · αα⊗ S · α.

The elastic energy can be decomposed in the following way:

(3.30) Φ(σ) = Φ(σ◦) + Φ(σ∗),

the following equality being true:

(3.31) Φ(σ◦) =
1
2
(σ◦)2α · S · α =

(α · S · α)2

2α · S · α .

Elastic energy of the hazardous part of stress is equal to

(3.32) Φ(σ∗) =
1
2
σ∗ · S · σ∗ =

1
2
σ · S∗ · σ,

where

(3.33) S∗ ≡ (E∗)T ◦ S ◦E∗ = S− (E◦)T ◦ S ◦E◦ = S− 1
α · S · αS · α⊗ S · α.

Here E∗ is a projector onto E ⊥̇ parallel to E , i.e.

(3.34) E∗ · σ ≡ σ∗ for every σ ∈ S .

Decomposition of the space (3.25) is associated with the corresponding decom-
position of unit operator

(3.35) I = E◦ + E∗, E◦ ◦E∗ = E∗ ◦E◦ = 0.

For the bodies under consideration, the following energy limit criterion can
be proposed

(3.36)
1
h

Φ(σ∗) ≤ 1,

where h is the limit value of elastic energy under loading with the stress σ∗ ∈ E ⊥̇.
For the isotropic body with the spherical safe state, one has

(3.37)
α = 1, S =

1
3K

IP +
1

2G
ID ,

E◦ = IP , E∗ = ID .

Hence σ∗ = s and

(3.38) Φ(σ∗) = Φ(s)
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becomes the energy of shape change, and limit condition (3.36) turns out to
be the Maxwell-Huber condition (1.7). Proposals [15] rely on the following
two examples which excellently exhibit a difference between the isotropic and
anisotropic bodies.

Example. Let the hydrostatic stress states be safe, i.e.

(3.39) α = 1,

(see Fig. 1). Here

σ◦ =
1 · S · σ
1 · S · 1 1 = (9Kε)1,(3.40)

σ∗ = σ− (9Kε)1.(3.41)

The space E ⊥̇ is composed of the preserving volume stress states 1 · S · σ∗ = 0.
Limit condition (3.36) takes the form

(3.42) σ · S · σ− (1 · S · σ)2

1 · S · 1 ≤ 2h.

This corresponds exactly to the first of the two possibilities proposed in [15].

Fig. 3. E – space of spherical tensors, E ⊥̇ – space of the preserving volume stresses,
D⊥ – space of deviators.

Example. Let every stress, which causes volume changes only, be safe. Then

(3.43) α = C · 1
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(see Fig. 4). Here

(3.44) σ◦ =
3σ

1 ·C · 1C · 1, σ ≡ 1
3
1 · σ,

(3.45) σ∗ = σ− 3σ

1 ·C · 1C · 1.

Fig. 4. E – space of stresses causing volume changes only, D – space of deviators.

Let us notice that σ∗ is a deviator, 1 · σ∗ = 0 i.e. E ⊥̇ = D . Deviator σ∗

was introduced and interestingly implemented by V.A. Lomakin [20]. Limit
condition in this case takes the form

(3.46) σ · S · σ− 9σ2

1 ·C · 1 ≤ 2h.

This is the second possibility pointed out in [15].
For every volumetrically-isotropic body, particularly for an isotropic one, we

have

(3.47) S · 1 =
1

3K
1, C · 1 = (3K)1

and both conditions (3.42) and (3.46) coincide.
Unfortunately, criterion (3.36) is of a very particular nature. Limit properties

are described here, with the exception of one constant h fixing the scale of stress,
with the elastic tensor S∗ alone. Such close bonds between the limit and the
elastic properties seem to be very particular and can not take place in a general
case of anisotropic body.

We should notice also that it is not difficult to generalize the obtained rela-
tions on the case when the space of the safe states is not one-dimensional.
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4. Principal decomposition of the elastic energy

We need now a short, but crucial for the further considerations, excursion
to some section of the algebra of Euclidean tensors, which is not known well
enough and not sufficiently exploited in mechanics.

The set S can be considered as a linear 6-dimensional space with the scalar
product

(4.1) (α, β) → α · β.

Let us take two arbitrary bases in S , i.e. two linearly independent sets of sym-
metric second-rank tensors

(4.2)
νG, G = I, II, . . . , VI,

µl, l = I, II, . . . , VI.

According to the very definition of the tensor product of the linear spaces,
a system of 36 fourth rank tensors

(4.3) νG ⊗ µl G, l = I, II, . . . , VI

constitute a basis in T ≡ S⊗S . Hence any tensor L ∈ T can be uniquely
denoted as

(4.4) L =
VI∑

G,l=I

LGlνG ⊗ µl.

Moreover, it is convenient to regard any tensor L ∈ T as a linear operator from
S into S , acting according to the rule

(4.5) α → L · α,

where (ω⊗ τ) · α ≡ (τ · α)ω.
Let us introduce, for the basis µl, its standard reciprocal basis µl. It is defined

as the unique solution of the system of equations

(4.6) µl · µk = δk
l ≡

{
1 l = k,
0 l 6= k.

Now L · µl = LI lνI + LII lνII + . . . and, hence, Eq. (4.4) can be expressed as
the fundamental identity : for any L ∈ T and any basis µK in S ,

(4.7) L = L · µI ⊗ µI + . . . + L · µVI ⊗ µVI = L · µI ⊗ µI + . . . + L · µVI ⊗ µVI.
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Let us come back to the idea of energy decomposition, which by no means
can be reduced to the examples quoted in Sec. 3.

Let us analyze a symmetric bilinear form α · S · β. It is a polar form of the
positive defined quadratic form α · S · α on S . Therefore an operation

(4.8) (α · β) → α× β ≡ α · S · β

defines another correct scalar product of symmetric tensors of rank two. We shall
call it energy-scalar product, contrary to the standard scalar product
α · β. Energy product α × β is tailored to the particular elastic body under
consideration, it is defined by its compliance tensor S. The condition of the
energy-separation α ·S ·β = 0 achieves the geometric meaning of orthogonality
in energy sense

α ⊥̇ β, i.e. α× β = 0.

Elastic energy of the stress is equal to one half of the square of the energy-norm
of σ:

(4.9) Φ(σ) =
1
2
σ× σ.

Definition. Every decomposition

(4.10) S = E1⊕, . . . ,⊕Eκ, κ ≤ 6,

for which any two components of the direct sum are energy-orthogonal (sepa-
rated)

(4.11) Eα⊥̇Eβ for α 6= β,

we shall call an energy-orthogonal decomposition of the stress space for
a given elastic body.

Distributing any stress tensor over subspaces (4.10)

(4.12) σ = σ1 + . . . + σκ, σα ∈ Eα,

we have

(4.13) σα × σβ = 0 for α 6= β

and, hence, as it should be,

(4.14) Φ(σ1 + . . . + σκ) = Φ(σ1) + . . . + Φ(σκ).

Of course, there exist many energy-orthogonal decompositions at will.
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Let us introduce a projector Eα on the subspace Eα parallel to E ⊥̇ = E1 ⊕
. . .⊕ Eα−1 ⊕ Eα+1 ⊕ . . .⊕ Eκ

(4.15) Eα ·ω =
{

ω if ω = Eα,

0 if ω ⊥̇ Eα.

Decomposition of the unity operator

(4.16) I = E1 + . . . + Eκ,

corresponds to the decomposition (4.10), here

(4.17) Eα ◦Eα = Eα, Eα ◦Eβ = 0 for α 6= β.

It is not difficult to express projectors Eα explicitly. Let us take any energy-
orthonormal basis

(4.18)
�I, . . . ,�VI,

�K × �L = δKL ≡
{

1 K = L,
0 K 6= L,

chosen in such a way, that the first s1 elements. �1, . . . ,�s1 belong to E1, s1 =
dimE1, the next s2 belong to E2, etc. The reciprocal basis will assume the
following form:

(4.19) �I ≡ S · �I, . . . ,�VI ≡ S · �VI.

Indeed

(4.20) �K · �L = �K × �L = δKL.

If one considers �K as a stress, then �K will be the strain caused by this stress.
Using identity (4.7), one obtains promptly

(4.21) E1 = �I ⊗ �I + . . . + �s1 ⊗ �s1 .

Let us notice the following relations yielding from (4.7):

S = �I ⊗ �I + . . . + �VI ⊗ �VI,(4.22)

C = �I ⊗ �I + . . . + �VI ⊗ �VI.(4.23)

The most remarkable among the energy-decompositions is the decomposition
pointed out and applied in papers [19, 21–24]. It is given by the following theorem
being some implementation of the general spectral theorem (see c.f. [25, 26]).
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Theorem: For every elastic body, defined with its compliance tensor S, there
exists exactly one energy-orthogonal and orthogonal decomposition

(4.24) S = P1 ⊕ . . .⊕P%, % ≤ 6,

(4.25) Pα ⊥̇ Pβ, Pα ⊥ Pβ, for α 6= β

and exactly one set of pair-wise unequal constants

(4.26) λ1, . . . , λ%, λα 6= λβ for α 6= β

such, that

(4.27) S =
1
λ1

P1 + . . . +
1
λ%

P%,

where Pα is an orthogonal projector on Pα, α = 1, . . . , %.

Proof. Since S is a symmetric operator acting in the space S with the scalar
product (4.1), the equation

(4.28) S ·ω =
1
λ

ω

has an orthonormal set of solutions

(4.29)
ωI, . . . , ωVI,

ωK ·ωL = δKL,

each ωK being related to the proper value λ−1
K . This orthonormal basis is ac-

companied by the energy-orthonormal one

(4.30) �1 = λ
1/2
I ωI, . . . , �VI = λ

1/2
VI ωVI

and

(4.31) �I =
1

λ
1/2
I

ωI, . . . , �VI =
1

λ
1/2
VI

ωVI.

From (4.22) it follows that

(4.32) S =
1
λI

ωI ⊗ωI + . . . +
1

λVI
ωVI ⊗ωVI.

Let ωK are labeled in such a way, that

λI = λII = . . . = λs1 = λ1, λs1+1 = . . . = λs1+s2 = λ2
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etc., then

(4.33) ωI ⊗ωI + . . . + ωs1 ⊗ωs1 = P1,

are orthogonal projectors on some subspaces

P1, . . . ; dimP1 = s1, . . .

Expression (4.32) takes the form of (4.27). It is evident that the decomposition
(4.24) is unique, orthogonal and energy-orthogonal. From (4.23) it follows, that

(4.34) C = λ1P1 + . . . + λ%P%.

Solutions ω of the Eq. (4.28) we designed in [19] as proper elastic states
of the elastic body under consideration, while parameters λ were called true
(proper) stiffness moduli3). The proper elastic states have been found for all
symmetries of crystals and the anisotropic engineering materials.

Spaces Pα consist of the proper elastic states and to each of these spaces is
prescribed its own true stiffness modulus λα. We shall call (4.24) the proper
energy-decomposition, for the body under consideration.

Let us represent arbitrary stress σ according to the proper decomposition:

(4.35) σ = σ1 + . . . + σ%, σα ≡ Pα · σ ∈ Pα;

(4.36) σα · σβ = 0, for α 6= β.

We introduce also values of projections

(4.37) σα ≡ (σα · σα)1/2 = (σ ·Pα · σ)1/2.

The elastic energy corresponding to the α-th part of the stress is equal to

(4.38) Φ(σα) ≡ 1
2
σα · S · σ =

σ2
α

2λα
, α = 1, . . . , %

and, therefore, the proper decomposition of energy (corresponding to the
proper space decomposition) takes a very simple form

(4.39) Φ(σ) =
σ2

1

2λ1
+ . . . +

σ2
%

2λ%
.

3)The Author referred to them also as to Kelvin moduli, cf. J. Rychlewski, On Hooke’s
Law, Journal of Applied Mathematics and Mechanics, 48(3), 303–314, 1984 (translator’s re-
mark).
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Basing on this foundation, one can propose the following particular quadratic
energy-criterion of the limit state:

(4.40)
σ2

1

k2
1

+ . . . +
σ2

%

k2
%

≤ 1,

where hα ≡ k2
α/2λα is the limit value of energy of the load σα ∈ Pα. If kα = ∞,

then the space Pα is composed of the safe states.
For the materials being isotropic with respect to elastic properties, the proper

elastic states are following: any hydrostatic stress σ1 = σ1 with the stiff-
ness modulus λ1 = 3K and any deviator σ2 = s, with the stiffness modulus
λ2 = 2G. Principal decomposition is given by the expression (3.18) and struc-
tural one (4.27) – by the relation (3.15). Hence, the limit criterion (4.40) can be
expressed as

(4.41)
σ2

σ2
0

+
s · s
2k2

≤ 1.

If any hydrostatic state is safe, then σ0 = ∞ and we obtain the Maxwell–Huber
criterion (1.1).

Criterion (4.40) assumes some weak coupling between elastic and limit prop-
erties. In many cases such a coupling probably takes place, e.g. due to the
symmetry of the structure of the body under consideration. However it can not
be truthfully in a general case. The simplest counterexample supplies a body
which is isotropic as regards its elastic properties, being anisotropic regarding
limit properties. We shall fully clarify the nature of the specific connection be-
tween the elastic and the limit properties in the Sec. 6.

Comment. On the ground of (4.39) one can propose, of course, a more general
energy-criterion

(4.42) F (σ1, . . . , σ%) ≤ 1;

it would, however still, enclose an assumption about the mentioned interconnec-
tion between the elastic and the limit properties.

5. Energy related meaning of the quadratic limit criteria

Noticeable, ahead evident, generalization of the condition (1.1) was proposed
in the classic work of R. von Mises [27]. He has chosen the yield condition in
the form

(5.1) s ·H · s ≤ 1,
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where H ∈ T . For H = (1/2k2)ID one obtains (1.1). It was repeated by R. Hill
for orthotropic bodies in [28].

We shall discuss the most general quadratic condition of limit state

(5.2) σ ·H · σ ≤ 1.

We shall call tensor H the limit state tensor and the quadratic form σ ·H ·σ
will be called a quadratic measure of stress intensity. Without loss of
generality one can assume, that H is a symmetric tensor of T . Besides this, the
measure of intensity of an arbitrary load σ should be non-negative. Thus, the
following conditions are imposed on H:

(5.3) H = HT , α ·H · α ≥ 0 for any α ∈ S .

As always, with the quadratic form α·H·α are associated: its polar – bilinear
symmetric form α ·H ·β and the symmetric linear operator H·, α → H ·α. We
shall make use of this operator without delay.

A stress state σ we shall call the safe state for the elastic body, whose limit
properties are given by the limit state tensor H if σ ·H · σ = 0. Let us recall
the simple theorem of linear algebra.

Theorem. The set of the safe stress states constitutes a kernel of the operator
H·, i.e. it is composed of the stresses σ, fulfilling the condition

(5.4) H · σ = 0.

Proof. Let us examine measure of stress intensity on a unit sphere σ · σ = 1.
Due to non-negativeness, its null value is minimal. Therefore: if σ ·H · σ = 0,
then the derivative of the Lagrange function σ ·H ·σ−µ(σ ·σ−1) must vanish,
this yields H · σ = µσ, at the same time µ = σ ·H · σ/σ · σ = 0.

Von Mises criterion (5.1) is in fact a criterion (5.2) for which it was assumed
that an arbitrary hydrostatic stress is safe. Then 1 ·H · 1 = 0, i.e.

(5.5) H · 1 = 1 ·H = 0

and, therefore
σ ·H · σ = s ·H · s.

This assumption does not seem to us to be naturally innate in general case.
There are no a priori reasons for considering a spherical tensor as something
exceptional for anisotropic media. The habit to separate the spherical part of
stress σ1 and to consider the pressure −σ as some universal thermodynamic
parameter, has come into mechanics of the solid deformable body from the me-
chanics and thermodynamics of liquids and gases and has rooted on fertile soil
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of isotropic bodies. This habit should be revised, in our opinion. In particular,
for the anisotropic body, say a composite, quite different stress states related to
its structure (reinforcement, etc.) can emerge as the safe ones.

Concerning the limit state tensor H we shall not assume anything more
than (5.3).

R. von Mises have not ascribed any specific interpretation to his condition.
In particular, any connection of his measure of stress intensity s · H · s with
elastic energy was not discernible. We shall prove that an arbitrary quadratic
measure of stress intensity σ · H · σ possesses uniquely defined, in terms of
energy, interpretation. This is contained in the following theorem, which is an
implementation of the idea o simultaneous reduction of two quadratic forms
(here σ ·H · σ and σ · S · σ) into a sum of squares (cf. [29]).

Theorem. For every elastic body defined by its compliance tensor S and limit
state tensor H, there exist: exactly one energy-orthogonal decomposition:

(5.6) S = H1 ⊕ . . .⊕Hχ, χ ≤ 6,

(5.7) Hα ⊥̇ Hβ for α 6= β

and exactly one set of pair-wise unequal constants

(5.8) h1, . . . , hχ, hα 6= hβ, for α 6= β,

such that, for an arbitrary stress

(5.9) σ = σ1 + . . . + σχ, σα ∈ Hα,

the measure of stress intensity is equal to

(5.10) σ ·H · σ =
1
h1

Φ(σ1) + . . . +
1
hχ

Φ(σχ),

where

(5.11) Φ(σ1) + . . . + Φ(σχ) = Φ(σ).

Proof. We shall present a constructive one. We shall entirely use the energy-
scalar product (4.8) instead of the standard one (4.1). Let us introduce linear
operations

L× α ≡ L · (S · α) = (L ◦ S) · α,(5.12)

α× L ≡ (S · α) · L = (α · S) · L = α · (S ◦ L),(5.13)

L 2 N ≡ L ◦ S ◦N.(5.14)
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We shall identify tensors L ∈ T with linear operators acting from S into S ,
according to the rule

(5.15) α → L× α

instead of (4.5). Unit operator α → α under this convention is realized not by
the tensor I, but by the stiffness tensor C. Indeed,

(5.16) C× α = (C ◦ S) · α = I · α = α.

Let us write the stress intensity measure in the following form:

(5.17) α× (C ◦H ◦C)× α = α ·H · α.

The operation completed by the tensor C ◦H ◦C is symmetric with respect to
the energy-scalar product, i.e.

(5.18) α× (C ◦H ◦C)× β = β× (C ◦H ◦C)× α

for every α, β ∈ S . Let us analyze proper elements χ and proper values (2h)−1

of this operator

(5.19) (C ◦H ◦C)× χ =
1
2h

χ.

In view of the symmetry (5.18) one can evidently find an energy-orthonormal
set of solutions

(5.20) χI, . . . ,χVI, χK × χL = δKL,

where χL corresponds to the proper value (2hL)−1. The set of χK⊗χL constitutes
a basis in T (see (4.4)) i.e. for any L ∈ T

(5.21) L =
VI∑

K,L=I

LKLχK ⊗ χL;

here

(5.22) LKL ≡ χK × L× χL.

In particular, taking into account (5.19) and (5.20), for L = C ◦H ◦C one has:

(5.23) C ◦H ◦C =
1

2hI
χI ⊗ χI + . . . +

1
2hVI

χVI ⊗ χVI.
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Let χK be labeled in such a way that hI = . . . = hG1 = h1, hG1+1 = . . . =
hG2+2 = h2 etc. Let us consider

(5.24)
H1 ≡ χ1 ⊗ χ1 + . . . + χG1

⊗ χG1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
and denote

(5.25) H1 ≡ Im H1 . . . , dimH1 = G1, . . .

It is evident that

(5.26) Hα × χ =
{

χ for χ ∈ Hα,
0 for χ ∈ Hβ, β 6= α

and Hα⊥̇Hβ for α 6= β. In other words, Hα are energy-orthoprojectors and
constitute energy-orthogonal decomposition of the unity operator

(5.27) C = H1 + . . . + Hχ,

(5.28) Hα 2 Hα = Hα, Hα 2 Hβ = 0 for α 6= β.

It corresponds to space decomposition (5.6), (5.7).
Collecting together in (5.23) the terms with the same hL, one obtains

(5.29) C ◦H ◦C =
1

2h1
H1 + . . . +

1
2hχ

Hχ.

Taking (5.9) we get (5.11). Now

(5.30) σ ·H · σ =
1

2h1
σ×H1 × σ + . . . +

1
2hχ

σ×Hχ × σ

and, since

(5.31) σ×Hα × σ = σα × σα = 2Φ(σα)

we obtain (5.10).
Everything here is constructed effectively, together with the definitions of

hK and χK using the Eq. (5.19), which can be rewritten as

(5.32) (2hH− S) · χ = 0.

The expression for the limit state tensor can be expressed as follows:

(5.33) H =
1

2hI
S · χI ⊗ S · χI + . . . +

1
2hVI

S · χVI ⊗ S · χVI,
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or

(5.34) H =
1

2hI
S1 + . . . +

1
2hχ

Sχ,

where

(5.35) Sα ≡ S ◦Hα ◦ S, α = 1, . . . , χ,

(5.36) S = S1 + . . . + Sχ.

Thus, any arbitrary quadratic criterion of limit state can be ex-
pressed in the form of energy-inequality

(5.37)
1
h1

Φ(σ1) + . . . +
1
hχ

Φ(σχ) ≤ 1.

Parameters

(5.38) hα ≡ χ · S · χ
2χ ·H · χ = const for any χ ∈ Hα

are the limit values of elastic energy for the loads σα ∈ Hα.
If hα = ∞, then the loads σα ∈ Hα are safe. Criteria (3.42) and (3.46)

represent particular cases of (5.37) for

(5.39) χ = 2, h1 = ∞, dimH1 = 1.

Let us notice that expression (5.33) presents the most general form of limit
state tensor in such a sense, that H is uniquely determined by some energy-
orthogonal basis χK and a set of hK

(5.40) (h1, . . . , hVI; χI, . . . ,χVI) → H.

6. On possible forms of coupling between the elastic
and the limit properties

Theorem (5.10) does not assume any connection between the directional
distribution of the elastic properties described by the compliance tensor S and
the limit properties described by the limit state tensor H. Though, some coupling
may appear due to the structure of the body. Our theorem points out a form
through which this coupling may possibly reveal itself.

The principal decomposition of elastic energy (4.24) differs from the decom-
position with regard to limit properties (5.6) by its orthogonality. Let us make
clear when (5.6) is also orthogonal. We shall start from the following lemma:

Lemma. Energy-orthogonal decomposition

(6.1) S = E1 ⊕ . . .⊕ Eκ, κ ≤ 6
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is orthogonal if and only if it is stable (invariant) with respect to the compliance
tensor S.

Proof. Sufficiency. Let the energy-orthogonal decomposition be stable with re-
spect to S, i.e. S ·ω ∈ Eα for each ω ∈ Eα and for all α = 1, . . . ,κ. Then in
any Eα one can find a basis ω1, . . . ,ωq, q = dim Eα consisting of the proper
elements of S,

(6.2) S ·ωK = µKωK , K = 1, . . . , q,

where µK > 0, i.e. the form α ·S ·α, is positive definite. Let us take any α ∈ Eα

and any β ∈ Eβ, β 6= α. Since Eα⊥̇Eβ, then

(6.3) α · β = (α1ω1 + . . . + αqωq) · β =
(

α1

µ1
S ·ω1 + . . . +

αq

µq
S ·ωq

)
· β

=
α1

µ1
ωq × β + . . . +

αq

µq
ωq × β = 0,

i.e. Eα ⊥ Eβ.
Necessity. Let any two terms of energy-orthogonal decomposition be orthogo-
nal, i.e.

(6.4) Eα ⊥̇ Eβ and Eα ⊥ Eβ for all α 6= β.

Let us take arbitrary Eα. In virtue of (6.4), an orthogonal complement E ⊥α
coincides with the energy-orthogonal one E ⊥̇α . Therefore for any α ∈ Eα, taking
any τ ∈ E ⊥α we have α× τ = α · S · τ = 0, i.e. S ·α ∈ E ⊥⊥α = Eα. Therefore any
Eα is invariant with respect to S.

Definition. We shall tell that A, B ∈ T are coaxial if there exists an ortho-
normal basis

(6.5) ω1, . . . , ωVI, ωK ·ωL = δKL,

composed of the proper elements of both tensors, i.e. such, that for some sets
αI, . . . , αVI and βI, . . . , βVI:

(6.6)
A = αIωI ⊗ωI + . . . + αVIωVI ⊗ωVI,

B = βIωI ⊗ωI + . . . + βVIωVI ⊗ωVI.

Let us notice that the numbers of equal values in the array αI, . . . , αVI can be
entirely different from those of βI, . . . , βVI. Hence, decompositions of S into
direct sums of the proper subspaces of A and B can be quite different.
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Theorem. Energy-orthogonal decomposition of the stress space with regard to
the limit properties of the body (5.6) is orthogonal if and only if the limit state
tensor H and the compliance tensor S are coaxial.

Proof. Necessity. Let a decomposition (5.6) be orthogonal. This means, accord-
ing to the lemma, that it is stable with respect to the S. Therefore, there exists
such an orthonormal basis ωI, . . . ,ωVI, composed of the proper elements of
S, that any ωK belongs to one of Eα. For any χ ∈ Eα, however, Eq. (5.32) is
satisfied with some value of h. Thus, for any ωK , H ·ωK = νKωK for a certain
νK , i.e. basis ωK is composed of proper elements of the tensor H. Sufficiency.
Assume that H and S are coaxial, ωK being an orthonormal basis composed
of proper elements of S and H. Then χK = ωK satisfy Eq. (5.32). Carried out
according to relations (5.24), decomposition (5.6) is, therefore, orthogonal.

Coaxiality of the tensors S, H

S =
1
λI

ωI ⊗ωI + . . . +
1

λVI
ωVI ⊗ωVI,(6.7)

H =
1

2hI
ωI ⊗ωI + . . . +

1
2hVI

ωVI ⊗ωVI,(6.8)

reflects some coupling between the elastic and the limit properties. It does not
seem to be very rigid.

We shall present the following interpretation of the coaxiality (6.7), (6.8).
For any quadratic form σ ·A · σ, the states of local extremality, defined by the
condition

(6.9) σ ·A · σ = ext at ω ·ω = 1, under condition σ ·A · σ = 1

are the proper elements, i.e.

(6.10) A · σ = ασ.

Indeed, (6.9) is equivalent to

(6.11) ∂σF = 0 for F ≡ σ ·A · σ− α(σ · σ− 1)

which yields Eq. (6.10).
Proper elastic states S ·ω = (1/λ)ω are, therefore, the states of extremal

energy and the proper states of H, H ·ω = χω are the states of extremal
limit stress measure.

Coaxiality of S and H, therefore, means that there exists an orthonormal set
of states ωK being simultaneously the states of extremal energy and the states
of maximal limit stress intensity, see Fig. 5.
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Fig. 5. Coaxiality of the compliance tensor S and the limit state tensor H, the cross-section
of the surface of equal energy and the surface of the equal limit stress intensity with the

plane (ωL, ωK) in the stress space.

Let us consider a more restrictive modification of a coupling between the
elastic and the limit properties, where any state of extremal energy is simulta-
neously the state of extremal limit stress measure. This is a particular case of
coaxiality when

(6.12) λK = λL ⇒ hK = hL.

Taking the structural decomposition of the compliance tensor

(6.13) S =
1
λ1

P1 + . . . +
1
λ%

P%,

where λα 6= λβ for α 6= β, one has

(6.14) H =
1

2h1
P1 + . . . +

1
2h%

P%,

values of hα being not necessarily different. Just in this case, a quadratic limit
criterion takes the form (4.40).

7. Expression of any limit criterion in the E. Beltrami form

As we have already mentioned, E. Beltrami in his unjustly forgotten pa-
per [10] posed a limit criterion

(7.1) Φ(σ) ≤ h = const.



ELASTIC ENERGY DECOMPOSITION AND LIMIT CRITERIA 57

This proposal meets at once the following objection: for overwhelming majority
of circumstances, hydrostatic stress can be considered as safe. We shall, however,
not throw the baby out with the bathwater. A rational root of E. Beltrami proposal
consists in the fact that for the failure of element, one always needs to spend
some work, which, in the elastic element, should be equal to the elastic energy
stored until that instant. Shortcoming of the direct realization of this concept
in the form of (7.1) lies only in the assumption that this work does not depend
on the kind of stress state.

Let us introduce and denote as h(ω), ω ·ω = 1, the limit value of elastic
energy which the element is capable to accumulate under the load σ = cω,
c > 0. For the usual elastic body (hyperelastic), h(ω) is equal to the work,
which is necessary for failure of the element under such stress. W shall modify
the proposal of E. Beltrami as follows:

(7.2) Φ(σ) ≤ h

(
σ

(σ · σ)1/2

)
.

But such a form can assume any limit criterion for which the region of the
safe states in S has a stellar shape and includes unstressed natural state; an
overdone example is shown in Fig. 6. Indeed, any such a region is described by
inequality

(7.3) σ · σ ≤ k2

(
σ

(σ · σ)1/2

)
,

Fig. 6. An exotic example of a star-shape region of safe states, containing unstressed natural
state.
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where k is the limit function defined on the unit sphere in S . Since for linearly
elastic body one has

(7.4) Φ(σ) = (σ · σ)Φ
(

σ

(σ · σ)1/2

)
,

then (7.3) is equivalent to (7.2) with

(7.5) h(ω) = Φ(ω)k2(ω).

Since the expressed assumption regarding the shape of the region of safe
states is fulfilled for all thinkable cases (materials, processes, kinds of limit prop-
erties), representation (7.2) is not confined to any kind of particular form of limit
criterion.

For the quadratic criteria of limit states (5.2) considered above

(7.6) k2(ω) = (ω ·H ·ω)−1 = [h1Φ(ω1) + . . . + hχΦ(ωχ)]−1.

where

(7.7)
ω = ω1 + . . . + ωχ, ωα ∈ Hα,

ω1 ·ω1 = . . . = ωχ ·ωχ = 1.

The Maxwell–Huber criterion represented in E. Beltrami form looks as follows:

(7.8) Φ(σ) ≤ h + l
σ2

s · s ,

where

(7.9) h ≡ k2

2G
, l ≡ k2

K
.

Quadratic criteria are discussed from somewhat different viewpoint in [30].

8. Conclusions

Simple, but unexpected theorem (5.10) exhausts in a formal sense the prob-
lem of energy-criteria of the limit state which, for isotropic bodies, was posed
by Maxwell, Beltrami and Huber.

This problem was transferred in the Polish school of mechanics along the
relay of generations, from M.T. Huber to W. Burzyński and W. Olszak, from
W. Olszak to W. Urbanowski, an from them to J. Ostrowska. I am obliged to
her for discussions which helped me to clarify this history of the subject. I am
also grateful to N.N. Malinin for his kind discussions, during which he proved
to be an expert on Polish works.
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Appendix 1

List of equivalences, making possible to transform readily any expression of
this paper to the standard Cartesian index notation with the usual summation
rules:

σ, ε, α ↔ σij , εij , αij ,

1, s ↔ δij , sij ,

C, S, H ↔ Cijkl, Sijkl, Hijkl,

α · β ↔ αijβij ,

α× β ↔ Sijklαijβkl,

α⊗ β ↔ αijβkl,

L · α ↔ Lijklαkl,

α · L · β ↔ Lijklαijβkl,

AT = A ↔ Aijkl = Aklij ,

A ◦B ↔ AijpqBpqkl,

∂εΦ ↔ ∂Φ

∂εkl

Iijkl =
1
2
(δikδjl + δilδkj).

In the whole paper, S is the space of the symmetric Euclidean tensors of
second rank and T denotes its tensorial product

T ≡ S ⊗S .

Tensors of stiffness C, compliance S and limit state H obey conditions of internal
symmetry

Aijkl = Ajikl = Aklij .

In the whole paper, besides the present Appendix, the summation over re-
peated indices is not applied.

Appendix 2

We quote this fragment of the letter of J.C. Maxwell, [from Origins of Clerk
Maxwell’s Electric Ideas. . . [5], pp. 31–33], which had a chance to become a foun-
dation of contemporary mathematical theory of plasticity.
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129 Union Street
Aberdeen
18 Dec. 1856

Dear Thomson
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here is my present notion about plasticity of homogeneous amorphous solids.
Let αβγ be the 3 principal strains at any point PQR the principal stresses connected

with αβγ by symmetrical linear equations the same for all axes. Then the whole work
done by PQR in developing may be written

U = A(α2 + β2 + γ2) + B(βγ + γα + αβ)

where A and B are coeffts, the nature of which is foreign to our inquiry. Now we may
put

U = U1 + U2,

where U1 is due to a symmetrical compression (α1 = β1 = γ1) and U2 to distortion
without compression (α2 + β2 + γ2 = 0)

α = α1 + α2, β = β1 + β2, γ = γ1 + γ2.

It follows that U1 = 1/3(A + B)(α + β + γ)2

U2 =
2A−B

3
(
α2 + β2 + γ2 − (βγ + γα + αβ)

)
.

Now my opinion is that these two parts may be considered as independent U1 being
the work done in condensation and U2 that done in distortion. Now I would use the old
word “Resilience” to denote the work necessary to be done on a body to overcome its
elastic forces.

The cubical resilience R is a measure of the work necessary to be expended in
compression in order to increase the density permanently. This must increase rapidly
as the body is condensed, whether it be wood or lead or iron.

The resilience of rigidity R2 (which is the converse of plasticity) is the work required
to be expended in pure distortion in order to produce a permanent change of form in
the element. I have strong reasons for believing that when

α2 + β2 + γ2 − βγ − γα− αβ

reaches a certain limit = R2 then the element will begin to give way. If the body be
tough the disfigurement will go on till this function U2 (which truly represents the work
which the element would do in recovering its form) has diminished to R by an alteration
of the permanent dimensions.

Now let a b c be the very small permanent alterations due to the fact that U2 > R2

for an instant. Whenever U2 = R2 the element has as much work done to it as it can
bear. Any more work done to the element will be consumed in parmanent alterations.



ELASTIC ENERGY DECOMPOSITION AND LIMIT CRITERIA 61

Therefore if U2 = R2, and in the next instant, U be increased, dU must be lost in
some way.

My rough notion on this subject is that

a =
dU

U
α, b =

dU

U
β, c =

dU

U
γ

the new values of α β γ will be

α′ = α− a, β′ = β − b, γ′ = γ − c.

This is the first time that I have put pen to paper on this subject. I have never
seen any investigation of the question, „Given the mechanical strain in 3 directions
on an element, when will it give way?” I think this notion will bear working out into
a mathemat. theory of plasticity when I have time; to be compared with experiment
when I know the right experiments to make.

Condition of not yielding

α2 + β2 + γ2 − βγ − γα− αβ < R2.

Yours
J.C. Maxwell
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Summary

The well-known yield condition for isotropic materials, known as the M.T. Hu-
ber (and R. von Mises, H. Hencky) yield condition, has oryginally been proposed by
J.C. Maxwell (see Appendix 2) in 1856. Maxwell and Huber atttributed the following
physical sense to the criterion: the material stays elastic as long as the distortion energy
does not reach the critical value. The attempt made by W. Olszak and W. Urbanowski,
who tried to generalize the criterion to anisotropic bodies, is not convincing owing to the
fact that, in the case of anisotropic media, decomposition of the total elastic energy into
the parts connected with the change of volume and the change of shape is impossible.

The notion of “energy-ortogonal” states of stress is introduced in the paper. One
state of stress is energy-orthogonal to another state of stress if the first one does not
perform any work along the deformations produced by the other. The following theorem
is proved: each limit criterion may be represented as a certain condition imposed upon
a linear combination of elastic energies corresponding to a uniquely determined (for the
given material) pari-wise energy-orthogonal, additive components of the total state of
stress. Hence, each quadratic criterion has a definite energy interpretation. Moreover, it
is shown that each limit criterion may be written in the form of an ineguality bounding
the accumulated elastic energy. Considered are also the problems of possible forms of
coupling of elastic properties of materials with the corresponding limit criteria.
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Translator’s note

My schoolmate, friend and tutor in science Jan Rychlewski is bodily still among us,
but his heavy disease makes not possible the author’s supervision over the translation.
Keeping this in mind, the translator tried to avoid, if possible, any more important
departures from a literal translation. This was a difficult task. Russian phrasing of Jan
was extremely rich and colorful. He is in fact a Russian native speaker. Being an ethnic
Pole born in USSR, he was in early childhood separated from his family in result of
sad events of year 1938. During his mature years spent in Poland, he maintained close
connection with the Russian culture and language. Neither English nor Russian is a
translator’s native tongue (however he believes that his Russian is much better than
English). Thus, despite the translator’s efforts to make his best, sometimes the results
may occur to be odd. The whole responsibility for his lack of competence in the linguistic
matter, the translator takes on his shoulders. The only justification can be his will to
pay his debt of gratitude to the diseased friend.

Andrzej Blinowski
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