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ANALYSIS OF PRESTRESSED VISCO-ELASTIC STRUCTURES
BY THE VIRTUAL DISTORTION METHOD

JLHORNICKI-~-SZULC (WARSZAWA)

New method of modeling of ﬁséo—plastic structures is presented. A fictitious virtual
(initial) distortions (comtrolled in time in a prescribed way) introduced to elastic structure
can cause the same resultant strains and stresses as in a visco-elastic structure without
virtual distortions but under the same loading. The presented method can describe struc-
tures with nonhomogeneously distributed mechanical properties. It allows also to take into
account the states of prestressing. Therefore, it can be a helpful tool to solve problems of

optimal prestress for visco-elastic structures..

1. INTRODUCTION — THE CONCEPT OF THE VIRTUAL
DISTORTION METHOD

The aim of this paper is to discuss an application of the Virtual Distortion
Method (VDM - cf.[7]) to the analysis of prestressed, visco-elastic structures.
The VDM method is based on the concept of the virtual distortions £°
(incompatible in general) causing a self-equilibrated state of initial stresses
oR and a state of compatible initial deformations . The idea of modeling of
nonlinear structural behavior by superposing self-equilibrated stresses is not
new {cf. eg.[8]). However, introducing a new quantity of virtual distortions
causing these self-equilibrated stresses allows to formulate effective rules of
conitrol of modelling processes.

An appropriate state of fictitious virtual distortions can cause the ini-
tial states simulating the behavior of the structure with a modified (in a
prescribed way) physical or geometrical properties (cf.[4, 5]). On the other
hand, however, the virtual distortions can describe a real presiress distor-
tions causing prescribed modifications of the stress distribution. Therefore,
the most natural way to describe the problem of prestress of visco-elastic
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structures is to consider a combined virtual distortion field composed of two
- components; the first one — denoting the real prestress distortions, and the
second — denoting fictitious distortions simulating the rheological behavior
of the structure (cf. [6]).
Any state of virtual distortions £° induces in the structure a self-equilibra-
ted state of initial stresses of* satisfying the equilibrium equations:

dive® = 0 in V,

(1.1)

ofin = 0 on A,

inside the volume V of the body and on the part A, of the boundary with
defined loading conditions, respectively. On the other hand, the state of
virtual distortions causes a compatible state of deformations e? that can be
expreséed by a field of displacements u®:

R

e = grad®u” in V,

(1.2)
uft = o on A,,

where A, denotes the part of the boundary with a fixed displacements and
grad®(..) denotes the symmetric part of the gradient. The complete set of
equations describing the states caused by virtual distortions is composed of
the above equations (Egs.(1.1), (1.2)) and the following constitutive relation:

(1.3) o® = A(eR - €%),

where A denotes the tensor of elasticity. :

Superposing the initial states with deformations £ and stresses ol caused
by the external load:

- g = oF + GR,

(1.4)
the set of equations describing the structure loaded by the external loads (f
in the area V and p on the part A, of the boundary) and virtual distortions
take the following form:

divef =0 in V,
on=p on Ay,
(1.5) - £ =grad’u in V,
: u=20 on A,,

g=A(e—€% in V.
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The concept of the VDM method applied in this paper for description as
well prestress distortions {(4°) as the distortions simulating the rheological
behavior of truss structures will be applied in a separate paper to the prob-
lem of plates prestressed by a family of fibers.

2. FORMULATION OF THE PROBLEM

Following the description of visco-elastic structures proposed by SwITKA
and Hustagr [1,2], the constitutive equations for all particular cases of visco-
elastic materials can be formulated as the general rule:

(2.1) do0 + a16 + aéc’i‘ = bge + 01€ 4 bof.

Let us confine our considerations to Zener’s constitutive law (cf. Fig.1). In

2

FiG. 1.

this case the constitutive rule (2.1} takes the following simpler form:
(2.2)1 ago + ald' = b0€ + blé.

The general constitutive equation (1.5)5 can now be specified to simulate the
visco-elastic case (cf. Eq. (2.2);, due to the material properties described
by tensors A’, B, C, respectively:

(2.2)2 c=At-Bs+Cé

or, (rearranging this formula) in the following form:

(2.3)1 g = A’(S - 50):
where
(2.3)2 & = (A)YHB &~ Cé).

Applying the considered model (Fig.1) to truss structure, the above ten-
sors take the form of diagonal tensors with the following vectors describing
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the diagonal elements (where ¢ denotes the number of the corresponding
element):

Al = EiEy/(Ei + E}), B;=mn/(Ei+E), Ci=mnEi/(Ei+ Ej).

Then, the expression determining the virtual distortions (Eq. (2.3)2) takes
the form:

(24) € = (6:/ Ei — &)mi/ B3
Replacing the constitutive equation (1.5)5 by the above relation, adding the

equilibrium equation (1.5);2 and the compatibility conditions formulated
for the velocities of deformations (cf. Eqs. {1.5)3,4)

é = grad’a in V,
(2.5)
n= 0 on A,

and adding the initial conditions, the following simulation rule can be for-
mulated.

The evolution of strains and stresses for the visco-elastic structure with
the Zener’s material properties (Eq. (2.2)) is the same as for the linear
elastic structure with the virtual distortions generated in a controlled way
(it means that @ = A'(e — €°), where A' and the virtual distortions €° are
defined by Egs.(2.2)9 and (2.3)2, respectively).

Assuming that, additionally, the prestress distortions B9 can be gener-
ated in the structure (cf. Fig. 2), the definition of distortions (2.4) in the
constitutive relation (2.3) should be modified as follows:

(2.6) & = (6:/Ei - &+ B0)mi/ B + 8.
EZ
L Jin
Ui
Fia. 2.

It can be noted that, in the case of homogeneous { E{ =const, Fj =const,
7 =const) and unprestressed structure (87 = 0) loaded by constant forces,
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the problem of evolution of the visco-elastic deformations (1.5)1—4, {2.5),
(2.3), (2.6) leads to the following differential equation

(2.Th | & + i/ B = 0,(ES + E3)/E; E} = const,

with & and &; satisfying the compatibility conditions (1.5)34 and (2.5),
respectively, and a; satisfying the equilibrium conditions (1.5)12. The de-
formations are growing up while the stresses are constant in time in this
case. -

On the other hand, in the case of a homogeneous structure loaded only
by a constant prestress distortions, the problem of evolution of the prestress
effect (1.5)3,4, (2.5), (2.3), (2.6) leads to the following differential equation

272 oi+ &/ (B + B}) = (ei - 67)/E{E3/(E] + E}) = const,

where ¢; satisfies (1.5)3 4 and oy, &; are self-equilibrated states. The stresses
are decreasing while the deformations are constant in time in this case.

3. NUMERICAL ALGORITHM FOR RHEOLOGICAL ANALYSIS

Let us restrict our further discussion to the case of truss structures. The
numerical procedure based on the VDM method combined with the FEM
method requires the composition of the global stiffness matrix and calcula-
tion of its inverse matrix. The first matrix (XK, ) is the matrix corresponding
to the linear elastic properties of elements described by the elasticity vector
Ei. The second one (Kj) is the matrix corresponding to the final elastic
properties reached after infinite time (described by E! = Ej EL/(E} + Ei))
for all elements.

The response of the structure to the load increment Ap;, Ac? is due to
the elastic solution related to the stiffness matrix X;. The corresponding
increment of time rates of stresses and strains can be calculated from the
constitutive equations (2.3) and (2.4)

(3.1) mEiAé — iAG; = (Ei + EY)Aoc; — EiEiAe;,

where the proportion between Aé; and Ad; corresponds to the proportion
between the part of stress increment Ao} caused by the force loading (Ag} =
EiAc}) and the self-equilibrated part of stress increment Ao} = Ao; — Ad?
caused by prestressing. After calculation of the response of the structure to
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the load increment, the further evolution of strains and stresses is computed
according to the constitutive rule (2.3) and (2.4).

The algorithm of the method (assuming Ap; = 0, Aé? = 0) is shown in
the Table 1.

Table 1.

data input

calculate global siffness matrices K, K>
and the inverse matrices K7, K;!

| [t=0, €¢=¢¢=é:=&g=(ﬂ

dread Ape, ABY?

calculate compensative
forces Apl = Ap?(AS])

l

calculate displacement increment
Aue = K7 (Ape + Apl)

t> T 7| { STOP
N " ;
calculate increments

p;= praq + Apr Asr = AE(A“t)
— 0 ~
B = ﬂt—1|+ Afe—z Ag: = Ag(Ae, AST) (Eq.(1.5)s)
C*_‘lC“la-.te "n:;“al strain and stress corrections
distortions <f (Eq. (2.6)) € = ¢ + Ae

t = &¢ t

oy =ay + Ao
[

calculate incremements

calculate compensative
forces p} = p?(e?)

I Dée, Ads
PR
[
& = s;(ut) - £t = ¢, + AL
o = 0':(6;,52), (Eq. (1.5)5) g = oy, + A

-
€ = (& — e1—1)/ At
t'n = (Ue - 6:...1)/&"
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Let us note that the deformations caused by virtual distortions are calculated
by the algorithm making use of so-called compensative forces, defined in the
case of general formulation in the following form:

2= —divAe® iV,
(3.2)

p’ = Aen on A,.
However, in the case of a truss structure, the distinction between the bound-
ary and the body forces can be neglected; therefore, let us denote all loading
forces as p.

The algorithm for calculation of viscous evolution of the states allows to
compute (for all time steps) the stresses o; and the deformations &; at the
time step ¢ knowing the velocities of deformations £;_; and stresses &y
at the previous time step ¢ — 1. Then, the calculation of the velocities of
stresses and deformations at the time step ¢ is performed due to the following
approximative rule:

('..ft (G't —dt_l)/At,
(3.3)

& = (er—gi1)/AL.

As to the numerical cost of computation, the proposed method is compar-
able with the method proposed by SwiTka [2] and applied by OLEINICZAK
{3], where the influence of the previous time steps is taken into account not
through the virtual distortions, but through the so-called transfer matrix.

4. EXAMPLE OF TRUSS STRUCTURE

Let us illustrate our considerations by the example of simple truss struc-
ture shown in Fig. 3. The truss is loaded by the constant force P and by the
prestress distortion 3° generated in the element No. 4 at the initial moment
to- . ’

Assuming the following material properties for all members: E; = 10°
MPa, E; = 0.5 105MPa, 5 = 5- 108MPah, the cross-sectional areas for
elements A; = Ay = Az = 0.0289 cm?, A4 = A5 = 0.0201 cm? and the load
value P = 1KN, the elastic response of the structure gives the following
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facm

ol = —157.45MPa, e} = —0.0001575,

of = —157.45MPa, ef = —0.0001575,

(4.1) ol = —188.53 MPa, ¢ = —0.0001885,
f —383.28 MPa, ¢f = —0.0003833,

= 320.09MPa, &&= 0.0003201,

The numerical algorithm is general and can solve problems with non-uniform-
ly distributed material properties. However, as the main considered problem
is concentrated on prestressing, it is assumed that the material properties
are uniformly distributed, what makes the problem of discussion of influence
of the prestress effect on final strain and stresses easier.

Applying the prestress distortion in the element No.4 87 = —0.0001038
the initial, elastic response of the structure gives the following, modified
stress ¢ = oL + of and strain £ = & + e® distribution:

(4.2)

o0
o)

o3

= —176.10 MPa,
= —176.10 MPa,
169.89 MPa,

o4 = —345.37 MPa,

as

= 358.00 MPa,

g1 = —0.000176,
g4 = —0.000176,
g3 = 0.000170,

€4 = —0.000449,

g5 = 0.000358,
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The stress concentration in element No.4 (¢f = —383.28 MPa) has been
reduced to the maximal stress value in the element No.5 (o5 = & = 358.00-
MPa) as the instantaneous effect of the prestressing.

Applying the time step At = 20h, the VDM simulation algorithm leads
to the solution shown in Fig. 4. After 10 time steps the solution very close
to the elastic solution for the structure composed of elements made from
material with the Young’s modulus E' = EyE3/(E1 + E;) has been reached.
The evolution of stresses and strains in truss elements is shown in Fig. 4a
and Fig. 4b, respectively (continuous lines).

5. DIscuUssiON

The simple example discussed above shows the necessity of corrections of
prestress in real visco-elastic structures. The truss prestressed in the initial
moment to satisfy the constraints:

(5.1) lo;] £ &

usually needs corrections of this prestress after several time steps. For ex-
ample, if & = 358.00 MPa, the constraint (5.1) is violated in the second
time step of the rheological process for the above truss structure and, there-
fore, the distortion 39 has to be corrected. Generally speaking {generating
time-dependent states of distortions #° = §(t)), the problem of the optimal
prestress of visco-elastic truss structures can be formulated as the following
rule for each time step:

(5.2) min Z(Aﬂ?)2
subject to the constraint (5.1) and the set of Eqs. (1.5)3,4, (2.3), (2.5) and
(2.6).

According to this rule, the solution of the problem discussed in Sect.
4 would require the determination of the increase of the distortions ABY
(solving the condition o4 = @) in each time step greater than 1. We can
expect the evolution of the prestress distortion A9 resembling the evolution
of plastic distortions generated in the visco-elastic-plastic structure. There-
fore, analogously to the solution of the optimal prestress problem for elastic
structures (cf. [7]) we can expect an analogy between the solution of optimal .
prestress problem for visco-elastic structure and the analysis of visco-elasto-
plastic structures. The further discussion of this problem will be presented
in a separate paper.
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However, the second, and probably more interesting (from the practical
point of view) way of formulation of the optimal prestress problem is the
following. Design the time-dependent process of prestressing of the struc-
ture with stresses constrained by formula (5.1) applying as small number of
inspections (corrections of prestressing) and as long time intervals between
them as possible. This heuristic formulation can be replaced by the following
optimization routine:

(5.3) min max [o;sgn(d;)]

subject to Eq.(5.1), resolved whenever constraint (5.1) is violated in the

rheological process. The optimal prestress designed according to this for-

mulation for the truss example discussed in Sect.4 requires one inspection

after the first time step. The prestress distortion is increased to the value
9 = —0.0002936 modifying the stress distribution in such a way that other

inspections are not necessary (cf.Figs. 4a and 4b, broken lines).

Prestress due to the formulation (5.2) leads to the solution with the
smallest quantities of distortion corrections but it requires inspections in
each time step, similarly to the plastic distortions growing up in a rheological
process for visco-elasto-plastic structure.

As we have discussed above, the prestress for visco-elastic structures
requires new formulations of the problem and the VDM simulation technique
can be helpful in solving these design examples.
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