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ON MICROMECHANICAL MODELING OF DEFORMATION OF
COMPACT ROCK IN COMPRESSION

M. BASISTA (WARSZAWA)

The paper proposes a simple two-dimensional damage model for low-porosity rocks
loaded in compression. The sliding crack mechanism is selected as an underlying mi-
cromechanism of the inelastic deformation at the macroscale. A mmmerical example is
worked out showing the capability of the model for duplicating the experimentally ob-
served trends of rock deformation.

1. PRELIMINARIES

The process of cracking and failure of natural geologic solids like poly-
crystalline rocks have attracted considerable attention over the past 3—4
decades. This ever-growing interest is rooted in practical geotechnical ap-
plications involving, as a rule, mechanical properties of rocks. Consequently,
much research effort has gone into a better understanding of the microscopic
mechanisms underlying the behaviour of rocks observed in situ or in the lab-
oratory tests.

Rock is a heterogeneous, cohesive material containing numerous inhomo-
geneities such as microcracks, pores, grain boundaries, joints, second phase
inclusions and other structural defects at all scales, even in the virgin state,
i.e. prior to any application of loading. Under the action of externally
applied stresses those flaws become stress concentrators. The stresses thus
generated often lead to a further degradation of the material properties and,
eventually, to the overall failure. It is well recognized that evenr under com-
pressive loading the rock deformation proceeds by the growth, interaction
and linkage of many tensile microcracks.

The most characteristic features accompanying a highly nonlinear and
complex process of rock deformation can be briefly summarized as follows:
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Pressure dependence: lateral confinement strongly affects the ultimate
strength and determines the failure mode. At higher confining pressures
the average crack length is reduced promoting the transition from brittle to
ductile behaviour, cf. [1]. '

Positive dilatancy: brittle crack growth is necessarily a dilatant process
involving volume increase; initial volume decrease observed in compression
tests is related to the crushing of preexisting voids.

Load induced anisotropy: even though the preexisting crack population
is, in all probability, randomly distributed within the material volume, their
subsequent growth is a directional process depending, among other factors,
on the principal stress directions.

In unconfined compressive tests the microcracks grow predominantly on
the planes parallel to the direction of loading. The final fracture in the form
of splitting is commonly attributed to the unstable propagation of one or
more of the largest and most favorably oriented cracks running longitudinally
towards specimen’s ends. The failure is abrupt and inelastic strains at failure
remain relatively small. ~

In contrast, if a substantial lateral confinement is applied, the defor-
mation process is more complicated since it incorporates both britile and
ductile deformation modes. The final fracture (faulting) in a confined spec-
imen results from the cooperative action of many small cracks that grow
stably, interact and eventually form a dominant shear fault (crack band) at
some angle to the maximum load axis. The stress-strain curve in this case
visibly deviates from the straight line. The inelastic and elastic strains at
failure (apex of the o — & curve in the stress-controlled test) are typically of
the same order of magnitude.

‘Microstructural parameters, such as grain size, porosity, distribution of
cleavage planes, initial crack density, etc., are as vital to the process of rock
deformation as the action of external loading agencies.

The microcrack growth under compression may occur according to sev-
eral different mechanisms. Those mechanisms have been extensively studied
and modeled analytically as well as simulated by model experiments ({1,
2, 3, 4, 5, 6, 7], etc.). Below, the most commonly used models are briefly
characterized and commented upon with regard to their applicability in rock
mechanics.

For rocks exhibiting high porosity (some sandstones and limestones) the
micromechanism depicted in Fig. 1 is often incorporated to model the inelas-
tic and dilatant macroscopic response. The crack nucleation is attributed
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to the presence of pores. Under external compressive stresses oy and low
lateral pressure o, tensile hoop stresses are generated at the apex of a pore
{assumed to be spherical in shape). If the tensile hoop stress, further in-
creased by a notch that is always likely to occur in a real rock, exceeds the
local fracture strength of the material, the tensile microcracks initiate and
grow in the direction of oy. The formula for the stress intensity factor that
holds for both the small and large tensile crack lengths (Fig.1) is given in
[5]. A routine analysis of K reveals that for short crack lengths L the cracks
generated by the squeezed-pore mechanism behave in an unstable manner
(0K /8L > 0) and stabilize after some crack length at which (0K ;/8L)
becomes negative.
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In the case of compact, or low porosity, rocks like granite, the inelastic de-
formation is typically attributed to the sliding (or winged) crack mechanism
shown in Fig.2. This mechanism was originated by BRACE and BoMBoO-
LAKIS [2] and pursued further in a series of papers by NEMAT-NASSER and
Horu {8], KAcHANOV [3], FANELEA and KraAicinovic [9]. It involves a
rather complex succession of events starting with the frictional sliding on
the faces of preexisting (closed) flaws, followed by the out-of-plane, curvi-
linear kinking from the crack tips, and completed by the subsequent Mode-I
growth of the kinked wings in the planes roughly parallel to the direction
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of the dominant compressive stress. Depending on the sign of the confin-
ing stress, the tensile wing cracks may grow either in a stable or unstable
manner. If o < 0 (lateral compression}, the crack growth is stable, while
even a small lateral tension (o2 > 0) makes it unstable. The details of the
deformation process based on the sliding crack mechanism will be discussed
more thoroughly later in this paper.
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Other idealizations of brittle cracking micromechanisms in compressed
rocks, based on the K solutions, include the elastic mismatch model (Fig.3a),
the bending model (Fig. 3b) and the squeezed-grains model (Fig. 3c}, just to
mention only the most common ones. The elastic mismatch model assumes
that tensile stresses may be generated at the interface of two elastic mate-
rials of different elastic moduli E;, F;. These stresses occur as a result of
unequal lateral deformations of the two materials. They are often capable
of nucleation of a tensile interface microcrack which further propagates in a
less compliant material as sketched in Fig.3a, [7]. According to the bend-
ing model, the tensile stresses necessary to trigger the microcrack growth
result from the bending of a soft and elongated inclusion over two harder
ones (Fig.3b). The cracking mechanism depicted in Fig.3c consists in the
activation of a crack at the particle-matrix interface, driven by local tensile
stresses ensuing from the lateral squeezing out of the grains in a favorable
configuration [10].
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Irrespective of the micromechanism underlying the inelastic macro-de-
formation, a typical ¢ — ¢ diagram of a rock specimen in the confined com-
pression test has the form shown in Fig.4. Points A to F correspond to
the succession of different deformation phases. In the phase OA the clo-
sure of preexisting voids occurs. In the region AB a compact rock behaves
like a perfectly elastic material, thus will be modeled by a straight line.
The nonlinear phase BF is the macroscopic manifestation of the energy
dissipating processes of frictional sliding over the preexisting crack faces
(segment BC) followed by the wing crack opening (segment C'F). The peak
F indicates that a qualitative change took place in the microscale processes
underlying the macroscopic deformation. Apparently some of the interact-
ing microcracks joined each other to form a well-developed crack cluster
(or a macrocrack) whose growth begins to contribute overwhelmingly to the
overall deformation of the specimen. The final fracture in form of splitting
or faulting is then imminent depending on the amount of the lateral confine-
ment. At higher levels of lateral confinement a typical plastic behaviour is
reported [11]. This is attributed to the resistive action of the lateral pressure
which opposes the wing crack propagation while inflicting the plastic zones
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in the vicinity of the preexisting cracks tips. Also note that the nonlinear
lateral strain is substantially larger than its axial counterpart. A possible
explanation of this fact will be offered later on.
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The main objective of this note is to add to the general discussion on the
constitutive modeling of rocks with internal cracks by formulating a simple,
two-dimensional, continuum model of the compact rock deformation in com-
pression. The proposed model will make use of the widely referenced sliding
crack mechanism {Fig. 2). The present paper is also intended as an initial ef-
fort towards the formulation of a micromechanically based phenomenological
theory of brittle rock deformation. A compelling argument is thus made for
simplicity of the proposed micromechanical model emphasizing the salient -
aspects of the deformation process at the expense of unimportant details.

2. SLIDING CRACK MECHANISM

The concept of sliding crack mechanism has been analyzed in consider-
able detail in the recent past (see [17] and references contained therein}.
Despite its wide popularity among analysts, this model was criticized by
several authors on the grounds that winged cracks have rarely been iden-
tified in SEM studies of geomatetials. Instead, tensile microcracks seemed
to originate at a variety of sources. However, recent data [12], [13] sug-
gest that the focal mechanism for stress-induced acoustic emissions involves
shear motions. Winged configurations were unambiguously observed in ice
under compression {14]. Similar micromechanism exists in semi-brittle ce-
ramics [15]. It is therefore accepted, or even advocated, in this paper that
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the general concept of a frictional sliding crack constitutes at least one ma-
jor micromechanism of inelasticity under compression in the elastic-brittle
range of behaviour.

For the sake of clarity, select a representative initial microdefect as a
single, closed, rectilinear crack (slit) of the length 2¢ making an angle v =
45° with the directions of the principal stresses oy, o2, Fig.5a. The sign
convention adopted here labels compressive stresses negative. It is further
assumed that |oq] > [a3].
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The onset of inelastic deformation is typically attributed to the initiation
of frictional sliding over the faces of the preexisting cracks. During this phase
the cracks retain their length 2¢, thus no new internal surfaces are created.
The only energy dissipating mechanism is then the frictional sliding in the
shearing mode. It is also assumed that the inclined preexisting crack remains
closed during the whole deformation process. The sliding commences when
the resolved shear siress ryo acting on the crack faces exceeds the frictional
and cohesive resistance of the matrix material, i.e.

(2.1) Teff = T12 + pog — 7 > 0.
1
In (2.1) 7eq denotes an effective shear, 75 = 3 sin 2y(oy — o2) is the resolved

shear, and ¢}, = ) sin? 4403 cos? ¥ the normal stress in the local coordinate
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system; u is the coefficient of friction (positive constant), and 7, the cohesive
resistance of the material. A rigorous analysis requires a rational, experi-
mentally based estimate of the cohesive resistance 7. with the increasing slip
of the crack faces. It is reported in the literature (e.g. [4]) that r, actually
decays and eventually disappears as the slip on the preexisting crack accu-
mulates. However, in the absence of a commonly accepted relationship it
is postulated as the simplest solution that 7. remains constant throughout
the whole process of crack sliding. Note that for 0 <y < 96°, 71, > 0 and
ah < 0.

Once the inequality (2.1) is satisfied and the frictional sliding is ac-
tivated, the representative slit is in Mode-II loading for which only Kjf
stress-intensity factor is nonzero. At some point the elastic energy release
rate G(0) = K};/Eo (Ep being the Young’s modulus of the intact material)
will reach a critical value in a plane at an angle 6, to the original crack. The
critical value of the elastic energy release rate corresponds to the critical
value of the tensile hoop stress ogp in the vicinity of the crack tip. Re-
gardless of the interpretation, the original crack will at this point abruptly
sprout a curvilinear wing crack at each tip, making an angle 8, ~ 70° with
the crack direction. After a short initial curving, the kinked wings will align
themselves with the dominant compressive stress o; and become relatively
straight as depicted in Fig. 2. The exact trajectory of the wing cracks can be
determined by the maximization of ogg. In this phase of rock deformation,
the macroscopic inelastic strains result from the coupled effects of frictional
sliding and opening of the tensile wing cracks. In other words, the opening
by wedging is opposed by the material intrinsic resistance to the wing crack
propagation and by the sliding friction of the material against itself.

An exact derivation of the stress intensity factors at the tips of the curvi-
linear wing cracks involves singular integral equations not lending themselves
to rigorous analytical methods of solution. An effective numerical scheme
for the solution of these equations was developed in [8]. For a kinked crack
with straight wings (Fig. 5b), a closed-form but approximate analytical es-
timates of the stress intensity factors at the tips A and A’ was suggested in
[4] and elaborated further in [1]. Having in mind the relative insensitivity of
wings to the actual direction and even size of the original slit, it is sufficient
to consider a representative kinked crack sketched in Fig.5b. The original
slit is at an angle 45° with respect to the principal macrosiresses o1 and o3.
The slightly curved wing cracks are approximated in the sequel by straight
lines collinear with the direction of the principal compressive macrostress a;.
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The heterogeneity of the rock, i.e. inhomogeneous distribution of fracture
strength across the volume, has a strong influence on the shape of the crack.
Thus, the nicely curved wings (Fig.2), obtained from theoretical analyses
assuming, in accordance with the linear fracture mechanics, the homogene-
ity of the matrix material, are never observed in natural rocks formations or
even experimental rock specimens. Consequently, simplifying the wing crack
geometry for the modeling purposes is more than justified. In this note the
approximate expressions for K, Ky contained in [1] will be followed since
they furnish good estimates for both small and large wing lengths.

Consider a representative crack configuration depicted in Fig. 5b. Theﬁ,
according to HORIT and NEMAT-NASSER [1], the expressions for the Ky, Ky
factors at the wing tips reduce to

V2e V2¢
2.2) K= —————xT, nlL, K= ————————=r,
(2.2) Kr A ED off + 02V 1 Y N
where L* is included to render K; and K nonsingular when I — 0. The
constant L* can be computed from the condition that the stress intensity
factors (2.2) reduce to the solution by CoTTERELL and RICE [16] for the
kink injtiation. In the present case (y = 45°) it follows that
I 32
¢ 9n{sin(r/8 + sin(37 /8)]?

Numerical computations performed in [1] of the stress intensity factors for
a sliding crack of the actual geometry demonstrate a surprising accuracy of
the approximate expressions {2.2). This yields another argument in favor of
the introduction of the simplified, straight-winged crack instead of an actual
curvilinear crack, to make the present model tractable.

The stress intensity factors at the wing tips A and A’ can be computed
in terms of tractions acting on the initial erack faces (stress-driven crack),
or in terms of the opening displacement u (Fig.5b) imposed at the roots
of the wing cracks (displacement-driven crack). The formulas (2.2) were
derived along the lines of the first approach. Alternatively, the Ky factor,
for instance, computed from a given slip displacement u, takes the following
form, [17]

Go\/—2— u :
R K’ == €l
(2 4) I 2(1__”()) \/21T(L+L** Tﬁ'+0'2\/ TI'L/2:

where L** plays the same role as L* in Egs.(2.2) and was found to be
(L**/e) = (x*/32)(L*/c) = 0.065. The first term on the right-hand side of

(2.3) = (.21,
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Eq. (2.4) reflects the contribution of wedging while the second one defines the
resistive role of the lateral confining pressure. It is obvious that Eqgs. (2.2),
and (2.4) represent the same quantity whenever the sliding activation con-
dition (2.1) is satisfied. This equivalence will be used in Appendix to make
a comment on a certain statement contained in {17].

To calculate the length of the kinked extension for prescribed remote
stresses a fracture criterion is necessary. Among several fracture criteria
examined in the relevant literature the most frequently used ones are:

1. The mazimum energy release rate criterion which states that crack
branching traces a path along which the strain energy release rate & attains
a critical value Gjo

(2.5) G=Gie or K!+K}y=K},

where K¢ is the fracture toughness of the material.

2. The mazimum tensile stress criterion which states that crack kinking
Aollows the plane of maximum normal stress. This can be expressed as

(2.6) Kr= Kjc,

~since the Mode-1I loading does not produce any normal stress on the plane
of the crack.

According to the literature studies the normal stress criterion (2.6) is
most common and will be used in the present analysis.

3. CONSTITUTIVE MODEL

For the assumed microcracking mechanism and the representative crack
configuration it follows directly that the nonlinear axial strain can primarily
be attributed to the sliding on preexisting cracks. The lateral strain, how-
ever, can be traced both to the sliding and opening of the wing cracks and
is, therefore, more pronounced than the axial shortening of the specimen.
This fact is corroborated by existing experimental data for hard rocks such
as granite (e.g. [18]). The same conclusion is not always true for concrete
(cf. [19]) and may be questionable for porous rocks as well. The faces of
the sliding crack were assumed to remain in contact throughout the entire
process of deformation. Therefore, the microstructural origins of rock dila-
" tancy under compressive stresses are, in the proposed model, the result of
crack opening displacements of the wing cracks.
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A basic premise underlying the present analysis is that the inelastic be-
haviour of rocks at low lateral pressures results solely from the irreversible
process of progressive damage. Plastic effects observed in polycrystalline
rocks, when high lateral pressures are applied, are not included in the present
analysis. It is assumed that representative cracks (Fig. 5b) develop from the
preexisting cracks, and no nucleation of new material defects is allowed in
the course of deformation process. This is pertinent to the cleavage-1 cracks
according to the AsHBY’S [20] classification. Such cracks are typical of brit-
tle rocks in low confinement compression fests.

Consider a dilute distribution of N representative sliding cracks per unit
area. Interaction between the microcracks is neglected for it is shortly before,
or at the apex of the o — ¢ curve that the crack interaction begins to play
a dominant role (e.g. [21], [22]). Consequently, the overall strains will be
estimated by a simple average of the contributions of individual cracks.

It should be mentioned that there are ways to include interactions among
the neighbouring cracks. A rather rigorous way of tackling this problem is to
determine the stress intensity factors at the tips of interacting pairs of cracks,
or infinite rows of cracks, similarly as in [1]. However, the exact derivation of
the stress intensity factors for interacting cracks, even of simplified geometry,
poses an extremely complex mathematical challenge. Approximate methods,
such as the one in {23], may to some extent cure the situation, and make
the resulting equations workable in practical applications. An alternative
way is to resort to the so-called effective continua methods, such as the
self-consistent scheme {see for example {24], [25]) or the double-embedding
method [26] in which the crack interaction effects are indirectly accounted
for through the effective continuum. This, in turn, involves the solution
of the kinked crack evolution in an anisotropic elastic matrix, which is not
yet available. The present model is a qualitative study of the sliding crack
growth in monotonic compressive stress fields, and of its influence on the
brittle deformation of rocks. As such, it does not aspire to incorporate highly
complex crack interaction effects.

Assume further that strains remain small, thus the total strain tensor
may be decomposed into the strain due to initial compaction of pores e°,
elastic strain ¢, and the average damage strain ¢* which accounts for the
inelastic deformation of the preexisiing microcracks, i.e.

(3.1) =4 +e*.

The strain due to enforced initial compaction of pores is not included in
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the subsequent conmsiderations, although this can be done without major
changes, if required. For example, using the self-consistent method it is
possible to estimate the effective elastic constants of a solid with uniformly
distributed spherical voids as functions of porosity. Furthermore, knowing
the change of porosity as a function of stresses, it becomes possible to de-
termine the evolution equation for the change in the elastic parameters as
the void density parameter is decreased.

In the formulation of a damage model the effect of symmetry has to be
taken into account. In a rock specimen weakened by a random population of
many preexisting cracks, there is an equal chance for a slanted representative
crack to be oriented either at y = 45° or 7 = 135° (Fig. 6). In other words,
there are just as many cracks at an angle 45° as there are cracks at 135°. In
this case, considering pairs of cracks, the shear macrostrains vanish, and the
only non-vanishing components of the inelastic strain tensor are the axial
shortening ¢7 and the lateral expansion £3.

lm
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Inelastic strains atiributed to frictional sliding (segment BC in Fig.4).
The stress og. at the onset of relative frictional slip of the faces of a closed
rectilinear slit (Fig. 5a) is determined from the slip activation condition (2.1)
as

27, — 0’2(1 + ,LL)

p—-1
The inelastic strains associated with the crack sliding can be computed fairly
easily provided that the slip displacement u is assumed uniform (constant)

- (3.2) Gge =
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along the preexisting flaw P P'. Using the conventional divergence theorem,
the strains due to discontinuities of the displacement (in any mode) along a
surface (—& <! < a) with normal n can be written as

(3.3) Nf nu+nu di,

where NV is the crack density (number of cracks in a unit volume, or area)
and the integration extends over the entire surface (length, in this case)
of the discontinuity. Since the rectilinear crack remains closed through-
out the entire process of sliding, it follows from Eq.(3.3) that in the local
(crack-attached) coordinate system (1’,2') the macrostrains ensuing from
the frictional sliding are

(3.4) En=¢€3=0, ¢&,=¢5 = Nfu'i dl = Nue,
1]

Note that N is the property of the specimen reflecting the degree of damage
that exists prior to the considered loading. The average slip u is, as noticed
by NEMAT-NAsser and OBATA {17], nothing else but the Mode-II crack
opening displacement averaged over the crack length 2¢, i.e.

_ 2 2
(3.5) °©= j4(1 VO)V z2_I2r, Yo T CTeff-
2 Eo

In the global coordinate system (1, 2) the strain tensor due to frictional
sliding takes the form

-1 0 1~ v -1 0 .
(3.6) E?j = 6;2 [ 0 1 ] = f"‘fo—oﬂ'reﬂ'[ 0 1 ] (4,7 =1, 2),

where f = Nc? is now a parameter characterizing crack size and density.

Strains due to kinked microcracks (segment C'F in Fig.4). The relative
sliding of the preexisting crack faces is now coupled with the growth of
tension wing cracks. The stress level of, indicating the kink initiation is
defined from the fracture criterion (2.6) or (3.15) for L — 0. After simple
rearrangements it follows that

, 1 V2r L*
. = K
(3 7) T0c = 1 (IC' P

—oo(p+ 1)+ 27, .
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" In the considered phase, a rigorous determination of the crack open-
ing displacements requires non-trivial computational efforts. Therefore, an
alternative route will be followed allowing to obtain the stress-strain rela-
tionships in a simpler way.

The expression for the complementary energy density ¥ stored in the
elastic -damaged solid consists of two terms ¥° and ¢*. The first term
represents the energy of the virgin elastic material and is a sole function
of the stress tensor ¢. The second term characterizes the change in the
complementary energy due to the microcrack appearance. It depends on
the stress tensor, the microcrack number and sizes, i.e.

(3.8) Y(o, N, L) = ¢0(0') +¢*(o, N, L).

The complementary energy density is supposed to be the Gibbs’ potential,
i.e. ascalar-valued function of the stress tensor whose derivative with respect
to the stress component determines the corresponding strain component

(3.9 & =

60‘-7 L=const

For N non-interacting cracks in a unit area the complementary energy den-
sity (3.8) takes the form

J_(I_Id;

1
(3.10) = =8%u0i0m + 2N f

2

where S? is the fourth-order elastic compliance tensor of the intact material.

Inserting (2.2) into (3.10) and performing some cumbersome though an-
alytical integration, the expression for the inelastic part of the Gibbs’ po-
tential becomes

A { S 0= wrt -2 - imon (4400

@By =
1, L
—eT [(p—Dor+ (p+1)o2 — 7} 1n o +1
+%1rL2a§ +v2¢ [(,u — Doyog + (14 p)oz - 21-,:02]

(VITTF +VI)’

1
x |y UL+1L7) =50 =
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Introduce now the following normalization:
(3.12) L=Lfe, L*=L*fe, LI*=1L"/c.

Then, the inelastic strains in the considered two-dimensional case are:
Azial:

(3.13) &= te = o (EE * 1) ["1(1 — p)? = o2(1 - p?)

30’1 TFE{)

23
+201 -y + 222 1)
0
~ = T 2
e i ([ /L)
Lateral:

(B.14) &= gf: :éo {1 ( +1) [al(ﬂ2—1)+02(1+#2)]

+%(1r1;)202 + \/L(L + L*) - —-—ln (\/ +1 + \/—)

™ [%(1 — oy — 2(1 + p)og — Tc]} .

The next step consists in eliminating the crack length from the analysis
by relating it with the stresses through the fracture condition. As already
mentioned, the maximum tensile stress criterion (2.6) is used for this pur-
pose, thus

2 c
(3.15) Kr= —\/;ﬁreﬂ +oavrl = K.

This leads to a rather complicated algebraic equation
. . ., K2N\? .. .
(3.16) (L + L*)? (wLa% - -;IQ-) ~ L(L + L*)(21eq03)?

.2 rr\ 2
~(L+ I raKro) + (2%) —0,

from which it is possible to compute numerically the crack length L for cur-
rent values of o and ¢3. Combining Eq.(3.16) with Eqs.(3.13) and (3.14)
the nonliner stress-strain relations are then obtained making this microme-
chanical model complete.
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4. APPLICATION: UNIAXIAL COMPRESSION

Consider the case of unconfined axial compression (o; < 0, o3 = G). The
inelastic strains (3.6) in the phase of crack sliding reduce to

-2 —
(41) ef=- Eo”"vrf(%(u—l)—rc)[ ! ‘1’] (i, i=1,2).

The relation (3.16) between the stresses and the wing crack length in the
kinking phase takes the following explicit form '

. 2¢

2
(4.2) Lyi*= e [(,u 1)a1+r3] .

Inserting Eq.(4.2) into (3.13) and (3.14) we arrive at the closed-form stress-
-strain relations

un =L 1{ 2 [(uﬁl)al—rc]z}

rK3,L* |2
X [(1 - p)lor +2(1 - u)rc] )

(4.4) € = —¢€] = iif [ (#—1)oy ~ Tc]

4¢? 2 20\ 1 [1
X(\J (,,2K2 3t - v -r] == )-K—Ig[g(ﬂ-i)ﬂl—%]
L* 2 1 11 z
—?‘“{\/m;—r;[a(”‘”“l"“]
2¢ 1 2
+‘Jwﬁ’§ci* (51~ V1= "1})'

In order to test the capability of these equations in duplicating the be-
haviour of a real rock we seek to fit the experimental data obtained by
Z0BACK and BYERLEE [18] for the uniaxial loading of Westerly granite
cylinders. The material parameters for Westerly granite were taken from
[18, 4, 17], and are listed below:
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initial Young’s modulus - E% = 56500 MPa,

initial Poisson’s ratio v0 = 0.25,

friction coefficient (constant) it = 0.5,

fracture toughness Ko = 1.0MPa/m,

ultimate strength Ouc = 204 MPa,,

initial average length of preexisting flaw ¢ = 5.10~¢ m,

initial flaw density parameter f =02,

cohesive shear strength (constant) 7. = 10.0 MPa.
The limits separating the elastic and inelastic responses reduce to

Coe = #Qf - = 10MPa,

(4.5)

2 wL*
4 = — — - .
%9 = ) (KICV 2c t Tc) 122.7 MPa.
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The final graph of stress vs. axial and lateral strains is presented in
Fig.7. Since the initial closure of preexisting voids was not accounted for
in the present model, the computed axial ¢ — ¢ curve was shifted from the
origin 0 by the strain obiained from the intercept of the linear portion of
the experimental curve with the s-axis. The remarkable agreement with the
experimental data, although pleasing, should be taken with caution because
the experimental results are for a cylindrical specimen whereas the model
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is two-dimensional. Nevertheless, this simple model does predict several
important features of the brittle response of granite. For instance, the overall
trends are well preserved for both curves, and the lateral inelastic strain is
larger than its axial counterpart. Note that all material parameters used for
computations are realistic and are documented in the referenced literature.

It is anticipated, however, that a constitutive model of this type, based
on the instability of a single crack, will not be able to predict the cooperative
type of final failure. The cooperative failure is characteristic of a rock spec-
imen subjected to large confinements. In such a case microcrack interaction
is the dominant mechanism in formation of a crack band and must be, as
such, properly accounted for in future modeling efforts.

5. COMMENTS ON UNLOADING AND BRITTLE-TO-DUCTILE TRANSITION

Assuming that the ultimate strength of the specimen was not exceeded,
the final phase of the deformation process consists in unloading (segment
DE of the stress-strain curve in Fig.4). In the course of quasi-static un-
loading the material response is initially linearly elastic up to a point E. In
general, the axial elastic modulus in the region DE will be slightly reduced
in comparison with its initial value measured from the slope of the segment
AB. This results from the fact, that following the loading cycle to the
point D, the rock specimen becomes more compliant due to microcracking,
However, for the assumed representative kinked microcrack oriented at 45
degrees with straight vertical wings parallel to the axial compressive stress |
o1, the axial elastic modulus in unloading (DE) is assumed to be virtually
the same as for the segment AB of the stress-strain curve. During the elas-
tic unloading all the preexisting slits are locked and the wing cracks remain
open. At the point E the backsliding commences. The condition for the
initiation of backsliding can be found elsewhere (e.g. JAEGER and Cook
[27], p. 331). In the case of uniaxial compression (o1 # 0, o3 = 0), the
reverse sliding occurs if the drop in the applied remote stress Aoy exceeds
the value '

2p
. > max,
(5.1) Aoy 2 5 i

where 7™ denotes the maximum compressive stress applied to the spec-
imen in loading (point D in Fig.4). The permanent (vesidual) strain that
remains in the specimen after a complete unloading (i.e. when the externally
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applied stress is reduced to zero) is commonly attributed to the imperfect
crack closure and, to the lesser extent, to the plastic strains if the lateral
confinement was present, Determinations of the permanent strains were
considered to be beyond the scope of the initial phase of the model develop-
ment. Detailed analysis of the unloading process is the objective of current
studies and will be reported separately.

Another outstanding feature yet to be analyzed and incorporated into
this model is the brittle-to-ductile transition observed in rock deformation
processes. The brittle-to-ductile transition point is the ratio of the lateral to
axial stress beyond which failure is preceded by substantial plastic deforma-
tion. The lateral pressure supresses the unstable growth of the wing cracks
leading to the appearance of plastic zones around the tips of the preexisting
cracks PP’, Fig. 5b. Analytical description of the transition from brittle to
ductile behaviour of a rock is a complex problem involving studies of the
relative contributions of energies dissipated in brittle and ductile regimes.
Horn and NEMAT-NASSER [1] suggested that the appropriate parameter
defining this transition is the so-called ductility ratio:

Kic

TyVTe

where K¢ is the fracture toughness and Ty is the yield stress for a considered
rock. For low porosity rocks like granite application of Eq.(5.2) may be
quite useful. The ductility ratio for the Westerly granite was found to be
A = 0.05. According to the graphs in [1] this value indicates that the
transition from brittle to ductile mode of deformation proceeds without
entering the so-called transition mode, where the brittle and ductile effects
are coupled. Thus, brittle and ductile response can be considered separately
with no account for the interaction effects. This, certainly, facilitates the
analysis since, in order to incorporate the ductile response of granite, the
concept of the Dugdale crack (cf. [28]) could be used. In order to determine
the strains resulting from plastic deformation around the preexisting crack
tips it is necessary to compute the size of the plastic zone. Preliminary
computations show that this can be done in analytical form.

(5.2) A=

6. CLOSING REMARKS

The analytical model discussed in this paper presents, in essence, a feasi-
bility study needed to ascertain the effort required to formulate a microme-
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chanically-based constitutive model for characterizing rocks in in-situ con-
ditions. The ultimate objective of this research program is to improve the
constitutive laws used as input for specialized computer softwares for anal-
yses of real problems in the mechanics of rock masses. Therefore, simplicity
of formulation is deemed a vital condition for this stage of the research. It
was also mandatory from the experimental point of view to ensure clear and
unambiguous identification of all constituent parameters of the analytical
model.

Based on the work contained herein it can be concluded that the model is
rather straightforward for simple proportional loading conditions. However,
in the case of arbitrary non-proportional and/or cyclic loadings the ana-
lytical model will become increasingly complex. The unilateral constraints
imposed by a crack on the displacement field seems to be the major problem
source. Unlike the plastic slip, the crack opening displacement essentially
depends on the sign of the normal stress. Consequently, analyses consid-
ering loading paths characterized by change of normal stresses from tensile
to compressive and vice versa will, by their very nature, involve discontinu-
ous changes of material stiffnesses. The ensuing complexities in large scale
computations may reach substantial levels.

The main thrust of the work summarized in this report was directed
towards the determination of dominant mechanisms of irreversible changes
in microstructure of low-porosity rocks. For one of these mechanisms, i.e.
a kinked crack in an elastic mediam, the fundamental relations between
the kinematic variables and corresponding stresses on the microscale are
discussed in detail. Assuming that the selected mechanism captured the
main aspects of physics of the deformation process, a string of simplifying
assumptions were introduced to enhance the tractability of the proposed
model. For example, in departure from rigorous micromechanical models,
the proposed model considers only a single representative crack.

Some aspects of the overall deformation process, most notably a proper
characterization of the unloading and softening regimes, were barely men-
tioned here. In addition, the brittle-to-ductile transition must be fully and
thoroughly investigated.

The kinked crack mechanism is commonly accepted as suitable for com-
pact crystalline rocks. For more porous rocks, models emphasizing cracks
emanating form compressed spherical voids may be more adequate. Thus,
other cracking mechanisms should be given appropriate attention when con-
structing a reasonably general model of rock deformation.
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Despite all the limitations listed, the introductory research effort sum-
marized in this paper clearly indicates the capabilities of micromechanical
modeling in description of brittle rock deformation and failure.

APPENDIX

The expressions (2.2); and (2.4) represent the Mode-I stress intensity
factors computed for the winged crack of Fig.5b regarded as stress- or
displacement-driven crack, respectively. The essential difference between
these two expressions is contained in the latter term responsible for the
effect of lateral stresses o9. The K factor computed in the presence of
a concentrated gap (imposed crack opening displacement) is for the crack
length L. Having in mind that compressive stress field a; acts normally
to the wing crack axis, its contribution to Eq.(2.4) is 024/7(L/2). On the
other hand, if Ky is computed for a stress-driven crack, the crack length is
2L and the term in question shows up in (2.2); as o2v/7L. Tt is claimed
in [17] that “this difference is quite small due to the fact that the tension
cracks grow in the mazimum compressive stress direction”, Consequently,
”in order lo ensure a consistent formulation without loss of accuracy” it is
suggested in [17] that the term o9v/7L be used in both formulas.

As already mentioned in Sec. 2, the expressions (2.2); and (2.4) define
the same stress intensity factor, thus we can use this identity to single out
the sliding displacement u:

~ [ I+ I R TS
(A1) :2(:1G0v0 l: 2%—: I Teif + 02w\ L(L 4 L*) (1-— ?)} .

Following the suggestion of NEMAT-NASSER and OBATA [17], the second
term in square brackets of {A.1) would disappear meaning that the amount
of slip is entirely independent of the lateral confinement oy, and almost
independent of the wing length I. This conclusion does not seem to be
justified,
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