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OPTIMIZATION OF THIN-WALLED GIRDERS IN PROBABILISTIC
- FORMULATION

T. GIBCZYNSKA and P. BEREZA (RZESZOW)

This paper presents, in a probabilistic formulation, the optimization method of box
and I-beams subjected to bending. Dimensions of the girder, material constants and the
bending moment are random variables, The minimum area of the cross-section is assumed
as the objective function. The conditions of strength and of local and global stability
represent the constraints. The examples of calculations serve as a basis for comparative
analysis of the results obtained and the results of deterministic optimization.

1. INTRODUCTION

Analysis of a structure and its elements are usually carried out under
assumption that the load and strength of the material as well as its geomet-
rical features are deterministic quantities. However, consideration of real
structures indicates that these quantities are of a random character. The
main reason for simplifications enabling us to treat these quantities as deter-
ministic ones lies in the difficulty of determining the probability distribution
of random variables. Moreover, probabilistic methods are much more com-
plex. That is why the methods of optimization in deterministic formulation
are mainly used in publications and are more frequently applied than the
methods of probabilistic optimization.

In probabilistic optimization, the cost or, similarly to the deterministic
optimization, the volume [4] constitutes the objective function. In the case
of a structure composed of elements of constant cross-section and, more-
over, regarding mass density as a deterministic quantity, the optimization
procedure can be limited to the cross-sectional area.

Regarding the design variables, as well as the parameters connected
with material properties, as random quantities, the problem is confined to
stochastic programming [2,5].
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It consists in minimizing the objective function

(1.1) F(z)
under the constraints
(1.2) Pj(x) = Plgi(=) > Gj(ﬂ?)] <P i=1...M,

where 2 = [21,%3...%n...2x] is a vector of random variables (the first n
ones are design variables), g;(z) is the response of the structure, i.e. stress
or displacement, whereas G;(z) are its constraints. Inequality (1.2) indi-
cates that the probability of occurrence Pj(z) exceeding the permissible
limit G;j(z) must be smaller or equal to the permissible probability of de-
struction p;.

With regard to the minimum of mass, the strength optimiiation in proba-
bilistic formulation was reduced in papers [2,5] by S. JENDO and W. MARKS
to an equivalent problem of nonlinear deterministic programming., This
method consists in writing an objective function in the form

(1.3) Fle) = K'F+ Koy,

where k' and k" are treated as non-negative weights indicating the coeffi-
cients of importance, f is the mean value, and oy — standard deviation of
the variable subjected to optimization (minimization).

Constraints, however, take the following form:

(1.4) gi + ¥(pj)og; <0,

where, as in formula (1.3), g; is the mean value, oy; — standard deviation
related to the constraints, and #(p;) — the value of the standarized random
variable corresponding to probability p;.

Application of the given method for the optimization of box and I-beams
and an analysis of the results are presented in this paper,

2. FORMULATION OF THE PROBLEM

The paper is aimed at solving the problem which consists in making the
optimal choice of parameters of box and I-section beams with respect to
the minimum surface area of the cross-section (minimum girder weight).
Considerations were carried out for simply supported beams of constant
cross-sections, subjected to pure bending (Fig. 1).
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The non-deterministic character of the load, the material constants as
well as of the cross-section parameters determined were taken into consider-
ation. It was assumed that these variables are subject to normal probability
distribution, whose function of probability density is expressed by the for-
mula '

(2'1) f(y) = O'y‘\}Q? exp (—%Ly‘*;y—f)z) ]

where y — random variable, § — expected value, o2

y — variance.
In the solution of the problem, conditions of strength and those of local
and integral stability were considered. It was assumed that particular con-

ditions should be fulfilled at the probability determined for these conditions.

3. FORMULATION OF THE OBIECTIVE FUNCTION AND CONSTRAINTS

In our considerations, models of the cross-sections presented in Fig.2
(2a — box section, 2b — I section) were adopted. They may be applied to
many constructions such as cranes, diggers etc. (1]. Parameters concerning
the box-section were denoted by subscripts I, whereas parameters concern-
ing I-section — by 2; for parameters concerning both types of sections no
indices were used.

The section is subjected to the bending moment M. The section is
described by four parameters: height — h, width — b, flange thickness — g,
and web thickness — s. These dimensions, beam length I, as well as the
bending moment M, and the material constants (E — Young’s modulus and
R, - permissible stress due to bending) were treated as random variables
subjected to normal probability distribution (Gauss).

The random variables form the vector

Y = [b,g,h,s,0,R;, E, M]T

or, more generally,
Y=[",  i=12..8
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a) : b} g
2

by b,

Fic. 2.

The normal distribution of the variable 3; can be described by its mean
value §; and the standard deviation ;. For the description, the coefficient
of variability «, defined by formula

(3.1) _ oy = oyl ¥,

can be used instead of the variance.

As it was mentioned above, the problem consists in minimization of the
cross-section area. The area of the cross-section f is determined by the
formulae

h
fa

Due to the fact that quantities b, g, h, s are variables of Gauss dis-
tribution, the surface area f will also be a quantity characterized by this
distribution. Its parameters can be determined, within a good approxima-
tion, to yield

i, g1,y 81) = 2(bagn + fasy),

(3.2)
Ja(ba, g2, ha, s2) = 2b2ga + has2.

F = ),
> (3

i

(3.3)

of o, 1=1,2,3,4,

The problem of optimization can thus be defined as minimization of the
mean value of the surface area f and its standard deviation 0. The objective
function F is adopted in agreement with formula (1.3).
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Influence of coefficients k' and k” on the shape of the function of proba-
bility distribution density of the area f, obtained as a result of optimization
of the objective function F', is presented in Fig. 3.

The objective function takes the final form

K (0171 + ha3y) + K [(51571)2 (afl + 0:;1)

(3-4) + (hr51)” (o + 0-'31)]1/2 ;
Fy = K} (25252 + ha®) + K [(2b262)" (o + 0f;)

+ (Ra5)® (o + 03)] 7.

The section should fulfil the strength condition and, moreover, the condi-
tions of stability should be satisfied. They all will constitute the constraints
in the optimization problem of the objective function F. They are as fol-

B

lows:

(3.5) gk = Sgp— B <0,

(3.6) g2 = Spe— Ry <0,

(3.7) g3k = Spr— R <0,

(38) g42 - M — Mcr S 0, E= 1, 2.

Inequality (3.5) represents the condition of strength, where S, is the
maximum normal stress in the section. Inequalities (3.6) and (3.7) represent
the conditions of stability of the flange and the web, and S; and S}, denote
maximal stress in the upper flange and the web, respectively, whereas R}
and Rj, are the critical values of the stresses. Moreover, inequality (3.8)
is the condition of stability of the whole beam, where M, is the critical
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moment at which torsional deviation of the beam occurs. This phenomenon
was observed only in case of the I-beam because the box-beam, due to great
torsional rigidity, does not exhibit such deformations withir the range of the
lengths [1] applied in practice.

Due to a small difference between stresses S;, Sy and Sy, approximate
values of those stresses are

MM o,

hidyk 'w,,k

where the formulae

1
Wy = 5191h1+§81h¥,
(3.10)

1
Wy = bagaha + gszhg

will be used in further calculations.
Critical stress Ry and R), can be determined from formulae [3],

2
Ry = k“D(b) )
1
‘ 22
(3.11) Ry = k,,zp( ) ,
by
Ru = kth(h::) , k=12,
where:
E
(3.12) D_m’

and kyr and kpi denote the numerical coefficients dependent on the ratio
of the length of the plates to their width, and on the way the plate edges
are supported. Values of these coefficients ‘were adopted {3] such as for the
plates of the length-to-width ratio equal to infinity. Hence, the values of
these coefficients are kp = 4.0; kpg = 0.456; knr = ko = 24.0,

The critical moment M, can be determined on the basis of the formula [3]

T 72 EC.5 1z
E lEJ{zGJsg (1 + E—C;TS; 3

where Js2 — polar moment of inertia, J;2 — moment of inertia with respect
to axis £, C\2 — constant of deplanation.

(3.13) M, =
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These quantities are given by the relations

2 1
Js2 = Ebgg§+§hgs‘;’,

1 1
(3.14) J{z = Ebzgg-}- ﬁhzsg,
1
sz = ézgzhgbg

Taking into consideration relations (3.14), constraints (3.11) are written
in the following form:
for a box section

g = M/(bigihy + 51h}/3) - R <0,
g = M/(blg1h1 + 81h%/3) - Al(gllbl)z S 05

g3 = M/(blglhl 4 Sih%/:}) e Bl(sl/hl)2 S 07'
gn = 0

(3.15)

for a I-section

d1z = M/[(bagaha + s2h2/6) — Rye <0,
g22 = M/[(bagahs + 3203 /6) — Az(g2/b2)* < 0,

(3.16)
gs2 = M/(bagzhsy + 3203/6) — By(sa/h2)? <0,
/2
_ T '11'2 Eng
g2 = M 12 [EJw2GJs2 (1 + E GJ_gg )] S Oa
where

(3.17) Ay = kn D, By=kuD, ay = 4ky D, By = kpa D.

Since the variables occurring in the constraints are random ones, proba-
bility P, arbitrarily great (but smaller than 100%) of their fulfilment p can
be expected.

(3.18)  Plgjx <0] > pjr Pre(0-1), 7=1,2,3,4, k= 1,2

Equation (3.18) will be fulfilled if constraints (3.15) and (3.16) are pre-
sented in a new form (1.4), {2} ‘

(319) G_',vk = ik + ¢(pjk)o'gjk <40, 7=1,2,3,4, k= 1, 2.
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Due to their complex final form, let us present the constraints in the
version concerning the box section only:

= oy M2y \°
—Rg+¢(‘P11)[ﬂ - (a§1+a§1)+(ﬁ--32—7—) ol

=[]

G =

’J’2M_2 2 o 2 |22 A
+-“52—as1+6—20M+Rg1aRgl] <0,

M Ag oMg B\’
(3.20) Gu= 3 L4 $(pn) [(____191 + g ) ol

5 P

7,52 82\ ° 3 7%
N (2,4191 B M) o 4 (,GM+27M) o2

b2 82 A 82 ke

237° w Alga
g
+%‘“031 + ‘67“%4 +—taly

M B& 257
G = 5 —f:—%l- + #(pa1) [ﬁT_ (afl + 031)
— _ —\ 2 - =\ 2
28,53 M+ 29M 28,82 M
(T B e (R ) o

— - 1/2

M’ Bist

+-§§"012\,[ + —314—10%;1 <0.
1

Here

B = kb,
T = 51?"%/ 3,
§ = bk + 5:A1/3.

In constraints (3.20), as well as in objective function (3.4), coefficients
of variability &; (3.1) occur. Coefficients a;, (¢ = 1,2,3,4,5) for sec-
tional dimensions should be determined due to the possibility of ensuring
the accuracy of the given dimension. The variability coefficients of material
constants ag and a7 can be adopted on the basis of metallurgical standards,
whereas the coefficient of variability of the bending moment ap = ag is
proposed to be calculated from the formula

(3.21) apm =AM/ (2H¢1—12L—p) , |
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in which p denotes the probability that the random variable M lies within
the interval M + ;AM )

It is worth noticing that the factors multiplying the expression ¢(P, k) in
constraints (3.20) include the dispersion of nondeterministic variables.

The larger are the dispersion and the probability Pjk, the more difficult
it is to fulfil the constraints. The problem formulated is of a general char-
acter since the variables of design and pa.rameters are ireated as random
variables. If the variables of design were treated in a deterministic manner,
the objective function would also be a deterministic quantity.

4. SOLUTION OF THE PROBLEM

A solution of the problem consisting in minimization of the objective
function described by formula (3.4) at constraints (3.20) in a precise, ana-
lytical way is practically impossible due to the complicated form of the
formulae. Hence an algorithm of numerical analysis was prepared, on the
basis of which a computer program was written to determine the values of
optimal dimensions, i.e. such ones which minimize the section at required
probabilities of constraint fulfilment.

The algorithm is as follows.

1. Assume the quantities: R,, M, @, I, E, v, ¢;x and assume the
initial value of the objective function F* (greater than the anticipated optimal
value), and the required accuracy of calculations and steps gy, Sh, 35, 8p-

2. Assume the initial value of the quotient (57) (smaller than the antici-
pated optimal value).

3. Increase the quotient (bg) by step Spg.

4. Assume of the initial value k (smaller than the anticipated optimal
value).

5. Increase A by step sy,.

6. Assume the initial value 5 (smaller than the anticipated optimal value).

7. Increase § by step s;.

8. Verify the web stability condition.

9. If the condition is fulfilled, go to point 7.

10. Assume the initial value b (greater than the anticipated optimal
value).

11. Reduce b by step s,

12. Calculate the value g as (b7)/b.
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13. Verify the flange stability condition.

14. If the condition is not fulfilled, go to point 11.

15. Verify the strength condition and the integral stability.

16. If the conditions are not fulfilled, go to point 5.

17. Calculate of the value of the objective function.

18. If the value of the objective function is smaller than the ones calcu-
lated so far, go to point 3; if it is greater, return to the sectional dimensions
for which the objective function has reached the minimum.

19. If the accuracy of calculations is satisfying (in agreement thh the
assumption made), print the values h, 3, b, g, and the programme is com-
pleted.

20. Apply tenfold reduction of the steps s and go to point 3.

It should be noticed that in determining the starting point, the formulae
defining the optimal dimensions at the deterministic approach to the prob-
lem [1] are helpful. Initial values can also be adopted with a great margin,
without preliminary calculations. In such a case, applications of relatively
large steps s will quickly shift the starting point towards the optimum point.
This will not significantly increase the calculation time (one or two more cal-
culation cycles will be performed, but the number of calculation points in
the cycles will be small). .

5. ANALYSIS OF THE OBTAINED RESULTS AND CONCLUSIONS

Basing upon the described algorithm, a computer programme was pre-
pared by means of which a number of calculations were performed. They
were aimed at:

a) establishing the influence of constraint fulfilment probability on the
cross-sectional dimensions,

b) comparison of the cross-sectional area of box and I-beams,

¢) comparison of the results obtained in a deterministic and probabilistic
case.

a

The influence of the probability of satisfaction of the limitations imposed
on the cross-sectional dimensions is shown in Fig.4. For the sake of clarity
of the diagram of probability, p;i, the values j = 1,2,3,4 and & = 1,2
were assumed. This is a situation when fulfilment of the condition of local
stability and strength is equally probable. Condition for g4 (3.16) was
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ignored to introduce no disturbances into the diagram of the I-beam. In
other words, if the condition g4y is disregarded, the accurate solution will
be obtained for short beams (1 < I, I, — the length limit above which the

constraint g42 becomes active).
b,h g,s [mm] b,h g.s [aml

soo| o 800} ol h

700 a5 700 8- /

soo| 7 g:% soo| 7L 9

[O0| B 7 300| & r-_/
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aco| =& 5 og 39°] 4 ;__,ﬁ/ -

i 1 1 > 1 1 3 -
80 0 @8 20,6 100 S0 Q0 o8 89,8 100
Variation of dimenslons of the box section Yariation of dimensions of the I-section
FiG. 4.

Calculations were carried out for a beam made of a material of R, =
‘200 MPa. The moment M = 400kNm acts in the considered section. The
material constants are E = 2.1-105MPa, » = 0.3. The values of coefficients
a were adopted as follows:

af = aizl(}"?, cri, = 0.007,

o = 0.0013, oy, = 1.6-1075,

o = 0.0026, ok, = 3.24-1078,

af, = 0.0004, ok, = ok, =576-10"1

It follows from the diagrams that the increase in reliability of the con-
straint fulfilment causes an increase in cross-sectional dimensions of the
beam, whereas for probabilities approaching 100% the surface of the cross-
-section increases very fast.

b

The influence of the length of the I-beam on the cross-sectional area
is shown in Fig.5. As it was mentioned above, for short beams (1 <
I;) the condition for g4y is not active; it means that the -critical moment
M > M. For long beams the constraint g49 becomes active and influences
the cross-sectional dimensions.

The probabilities of constraint fulfilment adopted in our considerations
are: line 1 pjz = 50%, line (curve) 2- p;2 = 90%, and line (curve) $- p;3 =
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99% (§ = 1,2, 3, 4). Curves of the values of cross-sectional area of a box
beam — lines 4, 5, and § were also plotted for comparison (for pj; the same
as for a [-beam: j = 1, 2, 3). It can be seen that, within the range [ < [,
the cross-sectional area of the I-beam is smaller; within the range [ > I,
the cross-sectional area of box beams is smaller. This results from the fact
that, for the lengths considered, the condition of twisting in box-beams is not
active [1}, so it was not taken into consideration. However, it follows from the
diagrams that this condition influences the change of I-beam cross-section.
Hence, within the range 1 < 1m, application of I-beams is more advisable
due to their small weight and, consequently, lower cost of the material and
labour as compared to box-beams.

C

Carrying out optimization in a conventional manner, the nondeterminis-
tic character of variables is not considered, which results in the adoption of
ayi = 0 Eq.(3.1). In that case the objective function can be described by
formulae (3.4) for k' = 1 and £” = 0. I, in constraints (3.20), a,; = 0 is
adopted (for ¢ = 1,2,...8), then the whole expression under the root sign
will vanish. The same effect will be obtained by adopting the probabilities
of fulfilment of all constraints p; = 50% (at oy £ 0;i=1,2,...8).

Thus the dimensions calculated by the classical method would correspond
to the dimensions which would fulfil the constraints with a 50% probability.
An increase in probability can be attained by applying sufficiently high
safety coefficients in the classical method. For a clear illustration of the
problem, an example is presented in which only one coefficient of safety z > 1
increasing the moment M is considered: Its influence on the value of the
cross-sectional surface area calculated in a classical manner for a box-beam
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is shown in the lower part of the diagram (Fig.6). Upper part of the diagram
P Xl
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shows the probabilities of the fulfilment of particular constraints for beam -
dimensions calculated in this manner. Particular lines refer to the respective
conditions: line I - to the strength condition, II — to the condition of flange
stability, Il ~ to the condition of web stability. Dashed lines denote the
assumed probability p, = 99% and the corresponding cross-sectional surface
area of beam f, obiained from the probabilistic analysis for the previously
adopted input data. It follows from the diagram that the area obtained
from the classical analysis for x = x, is equal to the area obtained from
the probabilistic analysis, whereas the dimensions obtained from classical
calculations fulfil particular constraints for various probabilities, i.e.

s strength with probability p > p, - line I,

e local stability of the flange with probability p < p, — line II,

e local stability of the web with probability p < p, — line 1IL

It follows that the classical analysis and assumption of a coefficient of
safety x > 1 generally ensures an increase in the probability of constraint
fulfilment, but not to the same degree. In order to ensure the satisfaction
of all constraints at a probability greater or equal p,, x = y2 should be
assumed and then the obtained area f, will be greater by Af than the area

-



394 T. GIBCZYNSKA and P. BEREZA

Classical calculations do not always give a possibility of increasing the
probability of not violating the individual constraints to the same degree.
They do not enable us to determine the real degree of increase in the reli-
ability of constraint fulfilment with the increase in the parameter y. As a
result, the coefficient x determined in this manner is too high; consequently,
an unjustified increase in the cross-sectional area (hence also in the beam
weight) follows,

REFERENCES

1. T.GmBezYNsKA, Optimum design of thin-walled box beams [in Polish], Zesz. Nauk.
Pol. Krak., Mech., 4, 63, 1980.

2. S.JENDO and W.MARKS, Structural optimization by stochastic programming meth-
ods [in Polish], Ossolineum, Warszawa 1983.

3. S.P.TmosHENKO and J.M.GERE, Theory of elastic stability [Polish translation],
Arkady, Warszawa 1963.

4. D.FrankroL and J.RoNDAL, Le dimensionnement probabiliste optimal des struc-
tures, Het Ingenierusblad, 46, 7, 189-195, 1977.

5. S.JENDO, W.MARKS and A.M.BRANDT, Probabilistic approach to reliabilily-based
optimum structural design, Rozpr. Ini., 32, 1, 57-74, 1984,

RZESZOW UNIVERSITY OF TECHNOLOGY, RZESZOW.

Received Angust 4, 1993,






