ENGINEERING TRANSACTIONS + Engng. Trans. o 41, 3-4, 320-336, 1993
Polish Academy of Sciences » Institute of Fundamental Technological Research

SECOND-ORDER STRAINS OF LIGNOSTONE UNDER CREEP
AND CONSTITUTIVE EQUATIONS

M. CZECH (BIALYSTOK)

Specimens of the beech wood lignostone are tested for creep under simple tension along
the grain and torsion, respectively. The second-order strains (interrelated strains) 2012 and
i1 generated in result of pure tension and torsion are found to be nonlinear. To describe
that nonlinear behaviour, the nonlinear theory of visco-elasticity has heen employed and
the similarity of the creep curves is used. Correct description of the considered phenomena
is obtained as a result.

1. INTRODUCTION

The aim of the paper is the associated strains measurement [1] (ancillary
[2]), second-order [3] and an attempt to formulate the constitutive equations
under pure tension and torsion.

2. DESCRIPTION OF EXPERIMENT AND RESULTS

The associated strains in the form of the twisting angle were measured
under tensile test. Related strains I3y coinciding with the specimen axis were
measured under torsion. Specimens for the creep tests were made of the
beach wood lignostone with the density ¢ = 990kg/m? and the compression
ratio n = 1.45. The hollow cylinders had the outer diameter d, = 19.2 mm,
the inner diameter d, = 16.0mm and the measuring length 70 mm. The
specimen axis coincided with the grain direction. :

The creep tests were performed under the relative air humidity (65+2)%
and the temperature (293 4 3)K. The tensile creep tests were made for three
stress levels: 011/ Rq1 = 0.2, 0.297, 0.35, where Ry; = 195.1 MPa denotes
the tensile strength parallel to the grains. The torsional creep tests were
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performed for three stress levels: 012/ B2 = 0.4; 0.5; 0.6, where Rj; =
15.56 MPa denotes the technical shearing strength. The results of strain
measurement [, obtained by measuring the angle of twist, where l12 denotes
the average non-dilatational strains l42 and /13 in the anisotropic material
are seen in Fig. 1, while strains I;; are shown in Fig. 2.
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F1G. 1. Creep curves-2ly3: dots, circles and crosses represent experimental data
according to (3.2), (3.11)} and (3.16).
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FiG. 2. Creep curves li1: dots, circles and crosses represent experimental data aécording
to (3.18), (3.28) and (3.29).
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3. FORMULATION OF THE CONSTITUTIVE EQUATIONS
3.1. The constitutive equations for tension

In the theory of the micropolar linear elasticity (i.e. the moment theory),
the following constitutive equations are formulated for the anisotropic body

(31) Ot = Ak!mnE;n + Cklmnlﬁm, mp = Cmnklsfun + -Bklmnlfnn -

The unknown material constants and moment stresses my; create essen-
tial difficulties in the formulation of the constitutive equations (3.1). The
nonlinear anisotropic body model (complete anisotropy) was applied to con-
struct the constitutive equations in order to overcome those difficulties.

Averaged micropolar strains 2/;; under tension are presented in the form
of the sum of the immediate strains and the creep strain, i.e.

(3.2) 2012 = 2I55(0, 011) + 25,(t, 041).

In order to determine 2/%,(0, 71;) let us employ the general relationship for
nonlinear anisotropic body in the form

’ | ! ! ! e ’ - r
(33) 2112 = 2(“’12klakl + 21 25imn Tk Tmn, + a12k1mnopaklo'mnaop +.. ‘)'

Taking the first and the third term for an anisotropic body, it is obtained
(3.4) 205, =2 (3'1211011 + “’121111110_:131) .
Incremental angle of twist has, in the presence of Eq.(3.4), the form

(3.5) d(2h,) = 2 (3'1211 + 3“52111111031) do1y.

The deformation of doy; as a function of angle « can be expressed in view
of Fig. 3, by
dF rda-g-onq _ onda

(36) .da'n -5 2rrg 2w

The tensorial transformation formulae for the anisotropic body leads to

’
3.7 @31211 = Q100N Q18 5k,
3.7
! — R .
G111l = aha21alkallalmalnalaalpaijklmnop-
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Fi1G. 3. Cross-section of a specimen and the coordinate system.

Introducing factors a;; into Eqgs. (3.7) we obtain

’ -
(3.8) G917 = @1211€OS & -+ @1311 SIn @,
. , .
: @12111111 = ©12111111 €OS & + €13111111 SIN Q.

From formulae (3.5), (3.6) and (3.8) it follows that

- o 3q?
(3.9) 205(0,011) = -f(amu + a311) + —Wu’(aunuu + a1at11111)s

or introducing the notations

(e1211 + @1311)Rus

d1211 = o )
(3.10) .
. _ 3(ayenun + esnun)®yy
#12111111 = - - ’
it leads to
(3.11) 205,(0,011) = @1211011/ R1a + @iz (011/Rur)°.

The creep deformation is described by the formulae resulting from the simi-
larity of the creep curves

'
(3.12) 205,(t,011) = f12(011)jK1211("') dr.
0
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The creep kernel is assumed in the form
(3.13) Kig11(7) = 5813 by ris—lg—aian (7/lo) 121t
to=1h, b = biznicrzndion.
Substituting Egs. (3.13) into Eq. (3.12) and integrating, we get
(3.14)  28,(t,01) = fiz(ou1)bian [1 — emam(tfayion ]
The function fi3(011) is expressed by.the formula of the type
(3.15) fra{o11) = &1911011/ Ray + E1a111111(011/ Rur ).
Substituting Eq. (3.15) into Eq. (3.14) we obtain

(3.16)  2I5,(t,on) = [512110'11/R11 + E12111111(011/R11)3]

xb1a11 [1 — 6—61211(t/t0)412n] .

The constants appearing in the formulae (3.11) and (3.16) are determined
by means of the least square procedure, and they are

f1211 = 0.3179-1073, di111311 = 12.26 1073,
(3.17) bi311 = 0.436 - 10-3, ¢1211 = 0.205,
diz1n = 0.334, €211 = 0, Erg111111 = 22.22,

The description of creep by the formula (3.2), taking into account (3.11)
and (3.16) with the constants (3.17), is visualized in Fig. 1.

3.2, The constitutive equations for torsion

The second-order creep curves l;; accompanying torsion are described
similarly as in the formula (3.2). The global strain !i; is the sum of the
immediate strain and the creep sirain

(3.18) (i, o12) = 1§1(0, 012) + 11 (2, 012).

In order to determine /31(0, 712) the general relationship for a nonlinear
anisotropic body is employed in the form

I I r
(3-19) l11 = 61110k + €11k Tk Omn + @31 kimnopTklOmnTop + + + + +
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Taking the first and the third term, it can be written
. 3
(3.20) i1 = a112012 + Gin12im2012¢

On the other hand, the incremental elongation has, in the presence of
Eq.(3.20), the form

(3-21) dln(O, o12) = (“;112 + 3“31121212032) day,.

In order to determine doy5 as a function of angle o (Fig. 3), it can be written

dM.r oprda-g-r-r _ oppda
Jo 2wrgr? T

(3.22) d0'12 -

From (3.21) and (3.22), as a result of integration, we obtain
wf2
' T12
(3.23) 11(0,012) = 4 f (‘1'1112(“) + 3“’11121212(“)"%2) 3, da
0
The tensorial transformation formulas for the anisotropic body lead to
0'1112 = 010051021045k,
(3.24)
C11121212 = 101 Q1R AU O m 020 X100 2p8ijklmnop-

Substituting factors oy into Eqs. (3.24), we get

’ .
@112 = G1112C08Q + ayy3sina,
! 3 2 .
(3'25) @i1121212 = @11121212 €05~ & + 3G11121213€08” axSih &

. 2 + 3
+3ai11121313 510" v cos o 4 @y1131313 807 @

From Eqs. (3.23) and (3.25) we obtain
. 2
(3.26) 111(0,042) = ;(31112 + a1113)012
6 (2 2 .
+; 5011121212 + ai1121213 + @1nnzz + 5“11131313 o125

or introducing the notation

2(¢1112 + @1113) Raz
7‘. 3

d1112 =
(3.27)

- 6 2 2 _
d11121212 = —%3 | z@1121212 + 11121213 + a3z + SG11zms ),
TR, \3 3
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we get Eq. (3.28).
(3.28) 11100, 012) = @1112012/ Raz + 811121212( 012/ By2)2.

An analogous approach leads to §,(t, 012); using Eq.(3.16) we have

(3.29) I(t,ou2) = [811120’11/1311 + 611121212(011/R11) ]

Xb1112 [1 —e clllz(t/to)dmz]

The constants appearing in the formulae (3. 28) and (3.29) are determined
by means of the least square procedure.

d1112 = 0.124. 1073, d11121212 = 0,
(3.30)  byyy2 = 0.201-1073, ez = 0.126, di11z = 0.210,
61112 = 1.028, 511121212 = 1.612.

The creep described by the formula (3.18), taking into account Eqs. (3.28)
and (3.29) with the constants (3.30) is illustrated by the Fig.2.

4. STATISTICAL VERIFICATION OF THE MATHEMATICAL MODELS

To assess the accuracy of description, the mean absolate and relative
square errors are calculated from the formulae

N 1/2
= { D (wi - yt)2} /N} )
Li=1

_ 1/2
2 ={ Z((y- e} ¥i) ]/N} )

where y; — measured deformation, yt — theoretical deformation, N — number
of measurements. The results of calculations are set in Table 1. In the table
are also shown some auxiliary values, necessary to compute the confidence
intervals of the specific observations.

The following formulae were applied to calculate

the absolute error

n om 1/2
(4.2) Ay =ta, {Z 3 (w5 — ﬁs)/V} )

i=1j7=1

(@)
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the relative error
1/2

1o N\
(4.3) AY =taw {22 (Wi = 8/B1
i=1 j=1
where a ~ 0.05, ¥ = nm — 1 — the number of degrees of freedom, » — number
of stress levels, m — number of instants at which the strains were measured.

Table 1. Results of statistical calculations.

Statistical | Kind of sirain
gquantities 2l l11
ri [%o] | 0.017 | 0.003
r2 | 0.002 | 0.036
Ay [%o] | 0.087 | 0.011
AY 0.145 | 0.143

Prior to these calculations, the Cochran test was used to check the vari-
ance homogeneity. '

5. CONCLUSIONS

The second-order creep sirains under tension 21;, and torsion l;4 are
found to be nonlinear. The creep curves are similar., Their correct descrip-
tion can be obtained by taking into account the nonlinear anisotropic body
model (complete anisotropy). This is confirmed by Fig.1 and Table 1 in
which r; < A; and r; < AY - for 2042, as well as Fig.2 and Table 1, where
r < Aq and ry < A;’U for 111.
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