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DESCRIPTION OF CREEP OF THE LIGNOSTONE
IN BIAXIAL STRESS STATES

M. CZECH (BIALYSTOK)

The results of creep investigations of the beech-wood lignostone specimens cut along
the grains are presented. In the two-dimensional stress state the shearing siress is kept
constant while the tensile stress varies. The description of creep of the lignostone as a
nonlinear and orthotropic material is proposed by means of the equations

'
€i; (1) = ort faiin + f kijr(r)dr | + ortomn | Sijkimn + ] kijrima(t)dr] ... .

o L]

This description has been found to be s.a.tisfa.ctory.

1. INTRODUCTION

The aim of the paper is to formulate a description of creep of a nonlinear
orthotropic body in the state of plane stress in which 013 = const and a3
varies.

2. EXPERIMENT AND ITS RESULTS

2.1. Results ‘of creep tests on tension and torsion

Specimens to test the creep were made of beech-wood lignostone with
the density ¢ = 990kg/m® and the compression ratio 1.45. They were
prepared in the Plywood Industries Factory in Bialystok. The manufac-
turing conditions are given in [1]. The hollow cylinders had the outer
diameter dp = 19.2mm, the inner diameter d, = 16.0mm and the mea-
suring length lp = 70mm. The specimen axis coincided with the grain
directions. The creep tests were made under the relative air humidity
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(65 £ 2.5)% and the temperature (293 + 3) K, applying the shearing stress
o12 = 0.6Ryy (R12 = 15.56 MPa is a technical shearing strength) and the
shearing-to-tensile stress ratios A = a12/011 = 00; 1; 0.25; 0.167.

The results of measurements of the shearing strains 2£;4, obtained via
the angle of twist, where &7 is the average value of the non-dilatational
strains €12 and €13 in an orthotropic material, are shown in Fig. 1 while the
elongations £y, are shown in Fig.2.

25, %]

FiG. 1. Creep curves for 2&15:
marked points represent the
test results acc. to Eq. (3.7).

F1a. 2. Creep curves for £11:
marked points represent the
0 25 40 0 a  tIh test results acc. to Eq.(3.17).
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2.2. Description of creep in simple stress states (torsion, tension)

1. TorsioN

The non-dilational strains 2£y, were measured during torsion of a thin-
walled tubular specimen. Suitable results are reported in [2], where the
description of these strains is as follows:

(2.1)  2&42(t,012) = A1g12012/Raz + Arnnaia(oia/ Ryg)?
+. [E1212012/R12 + E12121212(012/R12)3] Bia12 [1 - 6"0’2”““")131212] .

for
Ajgr2 = 13.18-.1078, Ay2121912 = 0, Bigiz = 11.31. 1072,
Ci212 = 0.0806,  Dig1p =0.340,  Eygyy = 0.771,
Ei121m3 = 2.557, to = 1h.
2. TENsION

The thin-walled tube was stretched to measure the strains £14(¢). The
results are also given in [2], where the description of these strains is

(2.2) e11(2,011) = Anmon /Ry + Annnn(on/Rai)?
+ [E1111011/R11 + E11111111(0‘11/R11)3] Biun [1 - 6“0““(”':“)1)“11] )

with
Ajpy = 11.19-1073, Artnnn = 0, Buin = 3.612- 1072,

01111 = 0.118, Dilll = 0.283, E1111 = 1.531, E11111111 = 10.602.

3. DESCRIPTION OF GLOBAL CREEP
3.1. Description of creep strain 2&.,

Describing the short-term deformations of anisotropic materials a non-
linear expression is often used in the form

(3.1) £ij = GiKOK T CijktmnOkIOmn + CijkimnopOkTmnTop + + .« -
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Similar form is used for the creep under ¢ = const, i.e.
t
(3.2)  &ii(t) = o (ﬂijkl + / kijxi(T) dr )
: i .
. t
+ 0T n -(ai'jkzmn + f kiiktmn(T )dT)
0

1
+0kTmnOop (aijklmnop + f kijktmnop(T) d‘r) +....
0

For an orthotropic material subjected to tension and torsion the first
three terms can be taken and a notation introduced in [2] leads to

i
(3.3)  2&12(t) = (012/ R12) (4‘11212 + jK1212(T) dT)
0 .
¢
+(o12/ R12)® (A12121212 + / Kiyo121212(T) d”')
J .

¢
+(o11012/ B}3) (1‘1121112 + / 1(121112(T)d7)

0

i
+(03,012/ RY,) (/1121111124- /K12111112(T) dr) .
0

Using notation as in [3], we obtain
(3.4) 26_'12(15) = Gl(t)O'm + Gg(t)(f:l}g + G3(t)0’110‘12 + G4(t)0’%10'12.
On comparing the formulae (3.4) and (2.1}, we get

Gl(t) = A1212/R12 + (E1212/R12)B1212 [1 - e—C’lgu(t/to)Dmlz] :
(3.5) . \ P
G2(t) = A12121212/R?2 + (E12121212/R12)B1212 [1 - 1212(t/%0) ] .

From the analysis of isochronous curves and the strain difference 2&,(1)—
G012 — Gpod, = 28 it follows that in the 9813 — o1y coordinate system
these curves become straight lines (cbefﬁcier{ts of linear correlation for these
straight lines are in the range 0.9700 — 9992).
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Thus in the formula (3.1) we have

(3.6) _ Gy(t) = 0.
On account of Eq.(3.6) the formula (3.4) takes the form
(3.7) 26_12(t) = G1(t)0’12 + Gg(t)ﬁ?z + G3(t)0’110'12.

Assuming the function G3() in the form similar to Gy(t) (under the
assumption that the time function representing the creep kernel is the same)
we can write

(3.8) Ga(?) = Ayzian + Braian [1 — e~ G (t/ t°)Dmm] ;
where t9 = 1h. The values of constants determined w_ith the use of the least
square procedure, amount to

4‘1121211 = 1.725- 10_3, Byg1211 = 6.43 . 10-3,
0121211 - 0105, D121211 = 0.242,

The description of creep with the use of Eq. (3.7) and the help of Eq.(2.1),
(3.5), (3.8), (3.9) is visualized in Fig. 1.

(3.9)

8.2. Description of creep strain g11

The component €11 of the global creep strain tensor for an orthotropic
material under tension and torsion can be described by taking the first three
terms and introducing the notation as in [2], namely

t
(3.10)  e1n1(t) = (o11/Ru1) (Ann +/K1111(T) dT)
0
+(o11/R11)? (A11111i'44 annn(T)dT)
¢
+(a11/ R )® (1‘111111111 +fK11111111(T) dT)
0
t
t(oned)/ R, (Anmzu +ff(11111212(7) dT)
0

t
+(o12/ R12)? (A111212+jK111212(T) dr) .
i .
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With suitable notation for the functions of time, the formula (3.10) becomes
(3.11)  en(r) = Fi(t)on + Fa(t)oly + Fa(t)oiy + Fa(t)oizon + Fs(t)ot,.
On comparing Eqs.{3.11) and (2.2) we obtain |

(3.12) F(t)=0.

Let us analyse an influence of the stress o1 on the strain £11(¢). The results
for simple tension under a1;/R11 = 0.287 and £44(t) and under the same
tensile stress with the addition of the statical stress o153 = 0.6 Ry, are de-
picted in Fig.3. A slight effect increasing the influence of shearing stresses

42
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F1i. 3. Creep curves for 13: I — simple tension at 13 = 0.287R14, 2- tension and
© torsion for X = ¢1z2/o11 = 0.167 and o1z = 0.6 R1a.

on the strains £, can be seen. A statistical hypothesis y; = po on the
equality of average strains is postulated (u; does not allow for an additional
stress 012). To evaluate the difference between two averages the following
formula is used:

(3.13) ' t= | — BV [\/s? + 53,

where Z,, Z3 ~ two different averages, n — number of specimens from which
F, and Z; are calculated, sy, s; — standard deviations. Before using the
test ¢ from the formula (3.13), equality of variances was verified by means
of Hartley’s test. The value of ¢ test, from formula (3.13), was contained
for particular creep times in the interval 0.077 — 0.505. The value {4 for
o = 0.05 was 2.776. Thus the equality of the averages is confirmed. That is
why the influence of pure torsion on the longitudinal strains can be neglected.
It follows that

(3.14) | Fy(t) = 0.
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From the formulae (3.11), (3.12), (3.14) we have

(3.15) £ — Floy — Faod, = Fyoq202,.

Since the left-hand side of Eq. (3.15) is close to zero, we assume that
(3.16) Fyt) = 0. |

Finally, the formula (3.11) takes the form

(3.17) 7 en(t) = Fi(tyon + Fy(t)o?,

where the functions Fi(t) and F3(t) are defined according to Eq.(2.2). The
description is visualized in Fig. 2.

4. STATISTICAL ANALYSIS OF TEST RESULTS

To verify the correctness of the description let us calculate the mean
absolute and relative square errors: ‘

"N 1/2
1= { E(?}i - yt)2] /N} ’

=]

(4.1)

N 1/2
Ty = { Do —yt)zly?] /N} ,

Li=1

where y; — measured strains, y; — theoretical strains, N — number of mea-
surements, The results of calculations are given in Table 1. Certain aux-
iliary values are also shown necessary to estimate the confidence intervals,
referring to the mean value and to particular observations. The necessary
formulae are: '

for the absclute error

n m ) /2
(4.2) A1 =lay { [Z > (i — 19'1')2:! / f-’] ’
i=1 j=1 .
for the relative error .

. ‘ ' | n m 1/2
(4.3) —tav{iz ((wi5 — 9:)/ 9] J ;

i=1 j=1
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where a = 0.05, ¥ = nm -~ n — number of the degrees of freedom, n - number
of stress levels, m — number of instants at which the strain reading were
taken. The values calculated from the formulae (4.2), (4.3) corresponds to
single observations. To obtain the mean value they must be divided by /p, ‘
where p is the number of repeals for a given time (number of specimens for
a given stress state). Before these values were calculated, the Cochran test
was performed to check the variance homogeneity.

Table 1. Results of calculations of 1, r2, Az, AY.

Statistical Type of strain

magnitude :
& 2e12 £5

r1 [Y%o] | 0.388 | 0.085
rs [%] | 299 4.53
Ar [%o] | 0193 | 0175
AY [%] | 616 | 1174

B, CONCLUSIONS

1. The global creep strain 2&1(t) corresponding to tension and torsion
is correctly described by the nonlinear theory of viscoelasticity (Fig.1 and
Table 1, where r < AY and ry > Ay). ‘

2. The global creep strain £q3(t) correspondmg to tension and torsion is
also properly described by the nonlinear theory of viscoelasticity (Fig.2 and
Table 1, where r, < AY and 1 < Ay).
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