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CREEP INVESTIGATIONS OF THE LIGNOSTONE
UNDER TENSION AND TORSION

M. CZECH (BIALYSTOK)

Specimens of the beech-wood lignostone are tested for creep under simple tension
along the grains and torsion at room temperature. The creep strains 2&12(t) generated by
pure torsion in the shearing stress range 012 = (0.4 ~ 0.6) K12 (where Ry2 is the shearing
strength) are found to be nonlinear. Similarly, the creep strains €11(t) generated by simple
tension in the normal stress range 13 = (0.2 +0.35).R11 where R1; is the tensile strength,
are also nonlinear. To describe those nonlinear behaviour the nonlinear viscoelasticity
theory is employed and the similarity of the creep curves is used. Correct description of
the considered phenomena is obtained.

1. INTRODUCTION

Solutions of the initial-boundary value problems require the knowledge of
physico-mechanical properties of the materials involved, both short-term and
long-term ones [2]. Systematic investigations in the field of wood rheology
have been conducted over a number of decades [3-5]. These tests dealt with
the creep properties in a uniaxial stress state and only the strains along the
applied forces were measured.

This paper is devoted to the tests and the description of creep under pure
tension and torsion.

2. DESCRIPTION OF EXPERIMENTS

The creep was examined on the 5 KN creep-testing machine manufac-
tured by IMP and suitably adapted to investigate tension and torsion. The
creep strains £17 under tension were measured in the direction of the applied
force by means of induction strain gauges with the accuracy of 0.0001 mm.
The creep strains 2815 under torsion were obtained by measuring the angle
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of twist, where &, denotes an average of shearing strains £15 and £;3 in the
orthotropic material. The angle of twist was measured with by dial gauges
with 0.01 mm accuracy. Suitable pattern of measurements is shown in Fig. 1.

F1G. 1. Measurement of the angle of twist: f — dial gauge, 2 - hollow cylindrical
specimen.

Specimens were made of the beech-wood lignostone with the density p =
990 kg/m3 and the compression ratio n = 1.45. They were prepared in
the Plywood Industries Factory in Bialystok.The technological conditions
of the production of samples are given in [1]. The shape and dimensions of
the specimens are presented in Fig.2.
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F1G. 2. Test specimen.

Prior to testing the specimens were seasoned in-the Feutron 3001 — 10
climatic chamber with the air humidity (65 % 2.5)% and the temperature of
(293 £ 3) K. The creep tests were performed under identical climatic condi-
tions.

The tensile creep tests were made for three stress levels: ay1/R1; =
-0.2; 0.287; 0.35, where Ry1 = 195.1 MPa denotes the tensile strength along
the grains. The torsional creep tests were also made for three stress levels:
o2/ R12 = 0.4; 0.5; 0.6, where Ry, = 15.56 MPa denotes the technical
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shearing strength. The loading rate amounted to 2 MPa/s. The first reading
was made 10s later than the load was applied.

3. TESTS RESULTS AND THEIR DESCRIPTION

The elongations £1; are shown in Fig.3 while the shearing strains 2&;,
accompanying torsion can be seen in Fig. 4.
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F1c. 3. Creep curves £11: dots, circles and triangles represent experimental data acc. to
Fqs. (3.1), (3.2), (3.7).
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FiG. 4. Creep curves 2£12: dots, circles and triangles represent experimental data acc.
to Eqgs. (3.9}, (3.18), (3.23).
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8.1. Description of the lension test-slrains €11

Examining the ratios £5y(011)/€54(o11 = 0.35Ry;) for various oy it has
been statistically proved that these ratios are constant for different times
and depend on the stress level in a nonlinear manner. However, the creep
curves €$; are similar due to the constancy of the above ratios. Thus the
creep strains can be represented by a product of a stress function fi1(o11)
and the time function g;3(t). The global strain &1 will be a sum of the
short-term strain and the creep strain

(3.1) -~ enltyon) = €10, 01} + €5, (8, 011).
The short-term strains are described by the formula

(3.2)  €11(0,011) = €11k10k + G11kimnopTkIFmnTop

= @1111011 + G1111111100 = Aunon /R + A;lllll]l(alllRll)s .
The creep strains can be expressed by
(3.3) 51t 011) = fulon)gn(?) .
The function fi3(o1;) is assumed to have the form
(3.4) f11-(0'11) = Exnou/Ru + Bunnn(on/Rn),

and the function g441(%) to be

¢
(375) gu(t) = /Kuu(T) dr,

where K1111(7) denotes a creep kernel having the form

' -DunTg{ —1,-¢ o) P1111
1(1111(1") e Bnn‘rD"” e 1111 (7 [ta) ,

(36) i
Buin = BuunCunlun,  to=1h.
Substituting Eqs.(3.6) into Eq.(3.5), integrating and inserting Eqs.(3.4)
and (3.5) into Eq.(3.3), we obtain '
(3.7 enalton) = [EunUn/Ru + 511111111(511/1311)3]
| x {13'1111 [1 — e~ Cunt/t)P1u ] } .
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The function in brackets is called the Kohlrausch function and can be also
obtained from the modified standard model {3]. The constants in the formu-
lae (3.2) and (3.7) are determined by the least square procedure and have

the values _
(3.8) Ay = 11.19-107%,  Apyinn =0, By = 3.612.1073,
' C'1111 = 0.118, Duu = 0.283, -E1111 = 1.531.

The description of creep by the formula (3.1) with the constants (3.8) is
visualized in Fig.3. '

3.2. Description of the torsion lest-strains 289

The strains 2£y2 accompanying torsion are described similarly to the
formula (3.1). The global strain 2z is a sum of the short-term strain and
the creep strain,

(3.9) 26_‘12(t, 0'12) = 251.2(0, (_712) + 25&2@, 0’12).

In order to determine 2&32(0, 0'12) let us employ the general relationship
for a nonlinear anisotropic body in the form

= ! ' t ' ! ! ! !
(3.10)  282=2 (ﬂm:au t @12kimn Tk Tmn + 012kimnop Tk Tinn Oop + -« ) -

Taking the first and the third term for an orthotropic material we obtain

(3.11) 2812 = 40312075 + 16a]51212120%7 -

Incremental angle of twist has, in the presence of Eq.(3.11), the form
- 2 '
(3.12) d(2¢12) = [4"5212(‘1) + 48a)3121212() 01, ] doys -

The determination of doj, as a function of & can be, in view of Fig.5, -

expressed by

dM - _ aglg-rda-g-r-r _ ol da
Jo 2rgrd 2r

(3.13) dol, =
From Eqgs.(3.12), (3.13) it follows that

wf2

~ o da
(3.14) 26 =4 f [4“'1212(0‘) + 481 51215(@)012” 1221T
o
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F1G. 5. Cross-section of a specimen and the coordinate axes.

The tensorial transformation formulae for the orthotropic body lead to
[
Q1919 = 0102035021 {5k,
!
Q12121212 = {02 Q1O X1 02 C1602p8ijkimnop
i 2
(3.15) al915 = @1212 €08% & + @y313sin” @,
! 4 2 .2
@12121212 = G12121212€08° @ + 6@12121313C08" @ sin” a

' + aimnzizsint o
Substituting Eq.(3.15) into Eq.(3.14), we get
(3.16) 2815]0, 12] = 2(@1212 + ¢1z:13)012 + 18(e12121212 + 2612121313

+013131313)053-

Introducing the notation
(3.17) 2(a1212 + a;am)R;z = -%1212,
18(@12121212 + 2@12121313 + 11131’31313)312 = A121212,
we obtain an alternative form .
(3.18) 2812(0, 012) = A1212012/ B2 + Arz1m1212(012/ R12)? -

The creep strain is described by the formula resulting from the similarity
of the creep curves:

t
(3.19) 2E4,(2, 012) = f12(012)jK1212(T) dr.
i
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The creep kernel Ky212(7) is assumed in the form

~Dine D . R, ta)}P1212
Kina(7) = {59 Brgpar P~ lemCrnlr/lo) o |

(3.20) a -
Bigiz = Big12CinaDraio, i = 1h.

Substituting Eqgs. (3.20) into Eq.(3.19) and integrating, we arrive at
(3.21) 2e53(t, 012) = fi2(012) Binz [1 - e"C”“(t/“’)Dlm] .
The function fi2(012) is éxpressed by the formula of the type

(.3-22) fi2(012) = Bra13012/ Raz + Erizizia(onz/ Bio)°.
Remembering Eq. (3.22), from Eq. {3.21) we obtain

(3.23)  285,(t012) = [E‘mlzaw/ Riz + Exninna(ora/ Ru)a]
X Bi212 [1 - g—Clzlz{t/to}Dmg] .

The constants appearing in the formulae (3.18) and (3.23) are determined
by means of the least square procedure and are:

Aip1p = 13.18: 1073, Ayzimarz = 0, Biyz = 11.31- 1073,
(3.24) Cizz = 0.0806, Diziz = 0340, Eygp = 0.771,
Erpiziza = 2.557.

The description of the creep by the formula (3.9) taking into account
Egs. (3.18), (3.23) and the constants (3.24) is visualized in Fig.4.

4. STATISTICAL VERIFICATION OF THE MATHEMATICAL MODELS

To assess the exactness of the description, mean absolute and relative
square errors are calculated from the formulae

N 1/2 N 1/2
(41) n= {[E(y.' - y:)Q]/N} , T2= {[E((y: - y:)/y;)z]/N} ,
i=1 i=1 )
where y; — measured strain, y; — theoretical strain, N — number of measure-
ments. The results of calculations are given in Table 1 where some auxiliary
values are also shown necessary to calculate the confidence intervals of the

mean value and specific observations.
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Table 1. Results of calculations of r1s T2, A, AY.

statistical type of strain
magnitude

€11 2512

r1 [%] | 0.061 | 0.212
2 [%] 2,27 2,77
Ay {[%eo) | 0.497 | 142
AY (%] | 1462 | 16.8

The following formulae were used:

for the absolute error

, - .o 1/2
(4.2) C Br=tay { [Z > v - 37;)2] /V} ,

1=1 3=1

for the relative error

12
(4.3) - ta v { Z Z [(yl.'.' yl)/yl } | ’

=1 j=1

where a = 0.05, ¥ = nm —n — number of the degrees of freedom, n — number
of stress levels, m — number of instants at which the strains were measured.
The values calculated according to the formulae (4.2) and (4.3) correspond
to single observations. To obtain mean values they must be divided by /7,
‘where p is a number of repeats for a given time instant (the number of
specimens for a given stress level). Before these values were calculated, the
Cochran test was used to check the variance homogeneity.

5. CONCLUSIONS

The creep strains €;; under torsion and the creep strains 2f1; under
torsion are found to be nonlinear with respect to time. The creep curves
are similar. Their correct description can be obtained by representing the
short-term strains in the form of a third-degree polynomial in stresses and
the creep strains as a product of that polynomial and a time function of the
Kohlrausch type. This is confirmed by ¥ig.3 and Table 1 in which rp < AY
and ry < A, for &£y, and by Fig.4 and Table 1 in which r; < AY and
T < A, for 2815,
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