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ANALYSIS OF COMPLEX NONLINEAR DYNAMIC SYSTEMS
BY MEANS OF PARTTAL MODELS.
CONVERGENCE OF ITERATIVE PROCEDURES

TL. STANCZYK (KIELCE)

Problems of ierative convergence in the analysis of complex dyramic systems with
the use of partial models are dealt with. Nonlinear systems are considered. An example of
some nonlinear system and the suitable iteration process are presented. The time analysis
is also dealt with. On the assumption that the solutions of the system can by expanded
in power series with respect to a small parameter, the general condition of convergence is
formulated. Limitations for the successive derivatives of nonlinear stiffness characteristics
are determined as a consequence of the convergence conditions of the procedures.

1. INTRODUCTION

Growing demand to lower the level of noise, vibrations and to increase
the durability of the machinery make the researchers create and analyze
some more and more complex dynamic models of these machines. Current
computational techniques, used both to calculate and to measure, make it
possible to construct models of several scores or even hundreds of degrees
of freedom and take into account various nonlinearities of the system under
consideration. However, the use of such complicated models creates cer-
tain difficulties. Identification of a large number of parameters entering the
models is both cumbersome and expensive. Interpretation of the results ob-
tained is not an easy task. The calculation procedure may appear difficult
and probability increases of making "unfriendly” errors in the computational
procedures that are very difficult to discover. Those difficulties vanish when
some simpler models are employed.

In the paper {2] a concept of an analysis of complex dynamic systems
with the use of partial models was put forward. It makes it possible to
preserve a high degree of complexity of vibration phenomena and, at the
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same time, to use relatively simple computational means. The main idea
behind this method is as follows: *

e a full model {(a complex one) is split up into partial (simpler) models
by using an analysis of coupling of partial models,

e analysis of the full model by means of partial ones their couplings are
considered to be weak, and thus they can be treated as perturbations of
successive iterations, _

In general, two types of partial models can be constructed:

o describing a certain group of vibrations caused by various structural
parts of a given machine,

e describing vibrations of particular parts.

Proper choice of partial models depends on the type of particular situa-
tion and the aim of analysis [3].

A characteristic feature of the proposed method is its iterative manner of
calculations. Thus the convergence of computational procedures constitutes,
from the applicability point of view, the main problem to be dealt with. Such
analysis with respect to linear system was made in [4] where the conditions
for, and domains of, convergence of iterative procedures were determined,
both for conservative and dissipative systems.

In this paper a problem of convergence in the case of nonlinear systems
is considered.

2. FORMULATION OF THE PROBLEM

To focus our attention on the analysis of the influence of nonlinearity
on the convergence of the iterative computational procedure let us assume a
simple, two-mass model. Elastic characteristic of an element connecting two
masses is assumed to be nonlinear, i.e. the nonlinearity is present along the
decomposion line of the element. For the sake of generality, no constraints
will be imposed on the type of this nonlinearity. Assume that the decom-
position is made in the same manner as in the case of weak associations
between masses in the complex model [2]. Let us sepatare from a nonlin-
ear element (in an arbitrary manner) a linear component with the stiffness
kg, Fig 1.

Equations for vibrations of the model have the form

mi3 + z1(ky + ka) = k120 + kaze + (22 — 21),

(2.1) N
: Moig + ngg = kzZ]_ bt (P(Zg - 21).
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F1a. 1. Initial and transformed forms of a model.

This model will be split up into two partial models, the vibrations of the
first one being expressed by Eq.(2.1);, and of the other one by Eq. (2.1),.
Assume that the solutions z, z; and the frequencies w?, w? can be rep-

resented by power series with respect to a parameter ¢
59 21 = yor+eyn eyt + ey,
22 7 = Yoo+ ey + et ym .+ En;
wi = wh +ewh +efwh +. .+ W,

(2.3) 2 2 2 2,2 i 2
Wy = w02+8w12+£ w22+....+5w,-2,

and that the parameter ¢ is also present in the coupling terms of the first
equation and in the nonlinear terms. Let us rearrange the system (2.1) as
follows:

-k eK £

- 2 _ _1 e - _

H+twpn = p— Z9 + ™ 2z + m1g(z2 21),
(2.4)

Zy + whyzy = ﬁz - (22— =)

2 0242 m 1 ng 2 1)s
where
(2.5) (2 — 1) = eg(2a — 21)
and
(26) kg =¢eK.

The underlined terms in Eqs. (2.4) will be treated as weak couplings.

If the function g(z1, 22) has, in the neighbourhood of zero solutions ye1,
Yoz, continuous partial derivatives up to an arbitrary order, it can be ex-
panded into Taylor’s series, ' ‘
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(2.7) 9(21, 22) = 9(Yo1, yo2) + 5-;1(5!!11 + ey + ey +..)

da .
o (etha + %y +...) + 2(6?111 + &y +...)?
622 3

?g 2 2, 4 g 9
+a—z%'(€y12 +efy+.. )+ 37197, (eya+e’yn +...)
2 1 (0% 2 3
X(Ey12+5y22+---) +’6 5;%—(5?}11“}‘8921-!-.;.)
&3 o3 )
+—Bz§(6yu +elye + .. )+ 33—21—3%%-(6y11 + &%y +...)
x(ey12 + yan + )2 + 3Lg-(£y1 + &%y + )2
Y12 22 T - .- 32%62'2 1 21 + .-

x(éy12+52y22+.,,)] +....

On rearranging with respect to the powers of ¢, the above expressmn
takes the form

(2.8) 9(z1, 22) = 9(yo1, Yo2) + €Ay + e2As 4 243 444 4.,
where
0 g
(2.9) A = a—g'yu + 8—1112 »
o g 18% 10%g 0%q
(2.10) Ay = agyn-l-a y22+28 z 11+232 12+3z B22 iz,
o 0 ? 0?2
(2.11) As = a—gy31 + ag Ya2 + 92 ﬂyu@m + 922 'g'ym!m
0%g 1 0% 1 8% 2
+ YiiYe2 + i2y) + + =
328( 633“ 60531

1 &g 03
+§3 1072 FYn 12'5‘23 2692 yhiha

a a a? 1
(212) As= a—zg:y:u + B—iy42 + -6—% (?fn’ym + “59’%1)'

2 -
g . 14 &y
+3—£ (’ynysz + 5‘9’22) D2 3 a7 (y11y32 + Y1291 + y21922)

10% , 18% , &g
—— v = 2 2
+2 9z Yyn + 20z Yiz¥e + 9 32132—%( Ytz + ¥izy21)
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2.12 1 8y 1 8¢ 194 ,
(2.12) +35 2 92007 i —(¥h¥e2 + 21y %12) + — 24 921 v+ 0 24 94 4?!12

1 &y ot dg
+66‘ 33 ?;’11 12+48 26.92 I 12'1'63 83?/11?!12

[cont.]

Assume that the system is acted upon by a harmonic excitation in the
form
zo = Zsinvt.
The steady vibrations of the system will be considered. Periodicity of the
solution is also assumed, i.e. no secular terms of the type tsin vt should
appear in the solutions.

3. REALIZATION OF THE ITERATIVE PROCEDURE

Assume that in the i-th iteration the terms of the expansion g(z1, z2) into
Taylor’s series up to the i-th power of the parameter ¢ will be included, and
that the -th iteration yields an approximate solution up to the i-th power of
the parameter €. The course of the iterative procedure will be the following:

0-th iteration

. k
z%o) +w§1z{°) = gllzo — z§ ) = Yor; Wi = Wop,
(3.1)
. k
Zgo) +w[2)2z£0) = 'T;i'z(u) — 20 = Yo2; Wz = 5'-’32
1-st iteration
(1 1 k EI( - £
z§ ) +w§12§ ) = m1 zZp+ —z§°’ + Eg(ym,yoz)

l— A )_ym ey, . wi = wh +ewd,

(3:2) (1) W _ ke
Bt whn = m—221 —m—zg(ym,yoz)

[ 1) _ 2 2 )
z% ) = Yoz + Ee, Wi = wWyg + Wiy,

2-nd iteration

5 4z o Fu oK A0y £ A
i my
(3.3) — z?) = yo1 +eyn + e'ym, wi = wh +ewh + 2wy,
. ()+w2 (2}=ﬂz§2)_i‘41
ma ma

L, 2 2 2 2 2 2 2
zg )_= Yo2 + €Y1z + €%Y22, Wi = Wy + Wiy + £ wis.
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When the solutions appearing on the right-hand side are substituted to
the system of differential equations belonging to a given iteration and are
ordered according to the powers of £, a condition of satisfaction of these
equations for an arbitrary value of the parameter can be replaced by a
condition to fulfil the equations at suitable powers of the parameter <.

For example, consideration of the 2-nd iteration leads so the conclusion
that the system obtained for the 0-th power of ¢ is identical with all the
other iterations starting from the 1-st one, and so on. These systems have
the form:

at g°

k
. 2 M 2
Yor + wWile1 = —20 — Yo1» oy

my
(3.4) Lo = N l—l

- ) . 2 .
Yoz + waloz = E;ym — Yo2, Wi

at gl
. 2 2 K 1 ' 2
Y11 + Wiyl = wivor + ;1-1—’9'02 + m—lg(ym, ?)'02) — Y11, i1,
(3.5) Ih=
-- 2 2 k2 1 2
N2 + wWiYi2 = WigYoz + — Y11 — ——.-‘;'(“901,%2) — Y12, Wig;
ma my
generally,
at £
K : 1
Ji + wivin = —pic12 + » whtika + —Aicn = ya, @,
™ k=1 : 1
(3.6) L;i= |
9 ko ! g 1
Yiz + Wil = Eyﬂ + gwkz%‘—k,z - ;‘n';Ai—l = Yia, wh.

In addition, in each iteration a sequence of residuals will be obtained in the
form

H
2
Z W Yidp=-k,1 »

i k=
3.7) RY ={ kP
Z Wizcz?li-bp—k,z .
k=p

They appear by the powers ¢732, where p = 1,2,...,1.
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The systems of equations to be solved at consecutive steps of the iterative
procedure can be expressed as follows:
0-th iteration

(3.8) Lo = 0
1-th iteration
(3.9) Lo+ely + 2RV = 0;
2-nd iteration _
(3.10) Loteli+e2Ly+ 2R + 4RY) = o
i-th itera.tion'
(3.11) Lo+eLi +. + eL; + g*'i'lR(‘) + E‘“R(') £+ sziRgi_) -0

The above relationships are satisfied for an arbitrary value of the par-
ameter if

(3.12) Li=0 for =0,1,2,....
Assume the constant term in Taylor’s expansion (2.8) to vanish,

(3.13) 9(%o1, Y02) = 0

and the characteristic of the nonlinear element to be a function of the dis-
placement difference (22 — 71), i.e. |

g " g
(3-14) S =1 P
Introduce the following notation:
(3.15) T:ﬂ, 'U=_m~..2k1k2, w = Lk ,
- M Mg My
and
(3.16) P=wi-wl, R=wl-v*, S=wli-u?.

Now the solution to the system Lo (relationship (3.4)) has the form

. T . k
Yo = eglsmvt:Esmut, wgl_kl-l_ 2,
(3.17) o o
.= eppsin vt = — gin vt w2, = 2
Yoz 02 RS » 02 Mg
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Solution of the system L; (3.5) leads to

‘ . T . 9 W
Y1 = eusmvtz—-PRSsmvt, wu:--..l.)..,
(3.18) - . W
Y12 = é€3zS5In vt = 0 5 w12.z _ﬁ .
Introducing the notation
(3.19) 09 _

0
to solve the system I,, remembering the relation (3.14) and adopting a

coefficient Ny (in the case N3 = 1), we can, in accordance with Eq.(2.9),
write down

(3.20) Ay = Nig' (2 — yu)

The solution to the system Lo is

- . ™W . , W

(3.21) Yo1 = egysinvi = —WXH sinvt, Wy = _I_JEXH’
e it — s _W
Y22 = €281 vi=10 , N _ Way = P2X12.,
where
~ w ngl
3. =
(3.22) X111 7w+ m
' Ng'P
(3.23) Xy = lkg + Xu1.
: 2

Accounting for Eqgs. (3.14), (3.19) and denoting
(3.24) g =29 _ &y 99

3z2 3z1 = T 9z,07%
the relationship (2.10) can be written down in the form
1

(3.25) Ax =g (y22 — ym) + -2'9”(’5112 — 1),
Assume that

1 . ]
(3.26) 59"(3112 —1)2 < (N2 — 1) ¢' (y22 — ¥21)
what Iﬁeans that

(3.27) _ Ay < Nag'(y22 — ya1)



ANALYSIS OF COMPLEX NONLINEAR DYNAMIC SYSTEMS 251

and, instead of Aj let us insert into the system L3 the right-hand side of
the above inequality. This means that a system with stronger perturbation
will be analysed. When such a procedure turns out to be convergent, the
procedure for the system L3 with weaker perturbation A; will also be con-
vergent. The value of the coefficient N3 in (3.27) will be derived from the
convergence condition of the procedure.

On replacing the expression Az by the right-hand side of the inequality
(3.27), the solution of the system L3 yields

T
Y31 = es1sinvi= ——W-*ann sinvt, wh = —EXHXM,
P3RS ps
(3.28) o
Y32 = egpsinvt =10, wi = psXuin,
where
- 2w Ngg'
(3.29) X = 5 T my
: Nyg'P
(3.30) Xoz = 292 + Xoa1-
Remembering Egs. (3.14), (3.19), {3.24) and denoting
3 3 3 3
(3.31) m_ g - &g g g

203" 03 T 030 0203
the relationship (2.11) for Az takes the form
(3.32)  As =g (ys2 — ys1) + 9" (y22 — ¥21) (312 — y11) + 9" (912 — m)?.
Assume that

(3.33) 9"(322 — w21) (312 — 11) + 9™ (12 — y11)® < (V3 — 1)g'(ya2 — w31)s
that is

(3.34) A3 < N3g' (ys2 — 1),

and, similarly as before, instead of A3 let us insert to the system L, the
right-hand side of the above inequality. This means that the considered
system will also be subject to some stronger perturbations.

Solving the succesive systems Lg, Lg,..., we proceed in an analogous
manner, i.e. instead of the expression A;_; entering the system L; we sub-
stitute the expression

(3.35) Aicr = Nio1 ¢ (#i1,2 — %i-1,1)-
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Finally, the solution in the i-th iteration has the form

zfi) = (eo1 +¢cen1 + elesr ...+ 5"e,-1) sin vt,
(3.36) '
zg’) = (eqz + cepz + elegy + ...+ ctep) sinvt,

and the frequencies w$, w? are given by Eq (2.3).

The values of the expressions e;1, €2, w3, w5 and the values of the ratios
of the two consecutive expressions for a number of initial iterations are given
in Table 1.

Table 1.
L".‘2+1,1
. 2 ' . wh : 2 e
: w? ei1 - ei-{l-l,l Wiz 2 wh
€i1
. ki + k2 z _ _’_C_E_ 1 —
‘—m1 R ms RS
; w _IW _ w 0o | -
PRS P
w T™W X1 w Xiz
2| —pXu gz = B B 2 I i o
W W Xo1 w X1 X2
3 -Pé-XnXm PaRSXanj P _3X11X22 0 PX;o
- X XaX
4 —FX11X21X31 P‘I;ZSXllleXSI _"P‘?'}' '13_4X11X21X32 6 ;%222

The magnitudes T, U, W, P, R, § in Table 1 are determined by the
relations (3.15) and (3.16); X11, Xo1, X12, Xo2 by the rela,tlons (3.22),
(3.23), (3.29), (3.30), respectively.

In addition

2w WX Nag' Nag'P
(3.37) Xar = T PX:; + ﬂif ,  Xa = Ski + X1,
W 2WX Mg’ Nug'P
(3.38) Xy = —/+ n 24 ) X2 = 197 4 Xy

P PX31 my k2
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4, CONVERGENCE CONDITIONS FOR THE PROCEDURE
4.1. General crileria of convergence

The iterative procedure for solwing the system (2.4) will be convergent

- provided the series of coefficients shown in Table 1 will also be convergent.

It can be seen that for e;; and w} the ratio of the next term to the given

one is the same, so that the convergence condition of these series will be

also the same. Identical series, but shifted by one iteration, appears in the
expressions for w}.

In order to prove the convergence of those solutions let us assume that
there exists such an X; that

X
(4.1) =<1
and
(4.2) Xl > X,’] for i = 1, 2,3, e

When the coefficients N; will be equal to

1 2
43) Ny==, Ny=2, Na=2, w,=2 y-2

1 1’ 2’ 5 ST g
then the expressions Xj; will attain the values given in Table 2.
Table 2.
N X1 Xia

'

14 !
Xig = —+ 2 X12=ﬂ+X11
P my k2

=
|

F
I

Xz1 = 2X41 KXoy = 2Xs2

5, 5
Xs = §X11 Xan = §X12

S
l 1
S| B e i e

14 14
Xu = -5—X11 X = -g-Xm

The ratios of the two consecutive coefficients appearing in the solutions
(Table 1) will have in the case considered the values

(4 4) ].X]]_ 2X11 5X11 14X11 42X11
) 1P’ 1P’ 2P’ 5P 14P 7 T




254 T L. STANCZYK

They constitute a series whose terms are products of X1;/P and the
numerical series N; (relationship (4.3)). Convergence of the iteration proce-
dure depends on the properties of this series. If it turns out to be divergent,
thén the ratios of the two consecutive coefficients appearing in the solu-
tions would be larger and larger, thus the series constituting the solutions
(relations (3.36) and (2.3)) would be divergent. '

A pattern of creation of this series is presented in Table 3.

Table 3.
iter. 2 d
2 I1x1 1
3 1x1 1x1 2
4 2x1 Ixt 1x2 5 {3
5 §5x1 2x1 1x2 ixb 14 {4
6 i4x1 5x1 2x2 1x5 1x14 42 |5
T 42 x 1 4x1 5x2 2x%x5 1x14 1x42 13216
8 132 x1 42 x 1 14 %2 5x 5 2x14 1 x 42 1 x 1324297

The values of the terms N; are determined by the following recurrence
formula: '

{(4.5) N; = R 1=1,2,3,...,
.1
where
i1
(4.6) ap =1, a; = Z Gg Gi—k—1, 1=1,2,....
k=

This series is finite — see Fig.2 — and its terms satisfy the condition
4.7 N;<4, i=1,2,....

Thus the series (4.4) possesses a majorant in the form of a geometric series
with the quotient

4X1

(4.8) 9=
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FI1G. 2. Series N; (relation (45))

This means that the sought expression X1 (relation {4.1)) is determined as
(4.9) Xy =4Xy;.

TFor the series of coefficients obtained in the ¢-th iteration of the solution
z (relation (3.36)), the majorant has the form

(4.10) eor + ce1r + cenn(eq) + cen(eg)® + ...+ eeu(sq)" .

For the frequencies w?, w? (relation (2.3)) similar series can be formed
by majoring them. '
The convergence condition for all these series is

{4.11) leg| < 1.

On substituting here Eq.(3.22) and taking account of Eq.(2.5), we get

4eW 4y’
L A

P2 Pm1

Making use of Egs. (3.15) and (3.16) it can be concluded that the first
term of the left-hand side of the above expression is recognized as Man-
delstam’s coefficient, which for the linear part of the system is determined
by (1, 5].

(4.12)

<

W,
Fze

Thus the condition (4.12) can be finally rewritten to take the form

(4.13)

!
o? + 4p

—— < 1.
erl <

(4.14)
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The obtained form of the convergence condition for the iterative proce-
dure makes it possible to formulate two important general conclusions:

1. The convergence criterion of the procedure for nonlinear systems con-
tains a term o2 which indicates that the satisfaction of the convergence
conditions by the linear part of the system is desirable, although not neces-
sary. In addition, a term is present that imposes certain constraints on the
value of the first derivative of the nonlinear part.

2. Tn some cases the convergence of the iterative procedure of the analysis
of nonlinear system is possible even if its scparated linear part remains
divergent, i.e. when the second term in the condition (4.14) causes a decrease
in 02|

4.2. Conditions referring to the first derivative of the nonlinear function
(P(zla 22)

Let us analyse what conditions for the first derivative of the nonlinear
elastic characteristic ¢’ are imposed by satisfying of the convergence condi-
tion of the iterative procedure.

On denoting

(81 — 83 — 5155)2 — 45283

4.15 G1(51,53) = '
( ) 1(51, 55) 45:55(51 — Ss— $183)
—(5; — 53 — 5153)? — 45783
4.16 Go(51,53) = ( ,
(4.16) 25183) = 5 5 (S1 = %2 — 515%)
where
_ ka2 _ M2
(4.17) Sy = Pl 83 = p
and
de
! — —
(4.18) ¢ =5
as well as
(4.19) A=z -2,

the condition (4.14) generates the following constraints on ', depending
on the parameters Sy and S5 of the system and on the stiflness kq of the
separated linear part:
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a) for P < 0,ie wy <wy

(4.20) G1(81, 53) < % < G4(51,53),
b) for P> 0,i.e. w2z > w1

(4.21) Ga(S4,53) < %;- < G1(51, 83).

It should be remembered that the condition

!
(4.22) LA
ko
has to be met, otherwise a zero or even negative stiffness would exist between
the masses mq and 2.
The conditions (4.20)—(4.22) are shown in Fig.3.

4.8. Conditions referring to the second derivative of the function (21, 22)

Although the condition (4.14) analysed above imposes explicitly the con-
straints on the first derivative of the nonlinear function (A) only, the val-
ues of the higher order derivatives have by no means been ignored in the
considerations. These conditions result from certain additional assumptions
made in the course of analysis, namely Eqgs. (3.26), (3.33) and (3.35).

According to the relationships (3.26) and (4.3); we can write

’ (yzz - y21r)

4,23 "2 .
( ) S g =29 (y12 — #1)?

For ¢ > 0 the above inequality, in accordance with Iq. (2.5}, is equivalent
to the inequality -

4.24 "« 9 ! (y22 - 19’21) .
(24 = (412 — 11 )2

Substituting into (4.24) the values of coefficients of the solutions given in
Table 1 and rearranging, we get the condition for the second derivative of
the function ¢{A):

W, ¥
2;P2 m]_P

4.25 "
(4.25) @ o~
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The right-hand side of this inequality is a quadratic polynomial with
respect to ¢’ and has the roots:

(426) (pll =0, ‘PIZ = ky G3(SI’S3)’
where

5y
4.27 G3(81, 53) = .
(427) 55) = 5y S5

The condition (4.25) is shown diagrammatically in Figs.4 and 5. The
domains of admissible values of the second derivative of ¢’ are shaded. More-
over, the lines are shown indicating the convergence limits of the procedures:
Gioko for P < 0 (Fig.4) and G1ks for P > 0 (Fig.5), in conformity with the
relations visualized in Fig.3. In this figure we can also see that only for
very small values of §; or 53 — i.e. for those cases in which the iterative
analysis of the linear part would be convergent very rapidly — a larger range

a) o b} @

| |

| | 6,2k,
| %
| A

rN

-kzl\ : N \
\ \

Fia. 4. Diagram of the relation {4.25) for P < 0 {w2 <w1). a) yu2 > 0; b) g1 < 0.

a) “tp"l b) o

|

lg,#k, |

L, o
@

| 1

AR \\‘ @
4 A\

Fi1G. 5. Diagram of the relation (4.25) for P > 0 (w2 > w1). a) 11 > 0; by y11 < 0.

W
1
-

N

Ny
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of changes in the first derivative ¢’ is allowable. For the greater part of the
remaining cases the intervals (—1, Gakz) or (—1 , G1k2) ate very narrow and
the values Giks, Gaks, Gako differ very little. In view of this fact, Figs.4
and 5 show that in the majority of cases the convergence procedure Tequires
the second derivative to be negative (regressive characteristic).

5. FINAL REMARKS

The conditions regarding higher order derivatives of the nonlinear charac-
teristic () can be derived in a similar way. For instance, the relationships
(3.33), (4.3) and suitable expressions from Table 1 supply, after some rear-
rangements, the condition for the third derivative

@53 > 9¢'yst + 60 Y1192

Basing on the relation (3.35), the conditions can be formulated referring
to higher order derivatives. However, their form becomes more complex and
they are functions of the lower order derivatives, so their analysis is exces-
sively complicated. That is why it is reasonable to terminate the analysis
on lower order derivatives only.

Tt is interesting to realize that the presented results can be used to “syn-
thesize” certain nonlinear characteristic ensuring the iterative convergence
of the analysis of the complete system with given parameters.

During derivation of the convergence conditions presented in this paper,
an assessment from above was made repeatedly (e.g. the series N, use of
the majorant and others), thus the actual convergence conditions are less
stringent than those presented. '

. The problem of the convergence of the iterative procedures for nonlinear
systems can be approached in two ways:

e without specifying the type of nonlinearity, to analyse the problem of
convergence in order to formulate general criteria for the nonlinear charac-
teristics to ensure their convergence;

s assuming certain typical forms of nonlinear characteristics, to examine
which of them ensure the convergence of the procedures or analyze what
changes are caused in the convergence domains (their narrowing or expand-
ing) for linear systems by the introduction of a given nonlinearity.

The analysis made in this paper belongs to the first type of approach to
the convergence problems of nonlinear systems. The other approach will be
tackled in a separate paper.
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