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FREE VIBRATIONS OF TIMOSHENKO BEAMS ON RIGID BLOCKS

N.M. AUCIELLO (POTENZA)

The aim of the paper is to analyze the vibration of Timoshenko beam resting on the
most arbitrary elastically flexible supports. The boundary conditions are defined by means
of a 2 % 2 flexibility matrix, and the structure is discretized according to the so-called cell
procedure. The Lagrangian coordinates are selected to be the vertical displacements of the
end points of the rigid bars, plus the four possible displacements of the external constraints.
A numerical example is worked ont in which the obtained resulis are compared with some
known results.

1. INTRODUCTION

Free vibration analysis of beams structures is the basic model of a large
number of structural problems. Sometimes, the classical Euler — Bernoulli
hypothesis is unsatisfactory because shear flexibility and rotatory inertia
are considered to be negligible. On the other hand, towers, antennae, shear
walls, movable arms, and deep beams are strongly influenced by both these
factors and therefore must be analysed by adopting the more refined Tim-
oshenko theory. According to this theory, some authors studied the beam
model and useful results are now available for different boundary conditions,
so that all the major practical problems can be considered as solved.

In particular, all the authors uncouple the translational flexibilities from
the angular flexibility when analysing beams on flexible supports.

The aim of this paper is to use the so-called cells discretization method
in order to allow for a more general case, in which the boundary flexibilities
are of the most arbitrary type. In this way it is possible to simulate the real
behaviour of beams supported on rigid blocks, which in turn are supposed
to be immersed in an elastic Winkler foundation. FEach block is defined
by a full 2 x 2 flexibility matrix, and all the classical boundary conditions
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(clamped beam, simply supported beam, cantilever beam, etc) can be easily
specified as limiting cases.

The structure will be discretized into ¢ rigid bars, linked together by
elastic constrains (henceforth cells), according to a discretization method
which was already adopted to investigate the static and dynamic behaviour
of various structural systems [1-3]. In this paper we take into account the
shear deformations and the rotatory inertia, so that the stricture becomes a
(2t+4)-degrees-of-freedom system. It is convenient to assume as Lagrangian
“coordinates the vertical displacements of the end points of each rigid bar [4],
plus the 4 displacements of the blocks. The paper ends with a numerical
example in which a beam with various boundary conditions is examined and
some results from the literature can be compared. Moreover, a cantilever
beam with a concentrated mass at its free end is closely examined, because
this system seems to be of paramount importance in the analysis of towers,
antennae and flexible arms [5-6].

2. DISCRETIZATION METHOD

Let us consider a system shown in Fig.1, which has been obtained by
dividing the beam into ¢ rigid bars, resting on rigid blocks, resting on rigid
blocks, which in turn. are immersed in a Winkler foundation. The bars are
connected together by means of elastic cells, in which the bending strain
energy and the shearing strain energy are concentrated. Consequently, the
possible deformed shapes of the structure are univocally dlefined by the val-
ues of 2¢ vertical displacements of the end points of the rigid bars and. by
4 possible displacements of the blocks. The distributed mass of each bar is
lumped in the most natural way by placing half of the total mass at each
end. The vector of the Lagrangian coordinates is therefore given by

(2‘1) CT = [7)1,”2, V3...,92, T4, TH, VA, 'UB]: l

where v; are the vertical displacements of the end points of each rigid bar, r4,
g are rotations of the blocks and v4, vp are the vertical displacements of the
blocks. The equation of motion will be formulated by means of the Lagrange
equations, and consequently it is necessary to express the total potential
energy and the kinetic energy as functions of the Lagrangian coordinates e.

Let us assume that [ is the span of the beam, I(z) is the second mo-
ment of area, F is Young’s modulus, G is the shear modulus, A(z} is the
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F1e. 1. Lagrangian coordinates.

cross-sectional area and x is the shear factor. The strain energy is given
by the sum of the beam strain energy and of the foundation strain energy,
where the rigid blocks are supposed to be immersed. '

The strain energy of the beam can in turn be expressed as a sum of the
bending strain energy and the shearing strain energy. The bending strain
energy will be given by '

1
(2.2) Ly = EM:‘A(PM

where Ayp; is a relative rotation at the i-th cells abscissa.
The following relationship holds:

Er
(2.3) M; = TA(,O,' = ks iAp;
so that it is possible to write:
1
(2.4) Ly = “kpAp? :

2
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In the same way it is possible to derive the shearing strain energy

1
(2.5) Ly = ETS'AW ]
where Av; is the relative displacement corresponding to the i-th cell abscissa.

On account of '

GA
(2'6) T; = ;-E'AU,
the shearing strain energy becomes
(2.7) L= %k,,-Av? .

The strain energy of the whole system can be written as
(2.8) L=Li+ L,+ Ly

where L; is the strain energy of the foundation beneath the blocks.

The kinetic energy is given by the translational interia of the lumped
masses at the ends of each rigid bar, as given in [3]. In addition, the presence
of the masses of the rigid blocks has to be taken into account together with
the rotatory inertia, expressed as a function of Lagrangian coordinates.

3. THE EQUATION OF MOTION

All the terms in Eq.(2.8) can be expressed as functions of the Lagrangian
coordinates. In fact, if A® and Av» are the column vectors of relative rota-
tions and displacements, respectively, corresponding to the cells abscissae,
then it will be (Fig.2):

Vg — ¥ v
A$y = -2 —gat o,
1 A
(3.1) A; = b2 —lﬂzi—-l + ”2;‘—21— U2{—3 i
i i-1
_ V2t~ Yn-1 , ¥B
APy = —""""—lt + Iy + ¥B
and
Ay = v1—vy ’
(3.2) Av; = vy — Uiz,

Aviyy = vp— .
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Fi1c. 2. Displacements and rotations.

In matrix terms
AP =Ac, Av=Be,

where A and B are the matrices with ¢ 4 1 rows and 2¢ + 4 columns.
The bending strain energy can be calculated from Eg. (3.1) as:

1
(3.3) L; =5 ckye,
where
K;=ATD,A

and Dy is the diagonal (f 4 1, ¢ 4 1) matrix of the stiffness coefficients Ky,.
Quite in the same way the shearing strain energy can be expressed as

1
(3.4) L, = 3 c'K,e,

where
K,=B'D,B -
and D, is the diagonal (¢ + 1, ¢ + 1) matrix of the shearing stiffness.
The strain energy of the foundation can be conveniently expressed as a
function of the stiffness matrices of the blocks. Let us consider the left block.
It is:

1
(3.5) Lia = EsiKASA ’
where
TA My
3.6 = R
(3.6) A= A Vi

- and s4 = Cafa.
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The C,4 is the flexibility matrix of the left block and can be considered as
a function of the foundation properties. If a Winkler foundations is assumed,
then it is a function of the modulus of subgrade reaction.

In the same way, it is possible to write, for the right-hand side block,
sp = Cpfp.

Finnally, the strain energy of the foundation is given by

(3.7) ) Lt = §cTKtc,
where the matrix K, is given by [2]:
1,2.. W2 Ty TB V4 B
1
: 0 | 0
2%

K,

Kgqin 0 Kpz 0 |ra
Kpin 0 Kpi2|rs

Kpo 0 |va
SYM

Kpas | vB

It is worth noting that symmetry considerations imply:
(3.8) Kann = Kp11, Kaz=-Kpi2, K= Kpan.

The strain energy of the whole structure, as a function of the Lagrangian
coordinates, is given by

(3.9) | - _L=% Ke,
where
(3.10) . K=K;+K, +K,

is the symmetric, positive definite global stiffness matrix.

4. KINETIC ENERGY

In order to calculate the kinetic energy of the system it is necessary to
calculate the vertical displacements of the masses at the ends of the rigid
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bars, the rotations of the masses at the ends of the rigid bars and the same
quantities referred to the foundations blocks.

It is, therefore:

' 1.7 o 1T -~ &

(41) T= —2- MVC +§ M[l’,
where My represents- the (2i+4, 2t 4 4) mass matrix, r is the column vector
of the absolute rotations, and My is the (¢ + 2, ¢ + 2) matrix of the rotary
inertia. ‘

The diagonal terms of the mass matrix My are given by

1
M; = mT i=1,2,...,2

(4.2) Myys = Ina, Moz = Inp,
Mayz = ma, Mg =mp,

where I, 4 and I,p are the polar moments of inertia of the masses m4 and
mp with respect to A and B, respectively.
The rotations of the rigid bars of the beam are given by

(4.3) .1',-:—'”2;"_—1_23":-1—, i=1,2,...1
4

which can be written as
(4.4) r=Ve,

where V is a rectangular (¢ + 2, 2t +4) “transfer” matrix. Finally, Eq. (4.1)
can be expressed in terms of the Lagrangian coordinates as

]. .T L] 1 .T e
(4.5) T==-¢ Myc+=-c Mye,
2 2
where
(4.6) M;=VIM;V.

Fach term of the matrix Mj is given by the product of the mass of the
beam and the moment of inertia of the cross-section [3].

The equation of motion of the system can be immediatelly derived from
the Lagrange equation

(4.7) Mcé+ Ke=0,
with the corresponding eigenvalue problem

(4.8) J (~w*M + K)e = 0.
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5. NUMERICAL EXAMPLES

As a first example, let us censider a uniform beam with span I, ratio of
the elasticity moduli £/G = 2:6, shear factor x = 1/0.85, radius of gyration
rg = 0.081, and let us calculate the first three free vibration frequencies.
More particularly, the nondimensional parameter

pAlt
A = \ Er

has been introduced where p is the mass density and I is the cross-sectional
inertia. In Table 1 the A} values are compared with the nondimensional
frequencies of simply supported beam, as given in [3]. It is interesting to -
observe that the discretization method used leads to an overly stiffened
structure, and consequently the nondimensional frequencies are slightly un-
derestimated with respect to other discretization methods.

Table 1.
Author 3] . exact value
A2 8.82 8.80 8.34
A3 28.29 28.15 28.46
Az 50.96 - ~

In Table 2 the nondimensional frequency A? is given as a function of the
ratio a = r fl.

Table 2.
refl A pY1 pY I rgfl Af A3 A}
0.00 | 977 | 3867 | s4.90 010 | 838 | 2533 | 43.95
002 | 966 | 3724 | 78.06 0.20 | 6.36 | 1412 | 1581
0.04 | 954 | 3502 | 70.49 0.25 | 5.57 9.07 | 13.14
0.06 | 9.21 | 3162 | 59.82 0.30 | 4.93 6.39 | 11.81
008 | 882 | 2820 | 50.96 0.35 | 4.40 4.69 9.75

As a — 0 the classical Euler — Bernoulli results are clearly recovered, as
illustrated in Table 3. ' '
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Table 3.
Author [3] exact value
A2 9.84 9.81 9.87
pY; 38.91 38.58 39.48
A2 85.94 - -

It is sometimes useful to investigate cantilever beam with a tip mass, for
example in the analysis of tower vibrations.

The problem was first approached by BRUCK and MITCHELL [5] and
then by ABRAMOVICH and HAMBURGER [6]. They studied the free vibration
frequencies of a cantilever beam with a tip mass, taking into account shear
deformations and rotary inertia. Moreover, in [6] an influence of the rotary
inertia of the concentrated mass at the tip is elucidated by showing that
the nondimensional frequency decreases. In order to perform a comparison,
in Table 4 the first four nondimensional frequencies A? are shown as given
by the used discretization method in [5] and [6]. The discrepancies become
noticeable for higher modes because of the stiffening of the structure. In the
table it is assumed that 1/x = 2/3, E/G = 8/3, a = 0.02 and a rotary
inertia of the tip mass J = M x K2, '

Table 4.

f5] (6] author »?
3.50 3.50 3.485 1
Y=0 21.35 21.35 20.77 2
z2=0 57.47 57:42 54.58 3
106.93 106.58 98.95 4
1.40 1.27 1.27 1
Y=1 5.73 4.53 4.51 2
z=. 23.64 23.32 22.99 3
58.41 58.24 56.60 4

Y=M/(mL), z=K/L

Finally, the results have been obtained by dividing the structure into 12
rigid bars leading to a discretized system with 28 Lagrangian coordinates.
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6. CONCLUSION

It is well known that the Timoshenko theory allows us to take into ac-
count the shear deformation and rotary inertia of deep structures. This
theory is very useful even for tall buildings and shear walls and it is usual
to reduce a tall building to a cantilever Timoshenko beam with a flexible
constraint at the base. In this case, the constraint is viewed as a couple of
independent bending and axial springs, according to the classical Winkler
hypothesis.

In this paper a more refined model has been adopted, in which the con-
straints are reduced to rigid blocks on Winkler foundation, defined by a full
2 x 2 flexibility matrix. This model leads to somewhat different results than
the classical uncoupled case would provide.
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