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MODELLING OF LOADING RATE EFFECT ON FATIGUE
CRACK GROWTH

K.M. GOLOS (WARSZAWA),
HP. STUWE and R. PIPPAN (VIENNA)

A mechanical model of fatigue crack growth at low and intermediate AK values is
presented, In the model the effect of the loading rate on the fatigue crack growth is
considered. The local stress and strain are calculated based on the Hutchinson, Rice and
Rosengren {HRR}) solution. The required data for prediciing fatigue crack growth rate
can be found in standard material handbooks where cyclic and faitigue properties of the
materials are presented.

1. INTRODUCTION

Experimental data indicate that the fatigue crack growth rate (FCGR)
may be described by a sigmoidal curve in a log (da/dN) versus log (AK) co-
ordinate scale. The behaviour of the FCGR is frequently described as having
three ranges. Range I is associated with the very slow FCGR behaviour in
the vicinity of the threshold stress-intensity factor (AKyy,). Range II de-
scribes stable, subcritical FCGR which is frequently analytically expressed
by PARIS—ERDOGAN [1] law in the form

(L.1) da/dN = A(AK)™,

where A and m are empirically determined constants. Range III describes
the behaviour exhibited at very high FCGR which is characterized by the
critical stress intensity AK.. The FCGR may be influenced by many factors
associated with load history and environment [2]. In the present paper
special attention is paid to the effect of loading rate on FCGR. Experimental
data suggest that fatigue crack propagation rate decreases with increase of
frequency. On the other hand, YokoBoRI and Sato [3] have shown that
exponent m of AK is a constant and independent of frequency. Based on the
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conducted experiments they showed that da/dN is inversely proportional to
FA(A > 0). In this case they proposed the modification of Eq.(1.1) to the
following form

(1.2) da/dN = A(AKY™f~*

where f is a frequency and A is a material constant.

In contrast to the monotonic loading, in the cyclic loading due to repeated
loading and unloading of the plastic zone in front of the crack, a crack-tip
blunting occurs, Furthermore, microcracks are produced in the plastic zone,
or more particularly in front of the crack in the generally termed damage
process zone.

Thus, special care has to be taken in analyzing this region when contin-
wum theories are used to determine the stress and strain distribution ahead
of the crack. |
" A desirable feature of crack propagation model under cyclic loading would
be the incorporation of the fatigue properties in nonlinear fracture mechan-
ics. It is the subject of this paper to present such a model with loading rate
eflect to determine FCGR.

2. A MODEL FOR FATIGUE CRACK GROWTH

Analysis of the fatigue crack growth during cyclic loading requires a
fatigue failure criterion and specification of the zone where such a criterion
can be applied. The finite element calculations of stress and strain ahead
of the crack tip have shown that there exists a small region, the damage
process zone, denoted herein by 8, where the stress and strain have 2 finite
magnitude. This zone, as shown in experiments, is a few times smaller than
the plastic zone. It would be pertinent at this stage to mention that a process
zone, §, may be associated with the microstructure and/or micro-failure
mechanism. The damage process zone can be defined as the set of cells
that have reached the state of fatigue damage, which is proportional to the
plastic strain energy density.

Since the fatigue damage is generally caused by the cyclic plastic strain,
the plastic strain energy plays an important role in damage process. There-
fore, to describe the damage process in the front of the crack we should
apply the fatigue criterion based on plastic strain or plastic strain energy
density.
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2.1. Fatigue criterion

In the present paper the criterion based on total strain energy density is
adopted [4,5]. Since the process of damage in the process zone is controlled
by plastic strain range, the fatigue criterion can be expressed in the form

(2.1) AW?P = ((2Ns)P f7,

where { and 3 are material parameters. In the cases where the values of
and § are not available, the approximate relationships to compute them can
be obtained throught the Manson—Coffin law, i.e.

AP = 2e(2Nf)f°,

(2.2) )
Ao = 20%(2N;)f°.
Therefore
1—x'
(2.3) G=~b+c, C24c}s'}m, v=d+e,

where 7’ is the cyclic strain-hardening exponent, (o}/E) and ¢} are the
strain amplitude corresponding to the elastic and plastic intercept for one
cycle, b is the fatigue strength exponent and ¢ is the fatigue ductility expo-
nent.

2.2. Stress and strain distribution ahead of the crack tip

For a strain hardening material, stress-strain relation for most metals
can be expressed as

(2.4) & =0"+a(c*),

where £¥, ¢*, are nondimensional strain and stress; a, N are material par-
ameters.

Generalizing this uniaxial relationship by J; deformation theory of plas-
ticity, HurcHINSON [6], and RiCE and ROSENGREN {7} obtained similar sol-
utions for the elastic-plastic stress and strain distribution ahead of a crack
tip (frequently referred to as the HRR singularity fields) in antiplane shear
(Mode IIT) under small scale yielding. According to HUTCHINSON’S plane
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stress solution [6], the stress and strain components normal to the plane of
crack growth can be calculated from following equations:

s /14N
(25) €= % [_I.SLH__] (o0 — vor)

(26) o=0, l——

Parameters og and o, are nondimensional functions of {he strain hardening
exponent N (and the polar coordinate 0 in general case). Parameter I is a
nondimensional function of N. The values of the parameters op, o, and I
for certain values of N are given by HUTCHINSON {6].

A similar analytical solutions for tensile loading (Mode I), which generally
is the most critical case from the engineering application viewpoint, is not
yet available. McCLiNTOCK [8] has shown that there is an analogy between
Mode IIT and I for the case of small scale yiclding, where displacements
parallel to the crack are small compared to those normal to the crack surface.
Thus an analogous equations to (2.5) and (2.6) can be writien for Mode I,
in the following form: '

~ 9‘1[ I(2 ]1/1+N

(2.7) (o0 — voy)

 E |aloyw
S N/HN(O- — 0.50,)
E |aloyz 0 BT
1/14+N
K?
2.8 = .
(28) 7= I:ozIo'ym] 7o

In the case of cyclic loading the stress-strain relation of metals can be rep-
resented by

09 Be_ar A _Ac (Boyl
2 2 2 2FE 2K ’ .
where Ac is the cyclic strain range, Ao — the stress range, n’ — the cyclic
strain hardening exponent and K' is a coefficient with dimensions of stress.
The relations between the constants in Eqs. (2.4 and (2.9) is
2FE

2.10 N=1/a, a= ——0,
( . ) / (ZK')NO'S_N)
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As it was mentioned above, Egs. (2.7) and (2.8) were obtained from Hutchin-
son’s plane stress solution for monotonic loading. For cyclic loading, one
should use AK/2, instead of K; replace N by 1/n and o, by a,,.

Therefore we get

92" AK? n' f14n'
(2.11)  Ae= _EE [40[10;3’_] (o0 ~ voy)
20! [ ax? M/
“FE |dalolz (70— 0.50),
y
AK? n' f14n’
_ !
(2.12) Ao = 20, [4{110;2:] oa.

Equations (2.11) and {2.12) exhibit a singularity as # — 0. It has been
widely recognized [9-14] that a small region, denoted herein by 4, exists
immediately ahead of the crack tip where, due to non-proportional plas-
ticity and crack blunting, the strains and stresses have finite magnitudes.
In this region the stress and strain gradients are much smaller than those
predicted by the HRR fields. Good agreement was demonstrated between
the finite-element solution and HRR prediction for a region adjacent to the
crack tip, of diameter equal to several times the crack opening displacement,.
Ahead of the crack tip, the HRR stress and strain ficlds showed a trend
whereby stresses were higher and strains were lower than those predicted by
the finite-element solutions.

However, prediction based on Egs.(2.11), (2.12) is not satisfactory when
z — O resulting in strain energy density AW? — oo. This is obviously
unreasonable since the stress range Ao, and the plastic strain range Ae
cannot exceed 20 f° and 2¢% f%, as predicted by Eq.(2.1).

Let us now introduce a critical blunting radius, 7., associated with the
threshold stress intensity factor AKjy,, below which cracks will not propa-
gate. Thus, replacing @ by 2+, and leaving for the time being r. undefined,
Eqs.(2.11), (2.12) can be rewritten as

1—n 1-n' AK?

P
1 —I—n’AgAE 1+n’LIE(:c+rc) ’

(2.13) AW? =

where .
L= 0’0(0’0 - 0.50‘,-).
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2.3. Fatigue crack growth expression

The plastic strain energy density within the process zone may be calcu-
~ tated from Eq.(2.13) by setting # = §. The corresponding number of cycles
AN, required for the crack to penetrate through 4, can be determined from
Eq.(2.1). Substituting Eq.(2.1) into (2.13) the crack growth rate per cycle
da/dN can therefore be estimated as follows

da § L(1 — n')AK? (2ANY P 7,

(2-14) AN~ AN T (U+a)EC/Y AN AN

The 7, can be calculated by assuming that for AK = AKy, dafdN = 0.
The experiments show unstable crack growth when the stress intensity range

approaches the critical value, i.e. AK — AK,. Then putting 2AN = 1in
Eq.(2.14) we can calculate the value of § as follows:

1-n' AK? - AKL
1+n (IEfY

On the other hand, threshold stress intensity range is strongly dependent
on the stress ratio. In literature many models describing this effect have been
proposed. In the present approach the formula proposed by KLESNIL and
Lucas [15) is used

(2.16) AKL(R) = AKS(1— R)",

(2.15) 6=1

where R is the stress ratio, n is the material constant and AK} is the
threshold stress intensity range at £ = 0.
Rearranging Eq.(2.14), the FCGR can be described as:

-1/8

(2.17) j_; = 25 LA(II( +“n,()AK 8 p (aK? - sk,
(S LIESfY
(1-n)
where
-1/8
(2.18) D =26L"YP) [ 8 e gIEﬁf‘f]
In the case when AK}, € AK we abtain
~-1/8
2
(2.19) 5_1‘;_ =26 |L 5 H(A‘;()
A4m) ) g g

1__
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In this case, putting

m = “2/18)

; ~1/p

(2.20) A = 2L/ [c%rm] ,
A= —7/ﬁs

we obtain the Yokobari—Sato relationship, Eq.(1.2). -

It is worth to mention that a formula of the same type as Eq. (1.2), includ-
ing the frequency effect, was obtained by Yokobori who used the dislocation
theory of fatigue crack growth.

3. COMPARISON WITH EXPERIMENT AND DISCUSSION

In the present study the experimental data for SM-50 steel [3], and alu-
minium alloy 2024-T3 [3] were used. In the analysis the values of {, § and
+ were calculated from Eq.(2.3). Therefore, substituting relationship (2.3)
into (2.17) we obtain the following relationship for predicting the FCGR of
the materials

da JAK? = (AKg )] T
N '

. — =26
(3-1) ToTe TEG o+

The experimental and theoretical results for these materials are shown in
Figs.1 and 2 by solid lines. Predictions of the proposed model of the ma-
terials are in good agreement with the FCGR in the analyzed loading rate
range.

In this model the HRR plane stress solution for the calculation of the
plastic strain energy density distribuetion ahead of the crack tip is used. A
fatigue failure criterion based on the plastic strain energy density is adopted
~ to define a region which can be described in macroscopic terms. The effect
- of loading rate on the FCGR is considered in this approach.

The model developed herein indicates that constants A, m and A in the
Yokobori—Sato empirical equations are mutually dependent. The required
data can be found in the material handbooks where fatigue properties of
materials are listed.
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F1a. 1. Theoretical predictions and experimental data of fatigne crack growih rate
for SM-50 steel [3].
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F1G. 2. Theoretical predictions and experimental data of fatigue crack growth rate
for 2024-T3 aluminium aloy [3].
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