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THE COMPRESSIVE BARS WITH BOUNDED DISPLACEMENT
AS THE TASK OF OPTIMAL CONTROL

L. MIKULSKI (KRAKOW)

The beam with bounded displacement compressed by the axial force is considered as
an optimal control task. The constraints relative to displacement of the bar axis could
be active pointwise or in some domain. To solve the task, maximum principle shall be
used; necessary conditions reduce the problem of optimal control to a muitipoint boundary
value problem for ordinary differential equations. The boundary value problems with jump
conditions are solved by multiple-shooting techniques.

1. INTRODUCTION

The beam with bounded djsp]é,cement compressed by the axial force is
considered as an optimal control task. The shape of the bar axis determined
by the function describing the bar curvature is the control variable. We
shall consider a typical nonlinear bar compressed by the axial force whose
displacement is limited by two parallel lines. The cost function is potential
energy of the compressed bar. The constraints relative to displacement of
the bar axis could be active pointwise or in some domain. To solve the task,
maximum principle shall be used; necessary conditions reduce the problem
of optimal control to a multipoint boundary value problem (MPBVP) for
ordinary differential equations. The multiple shooting method [1] has been
successfully used to solve the resulting multipoint boundary value problem
numerically. '

2. TASK FORMULATION

We consider the nonlinear bar with bounded deflection. The bar is axially
compressed by a force P (Fig.1). '
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In view of the condition of incompressibility we can write

(2.1) It% =sinf,
from which it follows by differentiation that
o ' dz d9
. _— = g— .
(2.2) i cosf—
The true curvature of the deformed curve is
‘ 1 de
(2.3) ; = E ]
50 that
(2.4) 1_a2 _
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p cosB_\/l_m,g'

For the deflection of the bar we have the following state equations:

d

-ﬁ— = ginéd,
(2‘5) de _ $”

dt

The boundary conditions at the simply supported ends are

(2.6) z(0) =0, z£(1)=0.

At the fixed ends, the boundary conditions are
z(0) = 0, 6(0)
(1) = 0, (1) = 0.

I
=)

(2.7)
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The total potential energy is thus

1
(2.8) 2[ t+ajcos€dt,
0 0

where

| i

P
E’j .
In the problem considered the state variables are: z, #, and the control
variable [/ is defined by the equation U = #'.
We minimize the potential energy of the bar

o =

1
(2.9) —;—/ 62 dt-{—afcosﬁdt
0 0

"with constraints
(2.10) ¢’ =sinf, =0, lz] < d.

The functional (2.9) is to be minimized subject to the constraints (2.10).

3. NECESSARY CONDITIONS

The bar with bounded deflection is considered as an optimal control prob-
lem with bounded state variables. The theory of optimal control provides
conditions for the trajectory #(¢) and the control function U{t) associated
with it.

32.1. The task without constraints

In this case the Hamilton function has a form of
(3.1) H =0.5U%+ acosf + Ay siné + MU

Here the control variable U(t) is determined by the maximum principle. In
the first step, the optimal control variable is eliminated in terms of the state
and adjoint variables. In so far U is a function of A, 2. In particular, U is a

solution of the equation

oH
(3.2) 57 =0
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The control function U is obtained on. unconstrained subarcs by
(3.3) U=-X\

if the strengthened Legendre—Clebsch condition

O?H

(3.4) —

=1>0
is valid. In the problem considered the condition (3.4) is always fulfilled.
Functions ); are the solution of the system of adjoint equations

Moo= 0,
(3.5)

A, o= asinﬂ—)‘.lcosﬂ.

In view of the transversality conditions we can write boundary values for
the adjoint functions

(3.6) ' 2(0)=0, A(1)=0.

State equations (2.6) and adjoint equations (3.5) together with suitable
boundary conditions form two-point boundary value problem (TPBVP) for
functions y1, Y2, A1, Ag; with control defined by the maximum principle (3.2).

In case (A) under discussion, we obtain a system of differential equations:

2! = sind,
¢ = U,
A
(3.7) o O’_
Y = asind — X cosd,
o = 0,
U = —A2:

with the following boundary conditions:

i
k=

(C(O) = 0, )\2(0)

1 1 1 '
9(5) = 0, )\1(5) = 0, Q}(-Q—) = d1Sd.
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3.2, The task with constrainis

The next degree of complexity is given by optimal control problems with
state variable inequality constraints. The constraint (2.10) does not depend
on the control. The order of the state constraints has a decisive importance
for further considerations. (G is defined by

(3.8) G(t) = |z] < d.

By successive differentiation G with respect to ¢, we find control U in the
explicit form.
Thus, we have

GO = |z]<d,
(3.9) G = +sind,
GP = +Ucosh.

The expression G2} includes control U in explicit form so that the or-
der of the state constraints is equal ¢ = 2. This constraint can be active
pointwise or in some domain [4].

From a practical point of view the transition from the unconstrained
to the constrained solution comprises two stages: (1)} constrained solution
which touches the boundary only; (2) constrained solution containing bound-
ary arcs.

If the constraint (3.8) is active, then control U = 0, moreover z({) = +d,
and 6(t) = 0.

By using the necessary conditions from the calculus of variations this
problem can be transformed into a multipoint boundary value problem for
the state vector x and adjoint variables A, which can be solved by the mul-
tiple shooting method (see, BuLirscH [1]).

If the constraint becomes active, it first happens in point #; = 0.5.

This point is subject to the boundary conditions

(3.10}) z(t) = d, 6(t,) =0,
and the jurap condition

MED) = ) -,
M(E) = MaleD).

In contradistinction to the problem without constraints, factor Ay # 0.

(3.11)
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In this case (B) state equations have a form

2 = sind,
¢ = U,
1 =0,
(3.12) _ b = asinf—)Ajcos8,
o 0,
v 0,
U = =h

with the following boundary conditions:
z(0) = O, A(0) = 0,
o) -0 n) - e o) - s
A1 (%4‘) ) -V (%)
The system of Egs. (3.12) has a solution if a € (39.601078, 157.316212),
(Figs. 7, 8). : -

‘When the constraint (3.8) is active in some point ¢; # 0.5, we can calcu-
late this point using the condition

]
S
et
p——
BN =
|

m(tl) = d,
(3.13) - 6(ty) = 0,
Aa(t1) =

This case (C) is described by equations

#' = sind,
¢ = ~Az ?
!
1 = 0,
(3.14)
M, = asinf — A cosd,
o = 0,

vV o= 0,
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with the following boundary and jump conditions

z(0) = 0, M(0) = 0,

() =0 o) - s
z(ty) = d, B(tl) = 0, )\g(tl) = 0,
M) = M) - v(ty).
The solution of Eqs.(3.14) with conditions given above is obtained for
157.316212 < o < 223.123747, and point ¢; of control change can be found
in the interval #; € (0.4195, 0.5), (Fig. 9).

Hence, considering additionally constraint x > —d we obtain the follow-
ing system (case D):

z' = sin#,

¢ = -,

!

=0
1
(3.15) ’

5 = asinf - A cosé,
o = 0,
Vo= 0,

with conditions: _
z(0) = 0, A0) = 0,

1 1
(3) = 0 =(3) - -

z(t) = d,  6(t) = 0, X)) = o
M) = MG - u(H)

The system (3.15) describing case D concerns constraints shown in Fig. 5.
The results are obtained when « € (91.469901, 342.253); point 1} does not
depend on a and has state value equal ¢} = 0.1666.

If o« > 338.667 constraints will be active as shown in Fig. 6.

For this case we obtain the following system of equations and boundary
conditions {case E):

g = sind,
) ¢ = ;AZ H
3.16
( A= 0,

5 = asind — X cosé,
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(3.16) o = 0,
[cont.] _ J = ,
7 =

z(0) = 0, A(0) = 0,
1 ' 1
9(—2-) = 0, 3}(5) = —d,
m(t;) = d, B(t;) = 0,
!L'(tz) = —-d, G(tg) = 0, Az(tg) = 0,
MED) = M) - v(H).
M(t3) M(ty) — v(t2)-
State equations {A,B,C,D,E) with suitable boundary conditions and with

jump condition have been numerically solved by means of the multiple shoot-
ing method [1].

4. COMPARISON OF THE OBTAINED RESULTS

The obtained numerical results are presented in Tables 1-4, state vari-
ables z, 8, Ay, Ay are shown in Figs. (2-11), depending on the cases and
boundary conditions.

Table 1. Cases A and B.

o A2(3) | Fie Cw X2(3) | Fis
9.900269 | 0.495013 2 39.601078 | 0.990026 7
27.262693 0.25 - 140.220688 0.20 -
39.329083 0.0 3 157.316212 0.0 8

Table 2. Case C.

o 171 Fig. o 11 Fig.
62.162184 | 0.397260 - 163.733296 | 0.450065 -
83.196326 | 0.343026 - 187.731343 | 0.457537 —

101.682056 | 0.309991 - 189.402190 | 0.455505 -

162.096647 | 0.244740 4 202.947450 | 0.439968 -
304,756492 | 0.177037 - 223.123747 | 0.419500 9




Table 3, Case D.

a i1 Fig. o 1 Tig.
91.469901 0.166666 - 599.886312 | 0.252960 -
156.673502 | 0.166666 5 587.315184 | 0.257386 -
281.100900 | 0.166666 — 603.830773 | 0.253816 10
338.667292 | 0.166666 — 603.460747 | 0.253839 -

Table 4. Case E.

o 1 [ Fig. o 13} t2 | Fig.
345.927928 | 0.1657 | 0.4972 — 737.5331 | 0.2260 | 0.4425 11
373.765114 | 0.1591 | 0.4774 6 773.2004 | 0.2237 | 0.4375 -
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F1a. 2. Activity of constraints in point #; = 0.5.
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Activity of consiraints in points 1, 2.
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Fia. 11. Activity of constraints in points 11,1z {fixed ends).

5. FINAL REMARKS

The constrained bar is considered as an optimal control problem with
bounded state variables. The underlying boundary value problems are
sotved with multiple-shooting methods which give numerical results of high
accuracy. The computed examples confirm the efficiency of the methods of
the optimal control which, in connection with multiple shooting method,
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are effective in solving the problems of optimal elastic bars design with con-
straints of the state variables.
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