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DIFFRACTION OF TORSIONAL ELASTIC WAVEW A RIGID
ANNULAR DISC AT A BIMATERIAL INTERFACE

5.C. MANDAL and M.L. GHOSH (DARJEELING)

The problem of diffraction of normally incident torsional wave by an annular ngld disc
lying at the interface of two bonded dissimilar semi-infinite elastic media is analysed. The
three-part mixed boundary value problem is reduced to the solution of a set of integral
equations which are solved by using iterative technique for low frequency, assuming that
the ratio of the inner and onter radii is small. The stress distribution on the disc, the
torque and far-field amplitudes of the displacement in both the media are evaluated. The
variation of dynamic stress intensity factors with normalised frequency for various values
of the material parameters, and also the variation in far-field amplitude with the polar
angles for a fixed radial distance have been shown by means of graphs.

I. INTRODUCTION

The study of problems involving diffraction of elastic waves by cracks or
inclusions are of considerable importance in view of their extensive applica-
tions in mechanical engineering and also in seismology and geophysics. I
the cracks or inclusions are located at the interface of layered media, the
study becomes more relevant. The extensive use of composite materials in
modern technology has evoked interest in the wave propagation problems
in layered media with interfacial discontinuities. ONDER et al. {1] studied
the diffraction of plane SH-wave obliquely incident on a rigid half- plane ly-
ing at the interface of two dissimilar semi-infinite elastic media. Following
MAL [2], problem of interaction of antiplane shear wave by a Griffith crack at
the interface of two bonded dissimilar elastic haif-spaces has been treated by
SRIVASTAVA et gl. [3]. BosTROM [4] also treated the same problem following
a procedure similar to that of KRENK and ScuMInT [5]. The corresponding
problem of diffraction of antlplane shear wave by a finite rigid strip at the
bimaterial interface has been treated by PALATYA and MAJUMDER [6]. The
problem of dlﬂractxon of transient torsional shear waves by a penny-shaped
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crack at the interface of two bonded dissimilar elastic half-spaces has been
investigated by UEbA et al. [7]. As regards the dynamic crack or strip prob-
lems, research has mainly been confined to the case of a single crack or strip
of finite width or circular in shape. These are the mixed boundary value
problems which are usually reduced to solutions of dual integral equations.
But the solution of the interesting problems involving the diffraction of elas-
tic waves by annular discs or cracks at the bimaterial interface which give
rise to three-part mixed boundary value problems are still lacking.

However, recently the problems involving the diffraction of torsional
waves at a flat annular crack in an infinite elastic medium have been stud-
ied by SHINDO [8,9]; the problems are reduced to those of solving singular
integral equations of first kind which were later solved by the technique of
ERDOGAN [10,11]. The problem of diffraction of an acoustic wave by a
soft annular disc was studied by THoMAs [12]. Following the method of
WILLIAMS [13], the three-part mixed boundary value problem was reduced
to a set of integral equations which was solved by an iterative procedure for
low frequency. The same technique was followed by JAIN and KANWAL [14]
to study the problem of torsional oscillations of an elastic half-space due to
annular disc. .

In this paper we have discussed the problem of diffraction of torsional
wave by a rigid annular disc located at the interface of two bonded dissimilar
elastic media. Applying the method developed by WiLLiaMS [13] and used
later by Trnomas [12] and JAIN et al. [14], the three-part mixed boundary
value problem has been reduced to the solution of a set of integral equations.
The solutions of these integral equations are obtained iteratively for low
frequency and small values of the ratio of the inner and outer radii of the disc.
These solutions are used to determine the jump in stresses across the annular
disc and stress intensity factors at both the edges of the disc. Torque and
far-field amplitudes in both the media have also been deduced. The effect
of normalised frequency, material properties and geometric parameters in
stress intensity factors and far-field amplitude are shown graphically.

f 2. FORMULATION OF THE PROBLEM
Let us consider the torsional vibration of frequency w of an annular rigid

disc of inner and outer radii b and a, respectively, lying at the interface of two
bonded dissimilar elastic half-spaces. The region occupied by the annular
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disc is defined by z = 0 and b < r < @ in a cylindrical polar co.ordina.te
system (r,#, z) as shown in the Fig. 1.
. I zl

Fic. 1. Geometry of the annular disc.

Let an antiplane shear wave given by f2;re*2(2=221) where £2, is a con-
stant, ky = w/ca, and e = /(u2/p2), the shear wave velocity in medium 2,
be incident normally on the disc. Henceforth the time factor e=t will be
suppressed throughout the analysis.

The only non-vanishing #-component of the displacement Vi and the
nonvanishing stresses 'r(;), Tif,) (7 = 1,2) due to the scattered field are
independent of § and are given by

(2.1) Vi = Vi(r, z,t) = vi(r, z)e_i“’t,
i dv; v
P = o= (G2,
22 _ )
Q= Q= w52,

where p; (j = 1,2) are the shear moduli of the elastic materials.

The suffices 1 and 2 are used to denote the values of the corresponding
quaniities in the upper and lower hall-spaces, respectively. Without any loss
of generality we assume that ¢; > ;.

The displacement V; satisfies the equation

Oy 19V; Vi | Vi _ p; 0%

(2:3) et Tt as T e

where p; (7 = 1,2) are the densities of the elastic materials.
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Putting V;j = v;(7, 2)e"*, Eq.(2.3) and the boundary conditions at the
interface z = 0, take the form

(2.4) Gt~ TR =0,
(2.5) v1{r,0) = v2(r,0) = —02r, b<r<a,
(2.6) v1(r,0) = va(r,0), 0<r<b, a<r<oo,
(2.7) Tz(;)('r,()) = Tz(g)('r, 0), 0<7r<bh, a<r<oo,

where k; = w/c;, ¢j = 1/(p;/p;) and 2 = 20pu3ka/(prky + paks).
The solution of equation (2.4) can be written as

(2.8) vi(r )= [ As(€)exp(—rsle)In(er) e,
0
where s
n=(E-8)" ek,

. 1/2
vio=~i(k-8)"7, &<k
and A;(€) (7 = 1,2) are functions of £ to be determined from the boundary

conditions.
Therefore, the stress components are

o

D) = = [nA©exp(-nlDnEnd, 220,
0

(2.9) - .
T,Sg)(f"z) = p2 f’YzAz(f) exp(—z2lz])J1(€r) dE, z<0.

Now, using the boundary conditions (2.5), (2.6) and (2.7) and assuming that
(2)(1',0) - TS)(T,O) = f(r), b < r < a, we obtain the integral equation

b

(2.10) [ L1(t) dt Dj Gy hEh () dE = 0, b<r<a,
where A

@11)  A(E) = Ay(6) = j £(£) 1 (1) dt.

(#'n+u7)
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3. METHOD OF SOLUTION

In order to solve the integral equation (2.10) we apply the technique
developed by WiiLiaMs [13] for solving integral equations arising in the
three-part boundary value problems. The same technique was also applied
by TrOMAS {12] and JAIN et al. [14] in order to solve the scattering problem
by annular disc. Following KANWAL [15], the kernel of the integral equation
(2.10) is split into two kernels as follows:

. e ¢
(L) (i +m) [ T (ENT(E1) dE = () + K1),
Of(ﬂl'h“i'#ﬂz) ! ! ! 2

where
(3.2) Ey(rt) = / Ji(€r)Ia(€1) dE,
0 .

(3.3) Ka(ryt) = [ M€, 1) h(Er)(et) de,

_ . ] ‘

" _ (€ = 71) + pa(€ = 72)
(3.4) M(&,71,72) = LT 27 -
Equation (2.10} then takes the form
(35) / LF(8 K (r, ) dt = —(py +pi2) 20— f () Ka(r, ) dt, b<r<ad.
b b

Next, consider two functions fi(r) and fa(r) such that

0, 0L r <b,
(3.6) LY+ fo(ry=4 f(r), 8< r <La,
J, a< r < oo.

As a result, Eq.(3.5) reduces to two integral equation given by

(3.7) f LK (r,8) dt = — (s + i) 27 — / LR Ka(r, ) dt, 0<r<a
0 ' 0 .
and

(3.8) f tha(t) K (r,8) dt = — f tfa(t)Ka(r, 8)dt, b <7 < oo

0 0
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The procedure adopted by WiLLiaMs {13] and THOMAS [12] is followed to
solve these integral equations. Using the results

1/2 P nt+1/2
Jo(pr) = (z—f) L / Inrja(po)w™ 7

o (7.2 —_ w2)1f2
0

= (EE) v o _73 Jn+1/2(pW)w_(n_1/2) d'lb"a

T ('w2 . r2)1/2
and

./ pJu(pw)J,(pv) dp = 6(w — v)/(wo)'/?,

we have the following relations:

T 2 [ wldw [ f(t)dt
(3.9) _/Kl(ta’"a)tf(t) dt = ;/(rz W)z /(tz — w2172’ 0<r<a,
0 w

_2r / widw [ t2f(t)dt
= b<r<oo
2 _ o2y1/2 2 _ 42)1/2° ’
(= a7 | G — )1
and
v
2 Ly (v, w)wvdvdw
(3-10) K2(ta’") = E/[ (1"2 _ w2)1/2(t2 - 1,2)1/2’ 0<r<a,
00
2 TT Lo(v, w) dvdw
B ?// wo(w? — r2)1/2(v? — 12)1/2° b<r < oo,
v %
where
T e
(3.11) Li{v,7) = (W)l‘/z/fM(f, T 72)J1/2(§”)J1/2(ff') d¢,
0
and
(3.12) Ly(v,r) = (”T)1/2/5M(§,71,’72)J3/2(§”)J3/2(f’") dé.
0

Now, we assume

(3.13) f(tzl(t)dt '={ Si(r),  0< 7 <a

—r)L/2 ~Ti(r), a< r <oo



DIFFRACTION OF TORSIONAL ELASTIC WAVES 103

and

(3.14) P h()dt { —T5(r), 0< r <b,

r J (r2 —¢2)1/2 Sa(r), b< r <oo

in which, using the relation (3.6) and Abel’s transform, we get the following
two integral equations:

1 / wlTo(w) o Fy(1/2.1;5/2; u2/r2)
VT rI(5/2) ) (r? — u?) e
a<r< oo,

_ r? Ti(u) o F(1/2,55/1; r2/u2)
(3.16)  Ta(r) = L(r)+ Vv I'(5/2) / u(u? — r?) .

(3.15) Ti(r) = Li(r)+

0<r<b,
where
- _ 2dt T Si(u) du
(317 h(r) = - / R dt ao g 0<r<h
2r di d qug(u) du
(3.18)  Iy(r) = ?r[ A gt J = )il a<r<oo.

Further, on substituting the relations (3.9) and (3.10) in (3.7) and (3.8), the
resulting equations give rise to the other two integral equations, the relations
(3.13) and (3.14) and Abel’s transform being used

(3.19) Sl(T)*i'fL-l(”,?‘)Sl(”)dv = —29(#1+F2)7‘+/ Ly(v, r)Ty(v) dv,

D<r<a,
o0 b

(3.20) Sa(r) +/L2(v,r)Sg(v) dv = /Lg('v,?’)Tz(’b") dv, b<r<oo.
b 0

Assuming that a = kqa, B = kb and A = b/e are small, the unknown
functions S1(r), Sz(r), Ti(r), To(r) which are solutions of integral equations
(3.19), (3.20), (3.15) and (3.16) are obtained approximately following the
iterative process. Using the result that

T

3’!1, . . m + P
2P (1/2,1;5/25r2 fu?) = P {2m‘ - (u2 - rz)log (u — )} , T<u,
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Equa,tions (3. 15) and (3.16) become

(321)  Ti(ar) = blar)+ / Ty(bu) {%ﬁ"’i} - %Iog (g{%)} du,

1<r<oo,
and
2Aur w4 Ar
(322)  Ty(br) = hbr)+—— f Ti(au) {(—272—2) log (“u'“'— A)} s
0<r<l.

Next, we assume that @ = O()) so that § = e = O(a?).
In order to solve Eq (3.19), we rewrite it as

(3.23) Sl(ar)~i~a/L1(av ar)Sy(av) dv

= —202(uy + p2)ar + ale(av ar)Tl(m)) dv, 0<r<l.

Now we put
(3.24) “ - Si(ar) = X{ar)+ Y(ar)
so that Eq.(3.23) yields a pair of integral equations given by

1 :
(3.25) X{ar)= —202(py + p2)ar — a/Li(av,ar)X(av) dv, 0% r<l
T 0 .
and
oo 1
(3.26) Y{ar)= a,le(av,ar)Tl(av) dv — a‘] Li(av,ar)Y (av) dv,
1 0

D<r <1,

The kernel L,(av,ar) given by Eq.(3.11) can be converted to an expression
involving finite integrals by the application of the contour integration tech-
nique followed by SrivasTava et al. [3] and MANDAL et al. [16] and is given
by ' :

, 72y po(enr) HY (an'v)
ali(av,ar) = i(1+ ,u)az(w)l/2 [/\#(1 2)1/2 T (:;2'“ n2)1/2d
0 .

. 2 23\1/2
+/_n2(0 — )Y Jl/z(aUT)Hllz(am)d } R

4 #(n* - 1)+ (o2 — )
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where ¢ = k1/k2, p = p2/pt1. For v < r, v and 7 should be interchanged.

Next, expanding the Bessel and Hankel functions in series for small values
of their arguments and integrating, assuming that g > ¢ > 1, the above
expression can be written as

4 3 2 3
o’( vﬁ'r—}— 7 )M
ia®(v3r + r3) o®(5vtr 4+ 10r30? 4 %)
— M.
6 1+ 120 Ms
s 3 5 10 3,3 5
+za (3v°r + 107°%0° 4 3¢ v)Ms-i-O(a's), v
360
47,2 3
= oM + ioProM; — gﬁgiuM
i (rPv + o%r) a®(5r%v + 100372 4 0%)
— M
6 4t 120 Ms
T 3 5 10 3.3 5
+za (3r v-!—sﬁg ™ 4+ Ju T)Ms—i-O(as), v,

(3.27) ali(av,ar) = o®r My + ia®roM; —

where
a? 4 u
20p+1)

2 P -pu  p?t-o? o2 -1
3.29 My = : -

x log (6\/#2_1 +#\/02—1)H,

Vit -1 402 -1

1 1 #2___0.2 0.‘2_” “2_0.2 )
: My=— | (o -
9 [2(05_#)4_#2_02 (US—M ut—g?

Tre-1)| 15 Z-1\ 3 ' 2T

. o?—1 o o\/m—l-um

x{(u 'H”V“z—llg( ViE =T + Vot =T })]
%~ - g

(3.32) Msé(”il)[ 16”+ ‘L;z,_l){—(a u)+(# )

- (2]

(3.31) M,




=106 §.C. MANDAL and M.L. GHOSH

ut — o? {2(0"5 — )

2 [8,,
[105(" “HE AT B

w{u— 1)

2 2 3 N SR ' 2
uw—ojfot—p pu—o _ o —1
+y2—~1( 3 +,u2-1 {(,u o)+ w2 =1

7 _ 7 _
X log ovpE -1 tpdol - .
VIR -1 +v/62 -1
Substituting the value of L;(av,ar) given by Eq.(3.27) in Eq.(3.25) and

using the iterative method, an approximate value of X (ar) for low frequency
can be derived in the form

'(3_.33)'_ M =

(331)  X(ar) = a2 +p)[pr(e)r +o5(@)r* +ps(@)r+pr()r’+0(e®)),
where
ma)= -2+ M,a* + ?iMzoﬁ + 1 (M2 — 3M3) at
3 12\t

1 i .
+355 (943 M — 2007 + 80MF + 5Ms) o — = (9My My + Ma) o

+i§z&i (260M7M, + 109M1 My + 249M; M; + 3Ms) o,

ps(e) = —%Mlaz + -é— (Ml2 — M’;;)'o:‘1 + %(M1M2 - M4)a5
+?1'i (M + 2My M + 3Ms) o
+gio (3114'11144 — OMZM, + 5MaMs + Ms) o,
?5(‘1) = —% (11412 - MB) ot + I‘lﬁ (J’Mi3 —2Mi M3+ Ms) o
tag (MEMs = My My — MM + Mo) o,
. |

p7(a) = 2520(2M1M3 - Mf — Ms)a'ﬁ.

Next, replacing r by br, Eq.(3.20) can be written as

- oo I .
(3.35)  Sa(br)+b f La(bv, br)Sa(bv) dv = b [ La(bv, br)Ty(bv) do,
1 0

1 <r<oo.
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Following the same procedure as thai done for the evaluation of Ly(av, ar),
Ly(bv, br) given by Eq.(3.12) can be evaluated to the form

Ponaa(s 1)
bLy(bv, br) = i(1 + p)B*(vr)*/* { j! i 3/22)”2’2 (022(_[3::))1/2
o

7 (0% = Y 2y (Brr)HSYB0) T
R e e N

For v < r, v and r are to be interchanged.
For low frequency dLq(bv, br) is now reduced to the following form after
using the series expansions of Bessel and Hankel functions:

(3.36) bLy(bv,br) = a?\? {——Ml + O(a*‘)] v >,
= a?X? ['}:‘Ml + 0(044)] v< T

The functions which occur in the integral equations (3.15), (3.16), (3.19)
and (3.20) are calculated by an iterative process in the following order:

X: Sls Il) TZ) 527 -125 Tl’ Y9 Sl-

Iterative procedure is followed in order to obtain the following results suf-
ficiently accurate up to the order of (a)

2v2 . .
802(p1 + p2)ar®A [_1 + ngaz + L My0P
3r 3 3

—%Azr? + O(a“)] , O<r<l,
(3.38)  Ta(br)=hL(br)+0(a’), O0<r<l,
. 214
(3.39)  Sa(br) = _ 8820 + pp)aMra’ [ T O(az)] 1< r< o0,

(;3».37) Li(br) =

457
16.9 Mya?)\®
(3.40)  ILyar) = (1 Zg;);’ 1< [ +0(a 2) . 1<r<oo,
1642 A3
(3.41) Ti{ar) = 6 (ﬂi;?;fz)a [ —Mie? + 2{ 1+ %Mlaz

73 7

202 1
—-2-}\2}-]:-—1 ?‘{‘O(Ofa) ) l<r <o,
T
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160 Mya2)®
6921 2’5‘;2“ 22 I+ 0(a)], 0<r<1,

1682(py + po2)aMira®d’
4572

- (3.42) Y(ar) = -

(3.43)  Si(ar) = X(ar) - +0(e®), 0<r<l.

4. STRESS DIFFERENCE ACROSS THE ANNULAR DISC, TORQUE AND
FAR-FIELD AMPLITUDE

The jump of the stresses at the annular disc is given by
7(r,0,0) = 7(r)e = tD(r,0,8) — 7(r,0,8) = f(r)e=,
b S T S a, 2= O’
= fi(r) + fa(r) (supressing e“i“*),

Putting the values of f1(r) and fg(r) which are the solutions of Abel-type
integral equations glven by Eqs (3. 13) and (3 14) in the above expression,
we obtain

w om2 [ ] S ] )

ul oyl
+1 d { To(u)du n u*Sa(u) du }:J’ b<ov<a

?.2 dr (,,2 uz)a/z (Tz — u2)i/2

Finally, substitution of the respective va.lues of S§1(u), Tl(u), Tg(u) and
Sa(u) from Egs.(3.43), (3 41), (3.38) and (3 39) in Eq.(4. 1) yields, after
integration,

() rr) = Artinl [(1 i @M (1-0d) + %Ml) i

T

. +2§.Mza3 + ( ! (7M1 - 12M3) 15 (Mlz - MS) (1 - V12)

30
2 N 42 ' p
i (M2 — M) (1— v) ) ot —i 75 (LM, M3 + 40y)
+2 (M1 My — My) (i - 1/2)) o + ( ! (386M1M3 — TAM?
9 ! 1260

F280M3 + 10LM;5) — = (37MD + 80My M + 114M5) (1-4)

bt (24M1 +78MMs + 87M5) (1 - Vf)z - (2M3 My

1260 1575
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(4‘2) 3 2 3 6 .

[cont.] —M; - MS) (1 - Vl) a” +1 630 (75M1 My 4+ T2M1 M,
2

+156MzMs + 12Me) + 732 2 (MEM; - MyMy ~ MaMs + Ms) (1 v7)

2 16Mya2 )5
- (ot 23 ) (-7 o - 00

165 Mia? {sin~ 1y -1/2

+4511'2 {_ n ( iy +(1_V}‘)

-|-y11 ( 1+ M1a - ?)\2) (_?’Sh;—:lvl__i_ (1__1}12)1/2_’_2(1_”12)—1/2)
_1:2/2{) (_153111:: 298 9 (1—- V12)3/2+9 (1 3 Vf)1/2+8 (1 __,,12)"1/2)}

' 2 \1/2
_,% {2 (—1 + 3M1a2 + 1Mm3) (3V2 sin—1 (i) -y

3. 3 g Ve
: —1/2 222 9 _ 1y3/2
—2u, (Vg - 1) / ) — 5V2 (151/2 sin~! (Vz) + LAC BubY i 3 )
2

2 _ )/? _ 2+4
BIC L2 VR, (yg 1) 1/2)}ﬂ 8Ma®A )1/20(0‘8)] ’

Va 457 (b2 -1
b<r<a,

where v; = r/a and v = r/b.

Substituting @ = 0 and A = 0 in Eq.(4.2), the jump in the stress across
the rigid circular disc of radius a embedded at the bimaterial interface is
easily found to be

M+ )R m
To(r) = - 7 (1—p)1/2’

so that the stress intensity factor at the edge of the circular disc in the
statical case is

2v2 (411 + p2) 2 .

T

Ko= Lt [(1- V'I)I/?TO(,")] _

Therefore, in our dynamiéa.i problem involving annular disc, stress intensity
factors at the outer and inner edges of the disc defined by

i = Ba gy [T(’") 1- Vl)l/z]

. I(() e Kg
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and

K 7(r) (g — 1)/?
i g—_ =
Ko=% =M [ Ko

are given by

II

w1 2
(43) K -3 [{ 2+ nga +35 (TM - 12M3)

P (386M1M3 — TAM3 + 280 M7 + 101M5) at

1260
32)° (

T 1+—Moz +8/\2)}

7
.[2
+: {§M2&3 - E (11M1M2 + 4M4)Q5

1
e (75M My + T2M, M, + 156 My M + 12M6) a7}]

630
and _

8\ 1603 8Mya?)3®) .8\
44) K= 1|18 _ 8A a3l
() £ 2[{%( 1+ 3Mia ) 5r 45z J T'on®

The torque of the shear stress on the annular disc is re.presented by the
expression

a

(4.5) ' T =2r [ *r(r)dr,
e

which can be written, after putting the value of 7(r) given by Eq (4 5) and
integrating, as follows:

4 8 4i
(46) T = 5 (‘u,l + ,u,g) .Qﬂ,a [—4 + EMlaZ + “g‘Mgaa

4¢
105 (37M1 72M3) (14 - E (4M1M2 —l" M4) 055

' 2 _ 3 6
+4—72—5- (2704M1M3 +2100M7 — 650M + 472M5) o

A91MEM, + 328 My My + 720 My M; + 36M6)

57 1575 (

641° 4
P )‘2 8
+152(1 3Ma+ )-f—O(a)}
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Next, in order to deduce the far-field amplitude of the displacement in both
the media, we substitute the value of A;{£) in Eq.(2.8) and obtain

a Q3
£
4.7 v-r,z:ftftdt[-—-———-—————
(1) i(r7) J ® J (171 + paya)
Evaluating the integral with respect to £ by the method of steepest descent

for large values of +/(r? + z%) , we obtain finally for z > 0

Tr(Er) R (Et) exp(~]) d.

otk R 1
(4.8) n(r,8,2) = ¥1(8) +0 (-—) as Ry — o0,

R1 R%
where r = R cosf, [2] = Rysind,
iosin f 1
O = - ooy o<l

(4.9)
osind [;1.2\/(02 cos?@ ~ 1) + iop;sin 9]

o?p?sin? 0 + pa(o? cos? § — 1)

Fl@ = Gl(g);

1
for |cosf| > =,
o

202a? + cacosh 2 4 - 22
(g1 + p2) [_§+EM102+§*M2Q3

t50 (37M2 — 72M3) o — = (UMiMo 4 M)

1 3 2 6
3R (25601 M; — 6503 + 210M7 + 10M;) o

-;_94% (491 M7 M + 328M, M, + T20Ma Ms + 36Ms ) o
2,16, 2% 5. 1 2 "

(4.10) . Gi(0) =

"

24
1575

‘adcostd ( 2 2 9%
i (s e

o%a® cos® @ n 32X% {1 4 o
22680 45m? 3 7

(82M1 M + 23M,) a5} +

Also for z < 0, .
eikgRg 1
(4.11) va(r, 6, 7) = Fa($) s + O (—) as Ry — oo,

R, R3
where 7 = Rocos¢, |z| = Rasing
¢sin ¢

4,12 I = - G
(412) (9) p1v/(0* — cos?$) + pasing 9,
and Ga(¢) is obtained by replacing 8 by ¢ and also o by 1 in Gy(¢).
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5. NUMERICAL RESULTS AND DISCUSSION

Numerical results have been calculated to study the variations of the
dynamic stress intensity factors with the normalized frequency o at both
the outer and inner edges of the annular disc, situated at the bimaterial
.interface, for different values of the ratio of the inner and outer radii of the
annular disc, for the following two sets of materials.

FIrRsT SET :
Aluminium ~ py = 2.7gm/em® py = 2.63 x 10" dyne/cm?
Wrought iron  p = 7.8gm/em® - pg = 7.7 x 10! dyne/cm?

SECOND SET o
Copper pr=8.96gm/cm®  py = 4.5 x 10 dyne/cm®
Steel . py=T.6gm/em® = pp = 8.32x 10 dyne/cm?

The dynamic stress intensity factors are normalized by the static solution
Ko = —2v2 (1 + p2)R2/7 for the penny-shaped rigid disc. '

It is interesting to note that for both the two sets of materials, the stress
intensity factor at the outer edge changes appreciably with the normalized
frequency « and gradually decreases with the increase of the a; however in
the case of the inner edge, the stress intensity factor decrease very slowly
with the increase in the values of the normalized frequency. It may further
be noted that the changes in the values of the stress intensity factor following
the increase in the values of X is more pronounced at the inner edge than
that at the outer edge. We also note from Fig.2 and Ilig.3 that stress
intensity factors for the two sets of materials are nearly the same in case of
low frequency, and increase gradually with the increase in frequency.

Kd
1.00
098
0.96 - Aluminium f Wrought lron NG 7.,‘0
——— Copper/Steel : 4}'«\3‘
- 9.7\§
: 3

a.94 L ) ] t

g 01 I} a3 a4 . 08

T1G. 2. Stress intensity factor vs. normalized frequency (outer edge).
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o.24
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Ky

o

24/} 4

0.06

&0a
a

Fic. 3. Stress intensity factor vs. normalized frequency (inner edge).

.....—;-::_:_2;(2‘5“__‘
RS
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A=03

A=y
A=07
1 L A=0T i
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Far-field amplitudes defined by Fi(8) and Fy(¢) in the upper and lower
medium 2z > 0 and 2 < 0, respectively, for a fixed value of R, have been
plotted in Fig.4-Fig.7 against their arguments for different values of the
normalized frequency e« and A, the ratio of the inner and outer radii of the
annular disc for two diflerent sets of materials.

04
F(8)

Aluminiunm /Wrought lram
An06
——— A-p3

Fii. 4. Far-field amplitude Fy(#) vs. argument § of the amplitude

for upper medium {z > D).

It may be noted that both in the upper and lower medium for the two sets
of materials, amplitudes F3(#) and F,(¢), respectively, increase gradually
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a4
£(8)

Copper/ Steel
A=08

a3 -

g 2 2 54 &° g

Fig. 5. Far-field amplitude Fy(#) vs. argument # of the amplitude
for upper medium (z > 0).

T o

%)

Alurmiaium fWroughit lron
A=0F

.08

0.08

FiG. 6. Far-field amplitude F3(¢) vs. argument ¢ of the amplitude -
for lower medium (z < 0). '

from 8 and ¢ equal to zero, attain maximum values and then gradually
decrease to zero at 6 and ¢ equal to 90°. The values of the angle at which
the maxima attained are found to depend on the material properties and
not on the values of the frequency and . On thé other hand, if the material
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2.08

b (4] Copper /Steel
A=08

-0.06

0.04

2.0z

Fic. 7. Far-field amplitude Fz(¢) vs. argument ¢.of the amplitude
for lower medium (z < 0).

properties are kept fixed, maximum values of the far-field amplitude are
found to depend on the normalized frequency a and A, which is equal to the
ratio of the inner and outer radii of the annular disc.
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