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DISCRETE MODEL OF WAVE PROPAGATION
' IN A NONPRISMATIC BAR
WITH RIGID UNLOADING CHARACTERISTICS

Z. SZCZESNTAK (WARSZAWA)

A discrete model is proposed for the propagatmn of wavesin a nonpnsma,tlc bar made
from a material whose unloading characteristic is rigid. Arbitrary tlme-dependent applied
load js considered. In such a situation the modelling of wave propagation must allow
in each cross-section for multiple effects of its alternating rigid and activated behaviour.
These effects are nonlinear and thus it is very difficuli to approach them analytically. An
algorithm for numenrical solutions is proposed and errors of the results are discussed. Ef-
fectiveness and applicability of the model are illustrated by means of numerical examples.

1. INTRODUCTION

The propagation of plastic waves must be formulated on the basis of a
physical law which is different for loading and unloading processes. Experi-
mental evidence shows that the unloading branches of the o—¢ relationships
for soils and some other media can be approximated by a rigid behaviour in
a satisfactory manner [1+3].

‘In the theoretical analyses the physical models of materials with rigid un-
loading have proved to be of considerable practical importance [4+10,18, 19,
21]. The use of such an unloading behaviour remarkably simplifies the so-
lutions of a number of problems encountered in the engineering practice.
Good agreement of some theoretical solutions with suitable test results was
emphasized in [4,6-8,11]. The solutions refer to some particularly simplified
patterns of applied load [4,6,7,10,11}. Arrival at solutions for arbitrarily
variable applied load is fraught with serious difficulties. They result from
the fact that the unloading process is described by a nonlinear differential
equation with nonstationary boundary conditions, e.g. [18,19].

This paper is devoted to the propagation of one-dimensional waves in
materials with rigid unloading characteristics acted upon by time-dependent
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edge loads. A bar with variable cross-section will be considered. A method
will be presented that makes it possible to solve such a problem in an ef-
fective manner with the help of discretization procedures. Foundations of
this discrete method for a linearly elastic material under both loading and
unloading were presented in [12] and developed in {13].

An essential feature of the method is a discrete model whose structure
and operation are based on the principle of errorless difference approxima-
tion. It is in this paper that an analogous discrete model is proposed capable
of taking into account an additional effect of rigid unloading. The errorless
difference approximation is preserved in the loading processes. Unfortu-
nately, this principle cannot be applied in the processes of rigid unloading
which ceases to have a wave characteristic. However, an effective way to
minimize errors will be’ md}cated

‘The d]SCI‘ete model of this paper, along with the model described in {12],
is of fundamental 1mportance to construct complex discrete models for the
wave propagations in the case of nonlinear o — ¢ relationships. A piece-wise
linear approximation is used to reach effective solutions,

The described simple model can be applicable in the dynamic analysis
of displacements of structures that interact with soils. The solutions of
examples in Sec. 5 will be instructive in this respect.

2. ASSUMPTIONS AND GENERAL CHARACTERISTIC OF THE PROBLEM

Consider a semi-infinite nonprismatic bar whose material deforms ac-
cording to the ¢ — ¢ relationship shown in Fig. 1. Upon loading the material
behaves as a linearly elastic one, whereas upon unloading its internal con-
straints make it impossible to deform, hence the rigid unloading behaviour.
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It is soils that behave in such a manner. Various models of soils have been
described in the literature and broadly discussed in [3,4,14-21]. Soil is
sometimes considered as a three-phase medium, not infrequently sensitive
to strain rates. However, the constitutive law adopted in this paper does
not allow for viscous effects.

A free end of the bar is acted upon by arbitrary, piece-wise monotonic
load p(t) (Fig.2a). As a result, two neighbouring regions are created: a
loading region I and a rigid unloading region II (Fig. 2d). The time-depen-
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dent interfaces are denoted by ¢ —a and ¢ —¢. In the region I the considered
problem is of wavy nature and is described by an equation, suitable for a
bar with variable cross-section, namely

- ' : v L [0 28w
(21) e (a—+3§5_) =0

where u = u(z,?) denotes a displacement, a, is the wave velocity in the
loading process and is equal to a; =(E/ 9)1/2.

The cross-sectional area A(z) of the bar varies according to the rule |
Az + dx) = A(z) + dA(z),

(2.2) )
. dA(z) = 2A(:t:);dm.
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Suitable boundary conditions must be taken into account. A decreasing
load. p(t) gives rise to an unloading process and a creation of region II. The
strains cannot decrease due to the constraints assumed to be present in the
material. This leads to a decay of wave propagation in the region II which
becomes rigid and is subject to a rigid translation with the uniform. velocity
v,;. The motion equation for each element of the discussed region has the
form ..

23 o2 = C7 4 o(a)=.

The interface ¢ — ¢ moves, .With a variable velocity a. compatible with the
dynamic states of the nelghbourmg regions. The signs of a. characterize two
different physical 51tuat10ns Thus the two following cases take place

CASELl. " a,> 0 .

During decrea,smg loadmg p(t) the velocity »,, diminishes and the rigid
region grows. The rigid region penetrates into the loading region and the
latter shrinks. The course of the discussed process depends on the current
dynamic parameters of the loading region.

CAsE 2. a, <0

Increasing loading p(t) causes an increase in the velocity v;; and the rigid
region diminishes. A growth of the loading region takes place in accordance
with the velocities ¢y and a.. This effect will n what follows be called an
activation of the rigid region. It is worth noting that the activation of a
certain part of this region depends, among other reasons, on its state which
was reached in the process of previous loading. Basic parameters of thlS
state are: maximum stress or , Fig.1 and an associated mass velocity v

An arbitrary loading as shown in Fig.2a can cause that the same region
of the bar will undergo multiple and alternating processes of activation and
stiffening. In the particular case of loading shown in Fig. 2b rigidly unloaded
region will propagate along the bar and a, will equal ;. In the case shown
in Fig. 2¢ only the loading region will be present in the whole bar. From the
above described situation it follows that in Fq. (2.3) we have two unknowns:
velocity v,; and length of the region II. For their determ.matnon the contmmty
conditions at the interface & — ¢ are used e

I | I . WO IL i Lo
(24) v, = V., T Oy =0,

In the case of stiffening the p&_rzi.métérs vi ahd-'&i’ are relevant for the loading
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region. In the activation case it should be assumed that v, = v, and

1 I m
Ty = Opye -

Allowance for an appropriate continuity condition leads to a differential

equation in a nonfinear form. Closed-form solutions can only be obtained

for simple loads p(¢).

3. DISCRETE MODEL OF A NONPRISMATIC BAR WITH RIGID UNLOADING
CHARACTERISTIC

A discrete model of the interior of the considered bar is analogous to that
described in [12]. It consists of a series of concentrated masses Am, as seen in
Fig. 3. Motion of the masses is controlled by means of weightless constraints
that are sensitive to the sign of displacement increment (velocity).

Fra. 3. Avippr = vi — vig1, 1. Awviigy > 0 - loading,
2. Awiiyy < 0 cannot occur - rigid unloading.

These constraints can be visualized as "pike’s teeth”. Upon loading the
springs are capable of deforming freely, whereas upon unloading the motion
of springs is prevented by the system of locking teeth and no deformation
occurs.

Operation of the described model at the loading stage is based on the
criterion: of errorless difference approximation [12]. This means that the
spatial discretization Az of the bar and the time discretization A¢ satisfy
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the formula Az = ayAf. The values of rigid masses in the discrete model
should be determined according to the formula

(3.1) Am; = Api a1 Atp,

where Ag; is a cross-sectional area of the bar at which the ¢-th mass is con-
centrated. This mass is acted upon by the forces P; and F;.; concentrated
at constraints and resulting from the stresses o; and ;. associated with
the area A; and A;_q, respectively, see Fig.3. In conformity with Eq.(2.2),
these areas are calculated with the use of the following difference formulae

A; = Api+ AA,

(3.2) Aioy = Aoi— A4,
AA = 24152

T 2

The performance of the considered model in the loading range is described
by the following relationships:

Aiiqo? — Ajo?

ﬁ‘n,n+1 — i
i m; ?
53) Aur™ = ATV P AL,
3.3 - :
ntl n nynt1
u; = ul + Ay ,
nt+t ndl
nl . Wiog T W E
ai_l - A:J.’: . )

where Au}""*! denotes a displacement increment of the i-th mass according
to the parabolic approximation with respect to time.

The performance of the model in the rigid ﬁnloading range will be dif-
ferent due to the fact that an unloaded portion of the bar becomes unde-
formable. Moreover, the length of this portion can increase or decrease in
accordance with the dynamic conditions of the considered problem. In these
conditions operation of the model will be controlled by a suitable procedure
for determining the length of rigid portion and its stresses,

A discrete model in the situation of growing rigid region is illustrated in
Fig.4. Dynamic parameters of the wave-front of the unloaded region at the
level of the mass Am numbered j will be denoted by the indices ¢, 7. These
parameters are: the velocity of wave-front of a rigid part af ;, mass velocity
vg; (constant over the whole rigid region) and the stress o¢;. The above
parameters constitute the basic unknows of the problem under consideration.
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The velocity of the front of the unloaded region is, as a rule, variable and
depends on the current dynamic parameters of the process. Variations in
this velocity and, at the same time, in the length of the rigid region is
characterized by a parameter K = 1,2,3... that defines the distance K Az
covered by the front of the considered region during the time step A, The
parameter K will vary irregularly from one time step At to another because
the mass velocities v7; will vary too. The velocity v71" at an instant ¢+
can be calculated from the momentum conservation principle. A uniform
expression of this principle for the cases of stiffening and a,ctiva,ti_oh can be
shown as follows:

(34)  oiH L M+ AM(K)] = Mo?; + Ax™(K) + AP (K)At,

where
=3
M= Am;.

i=ip

Specific forms of the remaining terms of the principle (3.4) for the two
possible cases are the following:
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Cask 1. Stiffening (a;"’j > 0) the mass velocity v7; diminishes:

i=j+K
1=j+1
=i+ K
E Am;vl,
i=5+1
APHK) = of 14,1 — ok Ak,

(3.5) AT™(K)

The stress o7, and the velocities v} are associated with the current region
of loading.

CASE 2. Activation (azj < 0), the mass velocity v;; grows:

:'=‘j'—f{'+1
AM(K) = ~ > Am;,
i=j
i=j—-K+1
(3.6) Ar™(K) = ~ Y Amu,
=g
AP;(K) = '-"IA"P_I mJ—-KA j—K -

The stress Or i K is.dt its. maximum durmg the loading of the cross-section
i—-K.
It should be noticed that if Az — 0 and At — 0 then AM (K ) — 0,

Ar™(K) — 0, AP}K) — g‘-’- + 02 , and the relationship (3.4) will be

transformed to bécome a suitable differential expression (see Eq.(2.3)). This
means that both the difference and the differential approaches to the consid-
ered problem coincide in the limiting case. The value of K in the formulae
(3.4)-(3.6) is determined in an iterative manner. Starting from K = 1, con-
secutive positions of the front of the rigid region will be analysed so long as
the calculated stress cr":“*i K Of a:';"l g will satisfy the following condition for
the first time:
Tor stiffening

ntl I,n+1
(3.7) Tea+K Z OHK
for activation
' ' +1 11 n+1 ' i
(3.8) Tei-K 2 Omj K -
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The stresses o7 g tl i for the stiffening are calculated with the help of the
following set of relations

Tl pn
grntl o TegtK J+K
ej+K Al ’
na+l n~1,n n,n41 2
(3.9) Augiir = Auggg +iciicAd,
) n41 — n n,nt1
Yogbk = Uogik AU,
uttl oy
n+1 _ cit+K T J+K+1 E
Teitk Az ’

1 . . .
where @ ;" ++K, Au?ﬁ K> u;‘,}'_ll_ & are the acceleration, the displacement incre-

ment and the displacement of the analysed mass j + K, respectively. For
activation the indices § + K should be replaced by j — K, and in Eq.(3.9)
the equality v}, - = v';_j should be introduced. On calculating u;“}l( 43 iR
Eq.(3.9)4 it should be remembered that the activation process takes place
and thus the maximum stresses a should be used, determined in the load-
ing process.

For example, in the situation depicted in Fig.4 the stresses in the rigid

Tegion cr"“ : a”;_’}l( 1 can be calculated from the expression

: B ,Uﬂ.'-l-l n
(3.10) : a?'HAI = CT"'+1A1 1 - Am;—ﬂh-gt«-—-l— ,

where ¢, S I<j+ K — 1.

The boundary and the initial conditions should be formulated a,ccord-
ing to [12]. A general form of the boundary condition is obtained. for a
layered bar in this cross-section that separates the neighbouring segments
with different impedances a, 0, and @, 410,41. In [12] the discussed condition
was shown to be satisfied automatically provided in the discrete model the
boundary mass Amg; will be

(3.11) Amy; = 0.5 (Am,,',.,. + Ami,r-}-l) ,

where the index ¢ numbers the cross-section in which the considered bound-
ary mass is concentrated. The values of the constituent masses Am; ,,
Amiyyq are calculated according to the formula (3.1).

From the condition (3.11) it follows that a free end of the bar in the
discrete modelling should be associated with the mass of the value Amy; =
0.5Am;,, since @,y10r41 = 0. The remaining masses will have the values
Ami,. In this situation the considered boundary mass cannot be directly
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acted upon by an assumed discrete form P(#") of the applied load p(2).
This fact requires a special form of the load P,(i") to be determined. This
is '

0.5PA(1° forn =10,
(3.12) Pz(tn) :{ A( )’

PA(#" 1) — 0.5[Pa(t* 1) — PaA(t™)], forn =1,2,3,....

When the load is transmitted without paying attention to the effects of
wave reflection (from the free end within the bar), the boundary mass can
be equal to Am; . and it can be acted upon directly by the load in the form
Pa(th).

Assuming A(z) = const, the considered model will be suitable for any
prismatic bar.

4. ACCURACY OF THE PROPOSED MODEL

The described discrete model operates in the loading process in the same
manner as a linearly elastic model dealt with in [12]. In that paper it was
indicated that the condition Az = a1 At ensured an analysis of the loading
process to within the accuracy of truncation errors. Such an accuracy can-
not, however, be achieved for the unloading process. In general, the spatial
and temporal course of the unloading process is nonlinear and that is why a
determined location of the front of the unloading wave I, ;4 x = (j + K)Az
does not necessarily have to coincide with the exact solution. This remark
also applies to all parameters relevant to the front of the unloading wave. In
the discussed situation the truncation errors are impossible to be avoided,
although an effort can be made to make them as small as possible. Nu-
merical analysis of the considered problem shows that a finer space-time
discretization is a very effective way to minimize the errors. The computa-
tional algorithm presented in Sec.3 also appears to be very effective. So-
lution to a given problem is therefore easy to obtain for various space-time
discretizations and its convergence can be analysed with relative ease.

An exact solution to the considered problem as applied to a nonprismatic
bar does not exist in the available literature. Thus the values of errors and
possibilities of their minimization will be discussed for a bar with constant
cross-section. An exact solution for this specific case is presented in [6]. A
semi-infinite bar made of a material with rigid unloading characteristics is
considered. At the end z = 0 the load p(t) initially increases linearly in time
and, at the instant 7, decays in an abrupt-manner, Fig. 5. Two unknowns
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are sought: variable length of the rigidly unloaded part and the stress at its
front. The following numerical data are assumed:

po = 0.095MPa, 7=0.125s, a;=1014m/s, g, = 1800kg/m".

The exact solution [6] shows that-under the assumed load p(t) the front of
the rigidly unloaded part propagates with fast varying velocity, especially
at the inilial stage starting from the time { = 7. This situation appears
to be particularly unfavourabie for the attainment of high precision of the
numerical solution.

The problem is solved by a suitable construction of a discrete model
according to the rules presented in Sec. 3. All the concentrated masses have
the same values, namely Am = a0, At.

The solution for 0 < ¢ < 7 (loading process) will bear the truncation
errors only.

For ¢ > 7 the errors of the solution were analysed associated with the
length of the unloaded part I, of the bar and the stress ¢, at the front. The
errors are defined as follows:

1) error 6"(l.) of the length [,

mo o
(1) = iD—E—LN-l{]O,
lc,D
2) error §*(o,) of the stress o,
o _ gt
6”(0’6) = ——;——-’ﬁl(}O,
JcD

where Jn p» 0 p — the values obtained from the exact solution for t = nAtf;
l'n

on? oy — corresponding values taken from the numerical solution.
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The obtained computational results for Az = 1.305m are shown dia-
grammatically in Fig.6 from which it is seen that the largest errors are
present at the beginning of the unloading process and refer to the length of
the unloaded region. These errors oscillate around zero and diminish in a
rapid way. For the large step Az = 1.305m the greatest error amounted to
9.1% and after 26 steps it did not exceed 1%. For t = 150 At its value was
as small as —0.17%. FErrors in stresses are seen not to exceed 0.5%. The
above errors can still be made smaller by decreasing the spatial step Az or
an associated time step Af. For instance, for Az, = 0.1Az an initial error
in length o™=1(l,) was reduced to —1.25%.

[%]

-2

Ax =1305m

lenght error |

-6 ............... stress error a,

Fia. 6.

It should be also remembered that, due to the decay of the wave propa-
gation process in the unloading region, the discussed errors are of a local
character only.

In general, a proper choice of the steps Az and At, resulting in an asso-
ciated level of errors, depends upon individual conditions and requirements
of a given problem. '

In the engineering practice it often happens that the load p(t) increases
very abruptly to drop down according to an arbitrary function as is shown
in Fig.2b. Assume the load p{t) = po(l — t/71) to be applied at the free
end of a semi-infinite prismatic bar, where 74 = 0.5s. The adopted data
are: g; = 104.4m/s and p; = 1800kg/m®. In the considered situation it is
only the rigid region that exists in the bat since-the loading region shrinks
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to become a cross-section creating a front of the rigid region. The velocity
of propagation of this front becomes equal to the velocity a;. The length of
the rigid region is determined in an exact manner. Certain errors are only
involved in the calculations of the stresses oy. However, their values can
hardly be noticed, see Table 1.

Table 1.
P ar(z)[po; Az = 1.305m
Az
exact solution | numerical sclution
1 . 0.987500 0.987500
2 - 0.975001 0.975001
3 0.962501 0.962501
38 0.525014 f' 0.525014
39 0.512514 0.512515
40 0.5000614 - 0.500015

5, NUMERICAL EXAMPLES

Two examples will now be demonstrated. In the first one the effectiveness
of the proposed method is studied for arbitrarily complex time-dependence
of the applied load. In the other, an effect of variability of the cross-section
of the bar on the displacements of undeformable mass through which the
dynamic load is transmitted will be emphasized. The obtained results can
be useful to select an appropriate computational model for the solution, for
example, of dynamic motions of a structure interacting with soil.

EXAMPLE 1

Consider a semi-infinite nonprismatic bar made from a material whose
stress-strain relationship was depicted in Fig. 1. Variation of cross-sections
is defined by the formulae (2.2). In conformity with Lubimov’s method
quoted in {22], variation of the cross-sectional area. A(z) is determined from
the formula A(z) = Aoz /zj, where zy denotes an experimental parameter
and Ap = A(0). Assume Ay = 1m? Material data are: a; = 150m/s
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and gy = 1800 kg/m>. The free end of the bar is subJected to the fo]lowmg
time-dependent load p(t) (Fig.7a):

[ pi(26 ~ ), f— ,for 0< & <,
-1

Pl(T2 ) , for ; <t <7y,
T2 - T1

(t“TZ)z for m<t <nr

0.0, for !TSS t ST47

I—m1y :

pli——1, for ; £t <75,

T ~ T4 .
. 0.0, for t > 7.

The following specific values are assumed in Egs. (5.1):
p1=02MPa, p,=03MPa, py=04MPa, 7 =4ms,

T =6.7ms, 73 =14.6ms, 7, =18 Ihs,- 15 = 21.3 ms. -
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The solution will provide a space-time distribution of deformations and
the displacement of the cross-section under direct applied load. The dis-
crete model described in Sec. 3 will be employed. The bar is divided into
the segments Az = 0.1m. From the condition of the errorless difference
approximation it follows that the associated time step is At = 0.6667 ms.

The solution is depicted in the phase plane, Fig. 7a. Characteristic re-
gions are designated in the following way: O - a part with no load, I —
loading part, II — rigid unloading part. The parts I and II are separated by
a line which is here called a rigid unloading wave. With its help the changes .
of location of the front of rigid region can be situated. The diagram for
the travel of the rigid unloading wave is similar to that describing the load
variations p(?).

It is not only a single stiffening of a certain part of the bar that takes
place in the considered example. Due to a complex load function p(t), a
portion of the bar with the length [ ; undergoes alternating stiffening and
activation. The proposed method copes well with such a situation. The
spatial distribution of permanent strains as a result of consecutive passes of
the rigid unloading front is also shown in Fig. 7a.

A time-dependent distribution of the stress o.(f) at the front of rigid
unloading is shown diagrammatically in Fig.7b. Both the stress and the
mass velocity of an increasing rigid region are found to decrease. Conversely,
as the rigid region shrinks, the stress o.(t) and the mass velocity increase.
The solution presented above is compared with that obtained for a prismatic
bar (dashed line). The influence of variable cross-section of the bar on the
general behaviour is clearly seen. It can be also noticed that a nonprismatic

Ax=04m At=0667ms

4 5w 26 o 3 0 " ar
Ts | FEPTRETS ¥
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bar undergoes a faster stiffening in the unloading process. The reason is a
successive enlargement of the current mass of the bar (geometrical damping).
To maintain the same dimensions of the unloading region as for a prismatic
bar, suitable larger load would be necessary to be applied.

Time-dependence of the displacements u; of the boundary mass at whlch
the applied load is depicted in Fig.8. The displacements corresponding to
the cases shown in Fig.7 are compared with solutions suitable for elastic
bars. Attention is drawn to the fact that the end displacements depend
heavily on the variability of the cross-section and the deformability of the
material. .

Ten times shorter geometrical step was found to cause no appreciable
changes in the solutions visnalized in Fig.7 and 8.

 ExaMPLE 2
Consxder an undeformable mass M located at the edge section (z = 0) of
a nonpnsmat]c bar. Geometrical and mechanical parameters are assumed

to be the same as in the example 1. The mass M is directly acted upon by
an external load p(t) in the form

G p(t)eﬁo(l;-})ﬂ,'

Wherepo = 1 2MPa. r=15ms, § =3,

Variations in time Ups(2) of the conmdered mass wx]l be a,nalysed Dis-
crete modelling will be used as in the example 1. Addition of the mass M
constitutes a global model of the considered problem in accordance with the
rules presented in Sec. 3 and in [12]. In this model the value of the first mass
will be modified to become

(5.3) CMy=Am/2+ M.

To be specific, let us assume M = 3.75t. The solution of the problems is
shown diagrammatically in Fig. 9. The diagrams /-6 refer to a nonprismatic
bar, the diagrams 7 and 8 correspond to a bar with constant cross-section.
- The displacement diagram for the assumed specific data is designated by 1.
For the sake of comparison, other displacement diagrams are shown to enable
the influence of the value M and the wave velocity a; to be evaluated. Effects
of the values of mass M are illustrated in the diagrams 2 and 8 (M = 8t
and M = 2%, respectively). Effects of the wave velocity a; are shown in the
diagrams 4 and § (a; = 300m/s and a4y = 75m/s, respectively). A general
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conclusion can be drawn that the time-variability of displacements and their
maximum values are more sensitive to the changes of the wave velocity a,
than to the changes of the mass M. This means that the impendance of
the material and the geometrical damping are of primary importance in the
considered problem,

An influence of elastic properties of the bar material is shown in the
diagram § (all the specific data are here the same as for the diagram 1).

The results for a prismatic bar are also présented; the behaviour of an
elastic bar is shown in diagram 7 and the rigid unloading is allowed for in
the diagram 8. L
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The obtained results show a considerable influence of the variable cross-
-sections and mechanical properties of the bar material. In the considered
problem and for the material with a rigid unloading characteristic, the max-
imum displacements of the mass in a prismatic bar are as many as 5.17 times
larger than those in a nonprismatic bar.

6. CONCLUSIONS

The principles of discrete modelling of one dimensional wave propagation
in a linearly elastic material, i.e. insensitive to whether loading or unloading
takes place, were put forward in [12].

Similar model is proposed in this paper for a material exhibiting rigid be-
haviour upon unloading. Effective solutions can be arrived at as illustrated
by an example of Sec, 5.

Both models, described in {12] and here, are capable of solving problems
in which the o — ¢ relationship is linear, one-segmental and the processes of
loading and unloading take place. These elastic and plastic models can be
termed the basic ones.

The difficulties typical for such a class of problems tackled analytically,
can be overcome automatically so the models can be useful in some more
complicated analyses as well. The presented models can be also combined
to enable analyses of wave processes in the case of piece-wise linear multi-
segmental approximations of the ¢ — ¢ relationship, both for loading and
unloading. This is particularly convenient for soils subjected to arbitrary
dynamic loads without imposing limit on stresses. Propagation of plane,
cylindrical and spherical waves may also be dealt with. Discretization of
the problem of "plastic gas” published in [20] can also be approached. This
model was used in [21] to analyse wave propagation phenomena in soils
under very high pressures.

Another field of application of the basic models is the dynamic soil-struc-
ture interaction. Cavitation and layered structure of soil can be allowed for.

The results of examples given in Sec.5 indicate the possibilities of the
model to effectively analyse parameters of the motion of structures in the
surrounding soil.
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