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FATIGUE RELIABILITY IN UNIAXIAL STATE OF STRESS
PRODUCED BY SYNCHRONOUS LOADS

J. KOLENDA (GDANSK)

The paper deals with the stress-based fatigue analysis of structural members subjected
to synchronous and in-phase loads. The uniaxial state of stress produced by combined
bending and tension-compression is considered. Attention is focused on the failure subre-
gion for high cycle fatigne where the linear logarithmic models for fatigue behaviour are
applicable. The relationships for calculation of fatigue reliability and number of cycles
to failure are proposed. For the assessment of the probability of fatigue failure under
the stress with normally distributed amplitudes of its components, the reliability index is
determined,

NOTATION

cpe covariance of the amplitudes oy and oy,
D total damage cansed by N stress cycles (N' < N),
f  safety factor,
foe(ow,0¢)  joint probability density function of the amplitudes oy and oy,

K5, K:  material constants in Eqgs. (2.3) and (2.4},

Ly, L+ maximum stress amplitudes corresponding to the highest points of
straight regression lines in the plots log oy, vs. log Ny and log o, vs.
log V¢, respeciively,

my,m:  exponents in Egs. (2.3} and (2.4),

M safety margin,
N number of stress cycles to cause failure under combined bending
and tension-compression,

N, N:  numbers of stress cycles to cause failure under alternate bending
with a stress amplitude o»; and under symmetric tension-compression
with a stress amplitude o, respectively,

No  required number of stress cycles to achieve a given sdesign life,

Py . probability that stress cycles do not exceed the safe region,

Py probability that stress cycles do not exceed the failure subregion,
P probability that stress cycles are within the failure subregion,
Pr  probability of fatigue failure,
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R fatigue reha.blhty, :
ss, 8¢ standard deviations of the amphtudes &y and oy,
s, standard deviation of the dimensionless safety margin,
Sy, S fatigue limits at alternate bending and at symmetric tension-compression,
B reliability index,
- p dimensionless safety margin,
i mean value of the dimensionless safety ma.rgm,
oy amplitude of the stréss component resulting from' alternate bending,
ey amplitude of the stress component: resulting from symmetric
tension-compression, .
b, 7 mean values of the amplitudes ¢ and o

1. INTRODUCTION

In fatigue design the basic variable épaée'can be divided into the safe
region and failure region [1]. When the stress amplitude under sinusoidal
loading is o;, the safety factor can be calculated as '

So
1.1 = —
(1) =2
in the safe region, and
1.2 =
(1.2) f= NO

in the failure region. In Eq.(1.1) So is the fatigue limit and in Eq.(1.2) N;

is the number of cycles of stress with the amplitude o; to cause failure, and

Ng is the required number of stress cycles to achieve a given design life.
The fatigue reliability of a structural member is defined by [1]

(1.3) R=1—Ppr=P (M >0),

where P, is the probability of fatigue failure and P is the probability that
the safety margin M is greater than or equal to zero. The safety margin is

(1.4) - M=65 -0
in the safe region, and -
(1.5) : M =N;- m

in the failure region. Instead of M, the dlmensxonless safety ma,rgm

(16) - w=g
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-

or, respectively,

(1.7) p=

N;
can be taken into consideration. From Eqs (1.1), (1.2} and (1.4)—~(1.7) it
follows that
1
(1.8) | | p=1 I

When the safety margin (or the dimensionless safety margin) is linear -
in basic variables and the latter are normally distributed random variables
with known mean values and standard deviations, the probability P, can
be determined in the standard tables of the normal distribution [1,2]. The
same concept is used in this paper for an uniaxial state of a multi-component
stress. As an example, the stress with two synchronous components is taken.
The case of non-normally distributed variables is also considered.

Fatigue behaviour under constant amplitude stress is usually described
by the linear logarithmic § — N curve [2]. In the present paper an attempt
is made to use such curves for the stress with more than one component.
For this purpose, an adequate failure subregion for two synchronous stress
components is used.

If more than one t1me-va,1‘ymg load act in combination on a structure,
the knowledge of the distribation Qf only the maximum values of the indi-
vidual loading processes gives insufficient information to evaluate the com-
bined effect exactly [1]. However, in practical calculations real loadings are
most {requently simplified in such a way that the mathematical problems
connected with estimating the joint distribution function are avoided. For
example, using TURKSTRA’S rule [3] the reliability of a structure is checked
only at those points in time where the individual load processes reach their
maximum values. In the FERRY BORGES-CASTANEETA model [4], instead
of the combination of r real processes, 27~! combinations of rectangular load
processes are considered. _

" Although the approximate methods seem to reflect the most important
characteristics of load combinations, the calculation procedures based on the
joint probability density function of load amplitudes and on an appropriate
maulti-load fatigue failure criterion might be useful. Such criteria are de-
scribed e.g. in [5-7]. Tn the following the stress criterion [7] based on the
linear logarithmic §-N curves is used. It is assumed that uniaxjal state
of stress at a given point of a structural member is to be estimated as
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a combination of the sinusoidal stress components resulting from in-phase
alternate bending and symmetric tension-compression, and that the ampli-
tudes of these components are random variables with known statistics.

2. COMBINED BENDING AND TENSION-COMPRESSION

Let us consider the case when an alternate bending moment and a sym-
metric push-pull force are synchronons and in-phase processes which pro-
diice, at'a given point of a structure, the resultant normal stress of an
'amphtude o
(2 1) or =0p 1 0y,
where ab a.:nd o-t are the amplitudes of the stress components. The joint
proba,blhty den31ty function, mean values, standard deviations and covari-
ance of the amplitudes o3 and o; will be denoted fy(03,a¢), Tb, Tz, Sb, St
and ¢y, respectively.

As mentioned in Sec. 1, the most commonly used model for fatigue be-
haviour of constructional steels under constant amplitude loading is the
linear logarithmic one

(2.2) Niol" =K,
where m and K are selected constants. Equation (2.2) is applicable for
oi € (8o, L}, where I is the maximum stress amplitude corresponding to the

highest point of the straight regression line in the plot logo; versus log V.
In particular, we have

(2.3) ' Ny = K,
for bending, and
(2.4) No™ = K,

for tension-compression. For these loads the fatigue limits and maximum
stress amplitudes will be denoted S, Sy, Iy and L¢ (Fig. 1a,b).

In order to determine the combined effect of these loads, the following
condltlons must be taken into a,ccount [7 8]

o)
25). . B, % <
L o o
2.6 B R 1
(2.6) s sts > b
(27) 4 <L

L, ' L
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The condition (2.5) determines the safe region, whereas the inequality (2.6)
— the region where fatigue failure occurs. The conditions (2.6) and (2.7)
determine the failure subregion where the stress-based fatigue calculations
may be performed (Fig. 1c).

c a b
o & fra] o o

Tension- compression stress amplitude

Bending stress amplitude’

Fia. 1. Log stress amplitude vs. log cycles to failure for alternate bending (a) and for
symmelric tension-compression (b). (c) - safe region () and failure subregion () for
combined bending and tension-compression (in linear scale); () = triangle 05,5,
(74} = triangle 0L, L, — (7).

For constant amplitudes o3 and. o; the safety factor is

o0 e(geg)

in the safe region, and

. y N
(2.9). , e f= e |
in the failure region. N is the number of stress cycles to cause failure, which
for the failure subregion can be determined by the following equation
L o |
N K, K’
It should be noted that, according to {7], Fq.(2.10) can be used even if
oy < S and/or o, < S¢ provided both the conditions (2.6) and (2.7) are
fulfilled.

When the amplitudes o4 and o, are random Gaussian variables, the reli-
ability index [1,2]

(2.11) =

(2.10)

tt‘n |tl
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can be used as a measure of safety. Here ji and s, are the mean value and
standard deviation of the dimensionless safety margin. The reliability index
relevant to the uncertainty of fufilling the condition (2.5) can be determined
by means of Egs.(1.8), (2.8) and (2.11) as

(2.12) ﬁ=(1__§‘1_§£) LN .. e
So S/ \S EH Sb St

When the conditions (2.6) and (2.7) are fulfilled, the quantity z is, ac-
cording to Fgs. (1.8),(2.9) and (2.10), nonlinear in the amplitudes gp and o3,
and its approximate mean valize and standard deviation can be obtained by
linearization. After expanding p in Taylor series about b, and retaining

~ only the linear terms, one gets

(2.13) B p(8,01) =1 No (&;ﬂbe—l + c'r;“rK;l) ’

_ .,
p\? op\2 o oy 1
o) e ()3
(2.14) Sp [sb ( 3%)0 + 5  7g, O+ 25t \ 357 ) \ o1 /o)
= No [(SbmbK{ 151""""1)2 + (Stthgla;"“—-lY

' 1g--1 1 k&
. 1 el mmte
+2epmpmi Ky Ky 0y gy ] .

The subscript 0 at the derivatives denotes that they are estimated at the
mean.

The probability of fatigue failure for the known reliability index can be
evaluated in the standard tables of the normal distribution orin the diagrams
as in [2]. The index (2.12) determines the probability of fatigue failure
without reference to the number of load cycles, whereas Fqs. (2.11), (2.13)
and (2.14) make it possible to estimate the probability of fatigue failure
during an assumed design life.

When the joint probability density function f(0, 0t) is known, the
probabilities of fulfilling the conditions (2.5)-(2.7) can be calculated as (see
Fig. 1¢c)

: F

S 1
(2.15) - P = f doy f fot(as, 0¢) do,
0 1]
T Ly E
(2.16) P, = [do [ futov,on)dow
0 4]

(2.17) P, = P-P.
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Py is the probability of fulfilling the condition (2.5), P, is the probability
of fulfilling the condition (2.7), P5 is the probability of fulfilling both the
conditions (2.6) and (2.7), and

(2.18) R = 5 (1—-53),
St
(2.19) B o= I (1—%‘;).

Thus, the fatigue reliability is
(2.20) R=PF.

Eq.(2.20) is valid also for non-normally distributed amplitudes o and ;.

To retain the relation between the safety margin and failure probability
via reliability index for non-normally distributed variables, it is necessary
to approximate the non-normally distributed variable with a normally dis-
tributed variable. K

3., NUMBER OF CYCLES TO FAILURE

In practice, some of the conditions mentioned above do not hold true
and Fgs. (2.11)-(2.14) cannot be used. In particular, in most cases the am-
plitudes of the stress components will be non-normally distributed and the
probability Ps will be less than unity. Therefore, this Section is concerned
with the fatigue failure caused by synchronous stress components with am-
plitudes oy and oy distributed (normally or non-normally) over the whole
region (2.7), i.e. when the probability P; equals unity. Then, from all the
stress cycles only those fulfilling both the conditions (2.6) and (2.7) cause
the damage. Thus, when the number of siress cycles over a time interval
[0,1] is N', the number of cycles causing the damage is

(3.1) | Np = N'P;.

According to Eq. (2.10), the partial damage due to one cycle of Np cycles is

(3.2) _ ‘ Dy =2
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We assume that Miner’s rule is applicable so that the total damage D over
the time interval [0,%'] is

Lt F2 .
(3.3) D=N V ddt/fbt(o'b,o't) (Kb—la;;nb + K;la{“t) doy
0 0 " :

R
fot(o0,0¢) (Kb'lcr;"'” + K{ldg"‘) dob] .

St
o]
0

0

The failure occurs when the total damage exceeds unity, hence the number
of cycles to failure is

L Fa
(3.4) ) N = 1:/ dgtffbt(a'b’o‘t) (Kb_lagn’b + Kt_la';n') da'b
] 0
St F -

_fddt[fbt(ab,at) (Kb_laf“’ +Kt"'.10:"‘) dab]
i) .

0

4. EXAMPLE

L A constructional member is s.u.bjected to inépliase bending and tension-
©-compression with normally distributed amplitudes. It is fabricated from
- the steel with the following data: ' '

Ky = 1210557, Ky=1.1-10°57, Sy =240MPa, S;=180MPa,
. my=11, m=10, Ly=370MPa, L,=300MPa.

The fatigue raliability is to be verified at the points A and B where the stress
statistics are (in MPa):

A 6'b = 100, a't = 80, 8 — 12’ 8 = 10, Cpt = 0;
B g, = 150, &, =150, s =38 =15, em= 0.

From Eqs. (1.8) and (2.8) we get ji = 0.14 at the point Aand i = —0.34
at the point B. The positive value of ji points out the possibility of using
Eq.(2.12), whereas the negative one indicates that the condition (2.6) is
fulfilled in the mean. . |

Since the condition (2.7)is at point B also fulfilled in the mean, Eqs. (2.11),
(2.13) and (2.14) can be used. ‘
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Having calculated from Eq. (2.12) the value 8 = 1.87 at point A, one geis
in the diagram [2] failure probability P, versus quantile v, = ~p8 the value
P, = 0.04. Hence the fatigue reliability at the point A is R = 1-0.04 = 0.96.

The results of determination of fatigue reliability at point B are depicted
in Fig. 2.

Fatigue reliability

{ ! oo
1 2 3 4 5 £10° N,
Reguired number of cycles

g | 1 ]

F1G. 2. Influence of duration of the required design life on the fatigue reliability of
a constructional member subjected 10 in-pkase bending and tension-compression.

Fy =8y = 150 MPa, s,=9,=15MPa, cp =0,
Sy = 240 MPa, Sy =180MPa, mp=11, m.=10.

" 5. CONCLUDING REMARKS

One of the major difficulties in using reliability methods in fatigue analy-
sis based on § — N curves is that the § — N data are typically from constant
amplitude testing. However, the more adequate data in this respect are very
unlikely to be available. Therefore, there is a great need for more random
loading testing or means of extracting information about random loading
from the constant amplitude data [9)]. ,

Another shortcoming of the presented calculation procedure {(beyond the
restrictive assumptions) follows from the fact that some important factors
influencing fatigue life have not been taken into account. These are mainly
stress concentrations due to discontinuities or poor workmanship, welding
(residual stress under cut and stress concentration around the joint) and
corrosive environment as well as stress distribution, stress ratio and mean
stress. Moreover, most fatigue tests are conducted on small and simple
specimens under simple loading mechanisms. Real constructional elements
are in general larger and subjected to more complicated stress field. For
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these reasons, Eqs.(2.3) and (2.4) should be adjusted, e.g. by certain scale,
stress concentration and ratio‘and/or environmental conditions factors [2].
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