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TORSIONAL VIBRATION OF A SYSTEM WITH A FRICTION
CLUTCH UNDER RANDOM TORQUE EXCITATION

W. KURNIK and Z. SKUP (WARSZAWA)

The paper presents a theoretical study of torsional vibration in a two-mass model of
a transmission system with a multi-disc flexible friction clutch under random excitation.
Energy is dissipated through micro-slip processes between discs, characterized by a hys-
teresis loop. It is assumed that the nominal driving torque is disturbed by a stationary
Gaussian random excitation with known moments. Spectral density as well as the mean
value and standard deviation of both the relative torsional vibration and the driven part
vibration are derived using a stochastic linearization technique applicable in hysteretic
systems. The role of system parameters is shown by examples in which a band model of
random excitation is assumed.

1. INTRODUCTION

The relation between external load and relative angular disc displace-
ments is of fundamental importance for the design of friction clutches and
their proper selection for particular engine-machine systems. Friction clut-
ches of usual design, including single and multi-disc systems, have an im-
portant property ol damping torsional vibrations as a result of microslip
between torsionally flexible discs. This phenomenon is well-known and re-
ferred to as a structural hysteresis loop (see GooDMAN and KrLaMmP [5] or
Pian {11] for early studies). In the Polish literature an overview of structural
friction problems with applications can be found in the works by Ostfskn
[16] and GIERGIEL [4]. Structural friction is a natural source of damping
present in every real device.

In friction clutches the magnitude of dissipation can be controlled in such
a way that the best dynamic properties of the entire transmission system
are obtained. Nominal driving or resistance torques of such systems are
usually disturbed by additional forces of periodic or random nature. Tor que
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disturbances cause relative torsional vibrations of rotating elements, which
in turn result in wear, nolse, energy consumption, damages, etc. Trom
the point of view of clutch design it is important to establish a relation
between the external driving load and the corresponding torsional motion
of the transmission system. Therefore, a dynamical analysis based on more
advanced models is necessary.

Structural hysteresis loop of relative motion between the circumferen-
tially fiexible discs has been studied for a long time. The early results by
Goopman and Kuamp [5] and Pian [11] are summarized in the book by
Osifisk1 [10].

During the past two decades attention was mainly focused on dynamical
analysis of systems with structural friction, using relatively simple models of
both the stick-slip process and the mechanical system. A number of papers
devoted to various dynamical problems of friction clutches was presented
by Skup [13-16], who developed an analytic description of the dynamic
friction torque in a multi-disc clutch with torsionally flexible discs and shafts,
and applied this result to solve vibration problems in transmission systems
related to various excitation loads.

Recently, structural friction attracts more and more attention, and it is
considered as an effective damping factor which can be involved in active
vibration control (BEArDS [1], FRISCHGESELL and SzoLc, [3]). Therefore,
more advanced stick-slip models are developed based mainly on finite ele-
ments (see PIETRZAKOWSKI [12], GRUDZINSKI et al. [6] and OSINSKI et al.
(1993)).

An important feature of the structural hysteresis loop is that it explic-
itly depends on the displacement amplitude, and a direct numerical inte-
gration of the dynamical equations of motion is difficult. Therefore, ap-
proximate analytical techniques are developed and applied in such systems
(CAUGHEY [2]). The present paper is concerned with theoretical analysis of
torsional vibration of a transmission system with friction clutch driven by a
torque of random nature. An approximate correlation method presented by
KURNIK et al. [7] is applied, in which the Hilbert transformation is used to
reduce the nonlinear equation of motion to two recurrent linear equations
for auto- and cross-correlation functions of the input (torque) and output
{angular displacement) processes. It is assumed that the nominally con-
stant driving torque is disturbed by a stationary non-white Guassian exci-
tation with a given spectral density. Nonlinear relation hetween mean values
and standard deviations of the random driving torque and the correspond-
ing relative torsional vibrations of the system are derived and presented
in examples.
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2. VIBRATING SYSTEM AND GOVERNING EQUATIONS

We shall consider a two-mass discrete model of a transmission system
(engine-machine) shown in Fig. 1. Equalions of motion of this system can
be written down as follows

I ¢ = <M(p,a, @) + M, + Ma(1),

(2.1) . :
Iy P = .Mr(go,(i,,(,p) + M,

where
(1,2 angular coordinates of the driving and driven paris, respectively,

@, a relative angular displacement and its amplitude (¢ = 1 — @2),
I, I; mass moments of inertia of the driving and driven part,

M, nominal driving torque,

M, resistance torque,
Mgy(t) random disturbance of the driving torque.
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F1a. 1. Considered model of the transmission system,

Since we are interested in steady motions of the considered system we
shall assume M, = M, which provides a uniform rotation of the undisturbed
system. Equations (2.1) can be reduced to a single nonlinear equation de-
scribing the relative displacement between the driving and driven parts as
functions of time

(2'2) % —}-9(&, P, (P) = Go + G(t)a
where I ( )
_ ILih oy _ M{a, 0,880 @
Iz - Il +I2 b 9({101 a” (p) - _‘HTTZ-_%_!
M, _ My(t)
Go = I’ G() = _fl—

To determine the clutch moment M we shall make use of the well-known
expressions describing structural hysteresis in a friction clutch with flexible
discs (see OsiNsKi [10] and SKuP [16]). In a multi-disc clutch with n flexible
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disc pairs schematically shown in Fig.2, the relative angular displacement

between the clutch input and output in steady motion can be described in
‘the following hysteretic form

o =k {yM = 3[L+ (7 Muax + 1)!?]
e 41/3
+6 {E (-A’{nmx - ﬂ’[) +1 } s

(23) ¢t =w{yM+3[1 - (yMonc 1)!]

5 ) _ 1/3 y - 11/3
-{*'6 E(Mma.x_ju)'l"i —6 5(11’1_1"’Imi11)+1 3

where ¢, @t — relative displacements for the lower and upper branches
of the hysteresis loop, respectively, Mmin, Mmay — minimum and maximum
clutch moment in a cycle,

3 nupr(ks + k2) '
= T PRl G S I Ey = Gihy, ko = Ghsy.
¥ S ppr3 K T 1 1121 2 2t

The last notations are: p — pressure per unit area, ji - friction coefficient,
» — inner radius of the discs, Gy, G2, b1, h2 — shear moduli and thicknesses
of the discs forming friction pairs.
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Fi¢. 2. Scheme of 2 multidisc friction clutch.

Since in real friction clutches we have Y(Mipax — Mmin) € 1, expressions
with powers 1/3 in Eqs.(2.3) can be expanded into power series. Neglecting
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the terms of orders higher than 2, we obtain

o) o= =7 {(Mma,; +M)? - 2M2} ,

It

et =1 {(M - Jm"'rf"i")?' + (Mrmax + *Mrmin)2 - 2]15’[3“-“} s
where 7 = ky%/6. _

Expressions (2.4) can now Iw casiiy reversed to obtain the hysteresis loop
in terms of the clutch momen! as a function of the relative displacement.

M- = % (VOB — Voo =)

(2.5)

Mt = % (\/ 0-5(Pmax + ‘\/(:0 — ©min — '\/‘:Dmax - (Pmin) ’

where @pin and @may denote the minimum and maximum relative displace-
ment in a cycle, respectively (Fig.3).

M

Mmax

Brnin a a IP

Prmax

FiG. 3. Hysteresis loop of the structural friction in the friction clutch,

Introducing mean value m of the displacement cycle, amplitude @ and
the new centered coordinate z as follows

_ Pmax — Pmin _ ¥Pmax + ©min
(2.6) a= 5 , m = — e
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we finally obtain the nonlinear term in Eq. (2.2)

9+:a(—%\/m+(s—v2a+\/a+£) for <0,

27y #@= |
- = a(—\/—ix/m~|—a. —\/a—m) for a> 0,

where
1

G = ———.
I

Thus, the nonlinear equation of motion (2.2) with a stationary Guassian
right-hand side process is now fully determined.

3. ANALYSIS OF RELATIVE VIBRATION

We assume that the spectral properties of the right-hand side process
G(t) are known and determined by the spectral density Sga(w) or by the
corresponding correlation function Kgg(t). Our aim in this section is to
derive the relation between the input and output characteristics —~ mean val-
nes (g and m and standard deviations og and o, respectively (o = o, /51,
where o, is the standard deviation of the random torque). KURNIK et al.
[7] presented an approximate correlation method which is a normal closure
technique applicable to hysteretic systems. The method consists in searching
for a solution of a nonlinear hysteretic equation with a stationary Gaussian
excitation in the form of another Gaussian process of unknown variance.
Respecting this assumption and applying the Hilbert transformation (see
TITCHMARSH, {17]), we can reduce the problem to the system of two recur-
rent equations for the auto- and cross-correlation functions of the input (&)
and output () processes. The equations can be solved using the Fourier
transformation, and the resulting spectral density integrated over the infi-
nite frequency interval leads to the above mentioned relation between the
mean values of excitation and displacement and the standard deviations.
Since the nonlinear term in Eq.(2.2) explicitly depends on the vibration
amplitude a, it is convenient to introduce the envelope and phase processes
@ and ¥ as well as the adjoint process y as follows:

2(t) = a(t) cos (1),

(3.1
) y(t) = aft)sinp(t).




TORSIONAL VIBRATTON OF A SYSTEM WITH A FRICTION CLUTCH 305

The processes (t) and y() are one-to-one Hilbert transforms and the Hilbert
transformation is determined as follows:

1 e x(7)
(3:2) v =H=m) =~ [ Zar,

T -1

oo _
where the integral is understood in the sense of Cauchy’s principal value.
Processes 2(1) and y(t) are both Gaussian (if 2({) is), they have identical
autocorrelation and spectral density functions and their cross-correlation
function K,.(t} is a Hilbert transform of K z2(t). This property will be used
in the further analysis.

Averaging both sides of Eq. (2.2) we obtain

(3.3) Gy = P(m, o),

where

+o0
1
(3.4) P(m,o)= o // 6 (a: +m, /22 + y2, sgn 1:)

—0a
2 4 2
Tty

X exp (— 53 ) dady,

where in turn @ is represented by two branches described by (2.7). Expres-
sion (3.3) is the first of two nonlinear relations between four quantities: G,
0g, m and o. In order to obtain the other one, we shall follow the procedure
presented by KURNIK et al. {7]. Equations for the auto- and cross-correlation
functions of processes z, ¥ and G can be obtained by multiplying both sides
of Eq.(2.2) first by «(t1), then by G(#;), and by averaging

Koo (T)+ E[6 (2(t) + m,a,sgn ) z(ty)] = Kau(r),

(3.5) .
Ko (1} + E 8 (x(t) + m,a,5gn 2) G(1)] = Kea(r),
where 7 = ¢ — #;.

Applying the following propérty of arbitrary (Gaussian random variables
X,Y, Z and function f (Malakhov [9])

d
66 Bz =B [5E] Bax) s (2] sy
and respecting (3.1), we obtain .
. KL
E [0 (z(t) + m,a,sgn &) z(t;)] = E [887] Keg(t)+ E {ugg—] Ky(7),

(3.7)

B0 (z(t) + m,a,sgn ) G(ty)] = E L%H Keg(r)+ E [5—3] Kya(r),
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Denoting E[08/8z] = @, and E[88/8y] = Q2 and applying (3.7) we can
express Kgs. (3.5) in the form

ji’:c;r +Q11{£:ﬂ' + Q?I(y:v = I(Gr(t)a
(3.8) .
K.q +Q1Kz6 + Q2K e = Koalt),

where
o0

& —_ 2 g2
Q1 = 27‘_104 / j;r;B ('c +m, Ja?t + g2 sgni') exp (—1 21—23’ ) dady,

(3.9) -

24 .2
Qs = 27304 ] ]yﬂ (1: +m, /2% + y?, sgnd;) exp (_m 21—2?/ ) dady.

—00 —O&

Taking into account that K, = H{Kqz}, Kyg = H{Kc} and making use

of the following properties (see LEVIN, {8]):
Sye(iw) = —isgnwSp,(w),

(3.10) wel ’
Sge{w) = Spa(—iw),

where Sps, Sys and Sy are spectral density functions being Fourier trans-
forms of the correlation functions K., Kyy and Kzq, respectively, we ob-
tain, after applying the Fourier transformation to Eqs. (3.8),

Sea(w) .
i) — P + (@am 0

Integration of the spectral density (3.11) leads to the second nonlinear rela-
tion between Gy, o, m and o (o, is included in Sga(w))

(3.11) Sun(w) =

(3.12) ol = ij(w)d'w,

which, together with (3.3), forms a system of two nonlinear equations for m
and .

g(7n7 a, GO,U ,P) - Os
(3.13) ¢
h’("na GJGO': GG;p) = Q)

where p = [p, it, 7, n, by, Gy, ha, Ga, 11, I2] is a vector of the system parame-
ters (see Sec.2).
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In the last part of this section we shall calculate the quantities P, th
and @ defined in expressions (3.4) and (3.9).

7 2
- 9 12 _ g2 gexp [ = 22
P(m,o) = VP f ((m + a) a ) aexp ( 202) da,
0

22 T a?
(3.14) Q1(m,o) = 1o /af‘/zexp (——F) da,
0

2 = —%Ql’

In the examples the integrals in (3.14) are calculated by means of the quadra-
ture method. Note that Q; and @3 do not depend on m, so that one of
Eqgs.(3.13) does not include m and the equations can be solved separately.

4. RANDOM VIBRATION OF THE DRIVEN PART

Having the characteristics m and o of the relative vibratjon © = @1 — g,
we can determine the spectral properties and the standard deviation of the
random disturbance of motion of the driven part. Addition of Eqgs.(2.1)
under the assumption that Af, = M, leads to the following equation:

(1.1) b1+ o= GO,

which can be rewritten in the form

(4.2) Z= ~G(1)

after introducing the variable Z = @, + Ly /1. Solving equations

(10:(}01_(}927

o I
5—991+E§92

(1.3)

with respect to ¢, we obtain
(4.4) P2 = MZ — ),

where A = I /(I + I). .

It follows from (4.2), (4.3) and (4.4) that the angle o, can be decomposed
into two parts: a uniform rotation and a random vibration with zero mean
value

(4.5) ¢2 = C + Dt + (1),
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where
(4.6) ¢ = Mz—=z),
and z(t) is a stationary zero-mean solution of Eq.(4.2). Spectral density

of the stationary part z(?) of the solution of Eq.(4.2) can be expressed as
follows:

(4.7) S (fw) = G )45nn(zw)

Now we can determine spectral properties of the stationary disturbance of
motion of the driven part ¢(t). First we derive its autocorrelation function,

(18)  Kopltn,ta) = NE{[x(tr) — ()] [o(t2) - ()]}
= Az {I(zz(t11t2) - Ifz:r:(tlgt2) - I(wz(tly t?) + I{xa:(tlah)} .

Tor stationary processes z, z and ¢, introducing ¢ =t — #;, we have

(4.9) Kyy(t) = A2 {K () — Kpo(t) — Kpo(—t) + Kpo(t)}

Applying Fourier’s transformation #'{-} to both sides of expression (4.9) and
taking into account that

(4.10) F{K (1) + Kuo(~1)} = 2Re F { Ky (1)} = 2Re {Se(iw)}
and

(4.11) " Spa(iw) = ﬁ&-e(iw),

we get

(4.12)  Spsliw) = N2 {;%SGc;(iw) + %R.e [Sac(iw)] + .S'M(iw)}.

In the above expression the Fourier transform S, of the cross-correlation
function K,q(t) is still unknown. It can be determined by applying Fourier’s
transformation to the second of Eqs. (3.8) and making use of the properties
(3.10), what yields

Q1 —w? 4 isgn (w)Q2

@ -’ +Q3
Taking into account that Sgg is a real function of w, we finally obtain the
spectral density of the driven part motion ¢(1)

2@1/&)2 ~1
{4.14) Sea{w) = N Saa(w { .
pp(w) = (w) (Q ST 08
Expressions (4.14) and (3.11) fully determine the probabilistic properties
of stationary Gaussian processes of disturbance ¢(t) of the driven part and
relative torsional vibration z(f). -

(4.13) Sra(iw) = Sea(iw)
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5. EXAMPLES

The numerical calculations have been made for the following set of data:

hy = 0.00125 [m], Ay = 0.00103 [m], Ii = 0.05 [kgm?],
I = 007 [kgm?), G = 8.2x 10° [N/m?], 1 = 0.25.

Since the driving torque disturbances in many types of engines have
meaningful values of the spectral density in a limited middle-range band of
frequencies, we assume the one-sided spectral density function of the torque
in a polynomial form with non-zero values in an interval (w1, w2).

N
(5.1) Sarar{w) = 0';“;1 Z enw™ [H(w — wy) — H(w wy)],

n=1

where H(-) denotes Heaviside’s step function and the integral of the sum
in Eq.(5.1) equals 1. Tn the numerical calculations we assumed N — 3
(quadratic form of ), Sprar(wi) = Surar(ws) = 0 and (wi,wz) = (300, 1300)
[1/s].

The resulting spectral density functions of the relative torsional vibration
as well as vibration of the driven part are presented in Fig. 4 for various
S}

*10g

5F

300 500 700 o0 Hoo 1300
w frad/s]
FIa. 4. Spectral density function of torsional vibration; a) relative vibration between the
driving and driven parts; b) driven part vibration.
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driving torque standard deviations. The curves corresponding to vibration
of the driven part have the maximum zone strongly shifted into the lower
range of frequencies. The process z(¢) especially contributes to this effect
(expressions (4.2) and (4.14)). It should be noted that hroad-band spectral
densities Sprar(er) may lead to infinite variances of vibration of the driven
part.

Figures 5 and 6 present the mean value (m) and the standard deviation
(o) of the relative driving/driven part vibration as functions of the nominal
driving torque (M,,) and its standard deviation (o). respectively. Note
that ¢ does not depend on M, but m depends on o,,. IFunctions ¢ =
o(o,;) are progressively nonlinear. This is a conscquence of the degressive
static characteristic of the coupling (see Fig. 2) resulting from the structural

friction.
m, &'k

ot
6r

i1

] o
100 M, INmT

Fi1G. 5. Mean value and standard deviation of relative torsional vibration vs. nominal
{mean) driving torque.

The role of the disc pressure in its wide range {rom decoupling to the
practically rigid connection between the driving and driven parts is shown
in Fig.7. The standard deviations of both the relative and driven part
vibrations exhibit extremum values with respect to pressure. I'or very high
disc pressure the system practically moves like a rigid body, so that the
relative vibration vanishes and the vibration of the driven part is that of a
single-degree-of-freedom system with the moment of inertia equal to Iy + I5.
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FIG. 6. Mean value and standard devialion of relative torsional vibration vs. standard
deviation of the driving torgue.
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Fra. 7. Torsional vibration standard deviations as fanctions of the pressure for assumed
maximum clutch torque; a) relative vibration, b) driven part vibration.
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6. CONCLUDING REMARKS

The normal closure technique employing the Hilbert transformation is
applicable and efficient in dynamical analysis of systems with hysteresis
loop resulting from the structural friction.

Moments of random processes of both relative engine/machine torsional
vibrations can be determined under the assumption of the driving torque
disturbance in the form of a stationary Gaussian stochastic process with
given spectral properties.

The mean of the relative torsional vibration depends not only on the
mean of the driving torque but also on its standard deviation. Increase in
the driving torque variance leads to an increase in the mean relative torsion,
what is a result of a wider microslip region.

Analysing a two-degrees-of-freedom model of the transmission system we
can show variations of the intensity of energy dissipation due to the struc-
tural friction, but the model is too simple to display the role of the friction
clutch in reducing dynamical stress in the elements of the system. This prac-
tically important problem cannot be solved unless a more appropriate model
of the transmission system is admitted and the method of analysis (normal
closure technique) is extended to be applicable to multi-degree-of-freedom
systems. This task is planned for the nearest future.
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