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NUMERICAL SOLUTION TO THE VARIATIONAL PROBLEM
OF SEISMOSCOPY

Z. IWANOW (WARSZAWA)

The method for solving the variational problem of seismoscopy, submitted in the
present paper, offers various possibilities for verifying the structure and the properties
of a medium. This qualitatively new approximate method for solving numerically such a
problem is reduced, by appropriate discretization, to an operation on graphs. An algo-
rithm for seeking in those graphs for paths of minimum length has been worked out. It is
adapted to the structure of the graphs and, therefore, is effective, if the way of discretiza-
tion involves graphs with a number of vertices amounting to some millions, The method is
illustrated by a simple but not trivial example, in which analytical and numerical results
are compared.

1. INTRODUCTION

The quantity to be recorded is the time necessary for a wave to travel
the distance from the point of excitation to that of reception. Some at-
tempts have been made by authors interested in such problems to use the
results of measurements made for many such pairs of points for verifying
the assumed distribution of the propagation velocity of a disturbance over
the region considered. The application range of the above method is wide
and includes identification of cavities and reservoirs of water, exploration
of salt deposits or inspecting the state of dams and supports in mines, It
may also be used for ultrasonic examination of machine elements to control
their state of stress. The present paper suggests an algorithm for numerical
solution of the following problem. For a prescribed distribution of the prop-
agation velocity of a wave, find the time necessary for that wave to travel
the distance between a definite pair of points. By appropriate discretiza-
tion the problem can be reduced to that of seeking in a graph for paths of
minimum length. The main difficulties which must be overcome are those
of consiructing a network of points and handling a graph with a very large
number (of some millions) of vertices. The novelty of the paper consists in
graphs being used as a means for solving the problem, the construction of
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a discrete network and modification of the algorithm for determining the
shortest possible path. The algorithm thus obtained for solving the prob-
lem is essentially new as compared with the existing ones. The equations
which were integrated in former attempts to solve numerically the problem
considered [2,3] were those of the seismic ray propagation from the point of
excitation at a definite angle. In this case there appears a separate problem,
which is that of reaching the point of reception, which has already been
determined. The approximation error made at each computation step may
result in considerable deformation of the ray, including formation of a loop.
As a result, the algorithms hitherto obtained were time-consuming and of
poor accuracy. The algorithm proposed in the present paper is free of those
drawbacks.

2. FORMULATION OF TIE PROBLEM

Let us consider the following plane problem. It is assumed that a wav'é_
is propagating in the plane

(2.1) X={(z,y): 05z < T, 0<2< z}.

The time needed by a wave generated at a certain instant of time at a point
N to reach the point of reception O is determined as a minimum value of the
following curvilinear integrals taken along all the possible curves connecting
the point N with the point O

d
(2.2) tno = min f S
N N

where v(z,z) expresses the velocity distribution of the wave. This is a
typical variational problem of finding the minimum of a curvilinear integral,
the integration curve being unknown. '

3. A DISCRETE MODEL

3.1. The discrete network

Analytical solution of the problem (2.2) is possible only for a few simple:
velocity distributions v(z,z). In the general case we must have recourse
to numerical solution methods. The present numerical solution method is
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based on discretization of the problem. It is assumed that the wave issuing
from a prescribed point of a discrete network may propagate only to points
in a certain neighbourhood of that point. The problem of choice of the
type of network is fundamental. A rectangular network does not satisfy
the fundamental condition that increased network density should result in
better accuracy. Let us take as an example the case of constant velocity
in the region considered and let the wave propagation between vertices of
the same basic rectangle be admissible. Then, in the case illustrated in
Fig. 1, the shortest path between the points N and O is independent of the
degree of density of the network. It follows that the network must be more
complicated. Its structure is shown in Fig.2. The entire region is divided
into deltoids and triangles according to the diagram presented.
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The discrete network is composed of:

1) the vertices of all the deltoids and triangles,

2) the points of division of the sides of the deltoids and triangles.

A fragment of the network illustrating its structure is represented in
Fig.2. The network for the example discussed is shown in Fig.11. A net-
work constructed in such a manner is sufficiently irregular and enables an
approximation to a curve to be improved by increasing the density of the
network. It should also be observed that this densification can be achieved in
two ways, that is by increasing the number of layers or by dividing the sides.
An increase in number of layers is essential, above all, for the approximation
to the velocity distribution in the region. Together with simultaneous den-
sification of subdivision of sides, it influences the accuracy of approximation
to a curve.

3.2. Approzimation to the propagation process of a wave

It is assumed that a wave may propagate between points of the discrete
network described above if the following rules are satisfied.

Starting out from a given point, it may pass along a rectilinear path
to any point belonging to a deltoid or a triangle (mentioned in Sec. 3.1} to
which the initial point belongs and which does not lie on the same side, and



160 : Z. IWANOW

ki1=3)
l ! , 2 . 3 (k=
- Fow- ng X
nd oW x
PN j
: 71"'“’” ! .03
L.~ i ~
T 8
w ! A1
Ny
L6 A c 8
\-,.\\ /’/
~ -
E j
o i 3
P B ' A
2 ¥ I
G
3 L.
)
1
g
z,
z
Fic. 2.

to the neighbouring points of those edges on which the initial point lies. An
example is given in Fig. 3.

o To each deltoid and triangle an inverse wave velocity is assigned. This
correspondence is a consequence of the approximation to the velocity.

o The time necessary for a wave to cover the distance between two points
satisfying the above rules is equal to the product of the geometrical distance
between them and the inverse of the velocity corresponding to the given -
deltoid, if the segment of the curve between those two points lies inside a
deltoid or a triangle.

If this segment lies on the boundary between two deltoids or between
a deltoid and a triangle, the time mentioned is equal to the product of
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the geometrical distance and the arithmetic mean of the inverse velocities
corresponding to the given deltoids or a deltoid and a triangle. For the sides
coinciding with the boundary the inverse velocity is a prescribed value.

From the point of view of approximation to the variational problem (2.2),
thé above assumptions are equivalent to that of approximating the integra-
tion curve by segments, and they establish the rules for determining the
integration function for each segment.

3.8. The graph problem corresponding to the original problem

The original problem consists, with the discrete approximation explained
above, in finding a sequence of points

(3.1) zo =N, TlyeeayZp =0

such that a wave may travel the distance between any pair of neighbour-
ing points z;, 41 (¢ = 1,...,n — 1), according to the rules explained in
Sec.3.2 and ensuring that the sum of times of travel for consecutive seg-
ments [z, 2;41] (i=1,...,7—1)is minimum. There is an obvious analogy
to the problem of finding the shortest path in the graph. The realization
of this idea will furnish a tool for solving the problem which occurs as a
result of discrete approximation to the original problem. The number of
vertices in the graph may be considerable and is estimated at some mil-
lions, which means that the algorithms as yet available for determining the '
shortest path, are useless. The algorithm which is to be submitted here
takes into consideration the special features of the graph obtained, thus en-
abling us to determine simultaneously all the paths for the expected number
of points,
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A non-oriented graph assigned to a discrete approximation of the original
problems can be determined as follows:

o a vertex of a graph is assigned to each point of the discrete network;

e two vertices of the graph are interconnected by an edge, if and only
if direct passage of a wave between the relevant points is admissible, in
agreement with the rules explained in Sec.3.2. The weight of the edge is
equal to the time necessary for the wave to pass between those points.

The graphs considered in the present paper will now be represented in
the form of the corresponding points of the network, without considering
the edges.

4. AN ALGORITHM FOR DETERMINING TIHIE LENGTH OF THE SHORTEST
PATH BETWEEN ANY DEFINITE PAIR OF VERTICES IN A GRATH
OF A CERTAIN CLASS OF STRUCTURE

Let us consider a graph, the set of vertices.of which is

(41) X = {.’171,.. .,:L'n}.
Let

(4.2) X = X1 UXy,
(4.3) X3 = Xin Xy,

and let us assume that the structure of the edges satisfies the condition that
there are no edges between vertices of the set X1\X3 and those of the set
X3\ X3. An example of such a graph is shown in Fig. 4. The algorithm to be

7 x={1,2,3,456,7}
) 3 X,=(12,3,4,5]
y 5 X,=[4,5,6.7]
X,={45]
. 7

Fia. 4.
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used for determining the lengths of the shortest paths between all the pairs
of vertices of any subset of vertices X’ C X is as follows. Let

X! = X'nXy,
X3 = X'nX,,
(4.4) X" = X"U X,
X{ = X]U X,
XY = XU Xs.

Let us now denote dx(z;, ;) — the length of the shortest path between the
vertices z;, z; in the graph, the set of vertices of which is X; s(2;, x;) — the
weight of the edge between the vertices z;, 2 5
The algorithm considered is as follows:

CLos(zg,z5) = dxl(:r,,,mj.) for all the pairs z; € X{\ X3, z; € X{, 2; # 2;.
. 3{xiy w5) = dx, (i, w;) for all the pairs ; € X{\ X3, z; € XY, 2; # =;.
8(xy, z5) = mm(ol;.;1 (#i,25), dx,(x:,25)) for all the pairs z;,z; € Xj.
cs(zg,25) :=o00 for x; € X"\ X3, v; € X\ Xs.
. For every z; € X' execute the steps 6 to 10.
X4 = X, o(mi,xg) = .s(a:!,:cj) for z; € X".
z*i={z € X3: c(zi,z)= min,, eX’(C(%a%))}
. c(a:,,a:J) = mm(c(z,,mj), ST *) + e(z*, 2;)) for z; € X",
4= X\ (o).
1(} If X4 #0, go to 6.
11. Stop.

As a result we find components of c(z;, z;) being the lengths of the
shortest paths between all the pairs of X’ vertices. The algorithm can be
speeded up if we take in p.8 into account the fact that the graph is not
oriented.

The correctness of the above algorithm can be verified as follows. The
change of the weight of the edges, which was made in 1 to 4, does not change
the lengths of the shortest paths between the vertices. This follows from the
general properties of the shortest path. The correctness of the second part
of the algorithin follows from the analysis of the Dijkstra algorithm [1, 6, 7,
8] for secking for shortest paths and determining their lengths. The set of
vertices considered has only been reeduced to Xs5. If the remaining vertices
of the graphs are considered, this fact does not change the labels in the Di-
jkstra algorithm, owing to the weights of the edges, having been introduced
in particular fragments of the graph as the lengths of the shortest paths in
sub-graphs —if, in addition, the following facts are taken into account. Fach
path between any vertex of the set X{\ X3 and any vertex of the set X4\ X3
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must pass through a vertex of the set X3. The shoriest path, the near and
far end of which belong to the same set Xy or X3, lies entirely in that set
or contains sub-paths of the other set which must, in view of the struc-
ture of the connections in the original graph, begin and end at vertices of
the set X3.

5. DETERMINATION OF SHORTEST PATHS IN THE GRAPHS ASSIGNED
TO THE ORIGINAL PROBLEM

The estimated number of vertices in graph obtained as a result of dis-
crete approximation to the original problem makes it impossible to use the
algorithms available for determining the lengths of the shortest paths. As
a consequence, it has been found to be necessary to work out an algorithm
based on the properties of the graph obtained, in particular the fact of the
connections between vertices being of a somewhat local character. This en-
ables us to separate sub-graphs, the structure of which is discussed in Sec. 4.
The algorithm described there will be used in an iferative manner. Ver-
tices of a given set denoted, from now on, Y, between which the shortest
distances are to be determined, and those which will enter the set X3 at
further iteration steps, are joined at each step. Iterations are performed by
adding vertices of consecutive layers (Fig.5). The double line represents, in

Fia. 5.

all the figures, the edges, the vertices of which constitute each time the set
X3. From the upper (z = 0), left-hand (z = 0) and right-hand boundary
(x = wo) we take the vertices belonging to the set ¥,,. As regards the lower
boundary they will all enter the set X3. Once the last layer of the lower
boundary has been included, we take only vertices from the set Y, if there
are any. The reason for which the number of points of division admitted at
the boundary between layers is different from that for the inside is now ev-
ident. The lengths of the shortest paths in a layer are determined by using,
in an iterative manner, the algorithm described above according to the dia-
gram represented in Fig. 6. The algorithm described in Sec.4 is also used, in
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a similar manner, for particular subregions according to the diagrams shown
in Figs. 7 to 10.
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The algorithm used ensures economy of the computer memory and the
computer time because (in the first case) we use only those vertices which
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lie at the boundaries if we pass to larger regions, and (in the second case)
because the operations on the entire graph are represented by operations
performed on subgraphs, the number of vertices of which is much smaller
than the total number of vertices.

6. EXAMPLE

A program for an IBM computer has been worked out in the Fortran
language; the parameters of that program make possible its practical appli-
cation. The parameters of the problem which will be used as an example

are presented in Fig. 11.
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A three-layer body has been considered. It was assumed that the velocity
of motion of a disturbance in the middle layer is much lower than those in




NUMERICAL SOLUTION TO THE VARIATIONAL PROBLEM OF SEISMOSCOPY 167

the neighbouring layers, The time of travel of a disturbance from the point
N of the left-hand boundary of the middle layer to points lying in the upper
and middle layer, at the boundary between those layers and in the lower
layer, was determined by analytical and numerical means. The analytical
results were obtained directly from the relation (2.2). For the points O, Oy,
Os and Os this was found to be reduced to the familiar laws of refraction,
The case of Oy, in particular, was that of limit angle. In the case of O3, the
fact of its being symmetric to N about the vertical symmetry axis of the
problem was made use of. As a result, the shortest trajectory in the sense
of time between those points is as follows.

From N it runs to reach the boundary between the layers 1 and 2 at the
limit angle, then, along the boundary at the velocity of the layer 1 and, at
the limit angle, to the point O4.

Table 1 contains distances between the point N (Fig.11) and the points
of reception. ,

Table 1.

Point Distance Distance
of reception| as obtained by | as obtained by
rumerical means |[analyiical means

(o} 932x10~5 931x10~3
O, 886x10™8 877Tx10~%
Oz 1084x10™% 1065x10~®
Oy 1076x10% 1065x 108
Os 1088x10™* 1082x 108

This example may look very simple, though it illustrates the principal
features of the propagation of disturbances, thus confirming the effectiveness
of the algorithm used. Application for processing the results of practical
measurements will be the subject of a separate paper.
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