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SIMPLIFIED MODEL OF ELASTIC-PLASTIC WHEEL/RATL,
INTERACTIONS(*)

W. GAMBIN (WARSZAWA)

The results of numerical calculations, presented in the paper {1], demonstrate a sig-
nificant role of plastic yield in the process of formation of the rail corrugations. Below,
certain analytical solutions for a simplified model of wheel/rail interaction process are
given. At first, normal and tangent loads of rails, assumed on the basis of the resulis
presented in the paper [2], are analyzed. The corresponding elastic stress field is given
in explicit form. Next, a complete solution for a thin, plastic surface layer of rail is pro-
posed. The simple analylical expressions enable us to calculate the changes of the limit
shear stress and residual siresses under the wheel/rail contact surface after successive
passings of a wheel. Two cases are considered: a load moving with constant ampli-
tude and a load moving with cyclically changing amplitude. Two important facts are
proved. The first one - that the limit shear stress (K) and the longitudinal residual stress
(R} under the running surface of rail converge to asymptotic values. The second one
— that the final location of K peaks and R valleys corresponds to the positions of rail
corrugations.

1. INTRODUCTION

Dynamic overloads of rail iracks lead to rail corrugations [1]. Corru-
gations are wave-like patterns of wavelengths 35 — 85 mm on the runuing
surface of rails. If not controlled, they can be up to Imm in depth. They
occur near stations where traction and breaking are heavy. Becausc the
corrugations create an environmental noise and damage of track compo-
nents, it is necessary to find a method of their elimination. Metallurgical
examinations of corrugated rails indicate the formation of “white phase” —
exceedingly hard material similar to martensite, which forms thin streaks
about 1cm long in the running direction. Grinding the rail, to remove cor-
rugations, removes all signs of white phase. However, the corrugated rails
and those which have been ground are prone to the rapid reappearance
of corrugations.
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To explain the above phenomena, the elastic-plastic effects connected
with cyclic overloads of rails are investigated in the paper. Consider a thin
layer under the running surface of a rail. Two quantities determine the .
behaviour of the layer material: the current limit shear stress and the longi-
tudinal component of current residual stresses. Due to dynamic overloads, f
the limit shear stress, uniform in new rails, increases periodically along the -
running surface of the exploited rails. The calculations presented below
show that the places of local hardening do not move along the rails, after
successive passings of the load, and can be considered as stationary. The
stronger and weaker places on the running surface correspond to the posi- -
tion of rail corrugations. One can remove the locally hardened surface layer
of rails by grinding, but this operation cannot remove the other factor which
determines the rail properties — the residual stress field.

In a new rail, the residual stress field appears due to rail straightening in
the manufacturing process. One can observe the tensile longitudinal compo-
nent of residual stresses under the running surface of roller-straightened rails.
In a working rail, the initial residual stress field undergoes certain changes.
After a number of load passings, the compressive longitudinal component
of residual stresses appears on the running surfaces of the rails. It will be
shown later that distribution of their peaks is the same as the distribution of
the lower hardening places described previously. Both the effects are com-
plementary; however, the nature of these effects is different. Local hardening
is limited to the material in ¢ thin layer under the running surface of a rail,
Changes of the residual stress field affect the whole cross-section of the rail.
Grinding removes partially the compressive residual stresses and produces
redistribution of the self-equilibriated stresses, but their variations along the
running surface of the rail remain unchanged. The places on this surface
with lower compressive residual stresses are subjected to formation of next
corrugations.

To obtain a reasonable description of rail corrugations formation, the
following problems will be considered and presented: the residual stress
field in roller-straightened rails, wheel/rail contact forces — the normal and
tangential ones, the elastic stress field caused by these forces, and finally,
redistributions of the limit shear stresses and residual stresses in rails after
successive passings of moving loads. Two cases of loads are considered: the.
loads moving with constant amplitude and the loads moving with amplitude
cyclically changing in time. The proposed, simplified model of rail behaviour
enables us to determine distributions of the critical shear stresses and the
longitudinal residual stresses. Simple analytical expressions enable us to
estimate the extreme values of the above quantities.
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2. RESIDUAL STRESSES IN ROLLER-STRAIJGHTENED RAIL

To obtain the straight-line shape, rails are straightened during the manu-
facturing process (Fig.1).

F1G. 1. Roller for rail straightening.

After straightening, the field of residual stresses appears in the rails. Dis-
tribution of the longitudinal component I3, in a cross-section of roller-
-straightened rail, is shown in the Fig.2. Notice that the stress on the
running surface of the rail Ry is tensile. Its current value, in the working
rail, is denoted by R.
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F1G. 2. Residual stress component ai3® in roller-straightened rail.

3. WHEEL/RAIL CONTACT FORCES

A new rail, with the initial residual stress Ry, is subjected to wheel/rail
contact forces in the exploitation process. Distributions of the corresponding
normal and tangent loads are given in the paper [2]. A typical load of rails
is shown in the Fig.3. Notice a complex character of the tangent load.
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FIG. 3. Typical load of rail; p(z2) normal forces, r(z2) tangent forces (their directions
are shown by arrows).

The quantity 2 in Fig. 3 denotes the contact zone width. For vertical load
200 kN caused by a wheel of the radius 900 mm, the parameter [ reaches the -
value 10mm {2]. Distribution of tangent forces depends on the conditions
of wheel motion. A static wheel/rail interaction generates the tangent Joad
shown in the Fig. 4a. Under the running surface of rails, such a load produces
tensile longitudinal stresses during loading and compressive residual stress
after unloading. This is the case of the ideal rolling contact (see [3]). Fora
train running with a constant speed, distribution of tangent forces is very
similar to the above, and their resultant force is almost equal zero. For a
heavy traction or braking of a train, distribution of tangent forces becomes
similar to that shown in the Pig.4b. Direction of the resultant force is the
same as direction of the motion, in the case of braking, and the opposite
when traction takes place. This is the case of ideal sliding contact.
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FIG. 4. Tangent load of a rail: a) ideal rolling contact, b) ideal sliding contact,

In further considerations, one can assume that the total load of rails
is a superposition of three componenis: a) parabolic normal forces p(2z),
b) parabolic tangent forces due to the sliding friction 7!(23), and ¢) tan-
gent forces due to the rolling friction 7"(25), which are described by the
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fifth-degree polynomial (Fig.5):

pla) = 23 (- at),

T(x2) = ar'(zy) + (1 - a)r(z3), 0<a<l,

(3.1)

where

(22) = To (12 - m%) ,

To

3.2
(3-2) ™(zg) = 5 %2 (12 — m%) (a:% - a2) ,

for
2 312 b 562 2
T 32 ¢

8= (- ) (¢ -d?)e

(3.3)
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F1a. 5. Assumed decomposition of rail loads.

In the above, po is the amplitude of normal forces, and 7y -~ amplitude
of the tangent forces, both in the case of sliding friction and rolling friction.
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The quantity 2¢ (for ¢ < v/3/3) denotes the distance between extrema of
the function 7"(z,), and depends on the wheel/rail friction conditions. It is
assumed that ¢ = [/10. The ratio

To
(3.4) K -
describes the mentioned friction conditions and it takes values from the
interval 0.1 < & < 0.4, The resultant normal and tangent forces are denoted
by P and T, respectively.

4. ELASTIC STATE OF RAIL

To determine the onset of plastic yield and to obtain the residual stress
distribution in a rail, it is necessary to know the elastic stress state under
the applied load. In the Appendix, the stress field, in the elastic half-space
loaded by the previously described normal and tangential forces, is given.
For simplicity, a piecewise linear distribution of 7" (z3), approximating the -
function (3.2)2, is assumed.

From the rules (A.1)-(A.8) it follows that both the onset of the plastic
yield and the value of residual stresses R are determined by the value of .
o92(21,22) for 71 = 29 = 0, denoted by Omax.

(4‘1) Cmax = —Po + ATO,
where

1 1 n
(4.2) A=(1-a)t;—=1n (2) .

To introduce the compressive residual stresses R in a new rail, omax
should be a tensile stress. It is possible when the parameter A is large
enough. It takes the highest value for the case of ideal rolling contact (=
0). Assuming @ = 0 and & = 0.4 (a strong friction between wheel and rail), -
one can obtain

(4.3) Tmax = 0.3025p;.

5. PLASTIC YIELD UNDER MOVING LOAD WITH CONSTANT AMPLITUDE

5.1. Basic assumption

Consider the moving load of rail shown in the Fig.6. Let the amplitudes
Pmax A0d Tmax = KPmax be large enough to cause the plastic yield of the -
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loaded zone. Introduce the dimensionless coordinates:

(5.1) 'r-—-?, s=“’2;‘”2,

where F3 is the position of the load zone center. Then, the normal and
tangential forces applied are functions of ¥ and s.

pPlx,,s)

Prax T(x,,3)

Xy

FIG. 6. Assumed moving load of rail.

For fixed T,, the applied forces are functions of the coordinate s:
p(s) = pmax(l - 32)1

(52) S
() = e [a(1 = ) 4 (1= )21 - )6t = )]

where

c e? a’ a?
(5.3) ﬂlzf(l—ﬁ)(l—'ﬁ), K;zz'ﬁ.

The quantity a is defined by Eq.(3.3);.

The proposed analysis of plastic effects in rails is only a static one. It
is assumed that dynamic behaviour of running trains is modelled by the
moving loads acting on the rails. Inertial effects in the plastic zones are
neglected. The presented approach reduces the analysis of plastic effects to
the statically determinate analysis, i.e. the analysis expressed in terms of
stress, without using any stress-strain relations. The only relation describing
the plastic behaviour of rails is the Huber - Mises yield condition expressed
in terms of the actual stress state and the actual limit shear stress K.

According to practical observations of the rail/wheel interactions, the
normal loads may reach values, which are considerably higher than those
initiating the plastic yield of the rails. To reach the proper change of K, it
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is necessary to impose the following restrictions on the hardening parameter
of the rail material:

1. The hardening parameter of the rail material must be higher than a
cerfain critical value hyn-

Observations show that the plastic zones are localized in thin layers under
the running surface of the rails. If the hardening parameter of the rail is
too large, the material cannot flow out from under the wheel and the plastic
zone is of the bulk type, instead of the thin layer one. To avoid this, we
assume the second restriction imposed on the hardening parameter:

2. The hardening parameter of rail material cannot exceed a certain limit
value hyax.

Analysis of deformation fields, for given stress-strain relations, enables
us to determine Apin and Amax, but it is not the subject of the paper. Our
purpose is to find the changes of K and R due to the applied loads, under
the restrictions 1 and 2. The following basic assumption is taken:

Due to the applied load, plastic yielding occurs in a thin layer under
the running surface of rails. The shear stress component does not change
through the layer thickness.

The basic assumption yields

(5.4) Ors = Ors(8)

5.2. Basic solution

Introducing the boundary conditions

(5.5) orr(8) = —p(s), ors(8) = ~7(s),
and the restrictions (5.4) into the equilibrium equations

Trrr + Orss = 0,
(5.6)

Tas,s + Orsr = 0,

one can obtain the following solution:

o (r,s) = —p(s} + -d;%i“,

(5.7) 055(8) = C1 = const,

ors(8) = —7(8).
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Notice that o, varies linearly across the layer thickness, ¢,, has the same
value (' in the whole plastic zone, and ¢,, does not change its value across
the layer thickness.

The value Cy can be determined from the elastic solution. Denote by P
and 7 the amplitudes of p(s) and 7(s), respectively, under which the onset
of plastic yield occurs. Let Fmax be the corresponding value of o22(0,0) in
the elastic state. Then

(5.3) C1 = Tmax + R,

where R is the longitudinal component of the current residual stress at the
point in which the plastic yield occurs. Taking into account Eq. (4.1), one
can finally write

(5.9) C1 = —kT+ AT+ R.

In the plastic zone the following Huber - Mises yield criterion should be
satisfied:

(5.10) (055 ~ 0rr ) + 402, = 4K2.

The quantity K is an unknown, current shear stress limit,.

To determine 7, R and K, consider the plastic yield onset in a new rail
after the first passing of the load. It takes place on the running surface of
the rail (r = 0), at the point s = 0. Then 7, p, R and K take values 7, 1
Ry and Ky, respectively, where the values Rg and Kg are known. According
to Eq. (5.7), the stress state at point s = 0 is the following;

0',-7-(9.,0) = —R'Tl,
(5.11) ass(o) = —KT1+ A?l + RO,
0‘,.5(0) = -7

Introducing Eq. (5.10) into Eq. (5.9), with K equal to Ko, one can determine
the amplitude of tangential forces which causes the plastic yield

~ARo + [A2R} + (A + 40?)(4K2 — RE)]™?
A? + 402 S0

(5.12) 71 =
or the corresponding amplitude of normal forces:

(5.13) ﬁl = ?1/!"3.
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Concluding, the stress field in the plastic zone on the running surface of
a new rail after the first passing of the load is the following:

UTT(S$0) = p'tznax(‘g - 1)’
(5.14) Tos(8) = T (A - %) + Ro,

Urs(s) = }t"nm»c"""(s2 - 1) [a(l - a)'::(sz - ‘H?)] 3

for Pmax = T1/K-

5.8. Change of the limit shear stress after successive passings

Introducing the solution (5.14) into the yield criterion (5.10), one can
obtain the value of K in a new rail after the first passing of the load. Re-
peating the calculations, one can find the limit shear stress K(;) after the

i-th passing of the load with amplitude Py > T/ s

1 i 1\ _ 2 a 2y 1/2
(5.15) I((,) = -2' { [ gnl‘x + (A - E) T(4) + R(i—l)] + (22 in)ax) } ’

where

1/2
—ARG_yy + [A2RY_yy + (47 + 40?) (a2 _,) - th._l})]

A? +4a? ?

fort=1,2,3,... and I((o) = Ko, R(g) = Ry, T(1) =T1
In the above rules, R(;_1) should be determined for each step of calcula- -
tions.

(5.16) 7(5) =

5.4. Change of residual stresses

After the i-th passing of the load piilx > T(3)/ K, residual stresses can be
determined from the general rule: '

(5.17) Ry = ol — 7l

where a,{;? and "o'i,‘;l.x are the appropriate stress components in plastic and -
elastic state, respectively. According to (5.14)z and (4.1), one can write

N 1
o)) = 7, (A - E) + By,

g = pl) (4x-1).

max

(5.18)
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Then
i - .
(5.19) R = Ry + (A - :;) (T(i) ~ rplfhs)

The rules (5.15), (5.16) and (5.19) fully describe the considered problem,
for the case of a load moving with a constant amplitude.

5.5. Some calculations

Apply the above results to the analysis of plastic effects caused by typical
wheel/rail interactions. According to the data of BHP Steel International
Group [4], 2 mean wheel load P is taken as 200kN ~ 300kN, the initial
limit shear stress Ko = 500 MPa, and residual stress in roller straightened
rail Bg = 40 MPa. Taking ! = 10mm, ¢ = 1 mm, a wheel/rail contact area
as 200mm?, and & = 0.4, one can calculate the following amplitudes of
the normal contact forces ppayx: 750 MPa, 938 MPa and 1125 MPa, for the
resulting loads P equal to 200kN, 250kN and 300kN, respectively. If we
assume the case of heavy traction or braking of the train, then o = 0, and
the rule (5.16) is reduced to the following relation:

_ 1
(5.20) T() = a1 (21((;_1) - R(;_l)) .
Then
1, 1\ .. 1
K =3 x + (1 - ﬂ) K1y + 5By,
(5.21)

: 1 1
Ry = (1— Ar)pl, +2 (1 - ZE) Kty + - R(ima).

Consider a series of successive passings of the same load P applied to a
new rail. Then, the above rules give the following results, which are valid
fori=1,2,3,...

K(;) = 507 MPa, R = 36MPa, when P = 200kN,
If(,-) = 601 MPa, R(,‘) = —21MPa, when P = 250 kN,
Ky = 694 MPa, Ry = —78 MPa, when P = 300kN,

Notice that for each of the considered cases, KX and R take their final val-
ues after the first passing of the load. For a series of passings with the
increasing loads, i.e.: Py) = 200kN, Fay = 250kN and Py = 300kN (for
i = 3,4,5,...), the successive results are the same.
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Sometimes, due to the rail technology used, the initial residual stress
Ry is much more higher than the assumed one. Consider the last series of

passings for the increasing loads applied to a new rail with Rg = 120 MPa.
Then

Ky = 537TMPa, Rpuy= 97 MPa, when P = 200kN,

I{(g) = 631 MPa, R(g) = 40MTa, when P =250 kN,

Ky = 725 MPa, Ry = —16 MPa, when P = 300kN,
stress lavel (MFPal
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F1G. 7. Redistribution of longitudinal residual stress in rail (after MAIR and
GROENHOUT [4]).
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for i = 3,4,5,.... Following [4], the results of tests for standard carbon and
alloy rails are shown in the Fig.7. Notice a qualitative agreement of the
presented calculations (crosses in the right-hand part of the Fig.7) with the
referred tests.

6. PLASTIC YIELD UNDER MOVING LOAD WITH CYCLICALLY CHANGING
' AMPLITUDE

The most significant factor determining formation of corrugations is rail
vibration under the action of 2 moving and oscillating load [1]. It means
that our analysis should take into account loads cyclically changing during
their motion. The load oscillations may be described by smooth harmonic
functions. However, the analysis based on such functions leads to very
complex relations. For this reason, we assume the load variation as that
shown in the Fig.8.

pIR,)
motion
pmax I !
TOFE P e
Buin l l
! : —
2t 2L 2t x
! - T ! F1a. 8. Moving and
L L ! L i osctlating load of a rail.

Because the considered load moves at a constant rate, one can regard the
load variation as a function of position of the contact zone center Zs. Then,
the amplitude of the normal forces has the following form:

— Punax for ~Li+nl LT < L1 4+ nL,
(6.1)  pulm) = <
Pmin  for Ly 4+nL <Fy < ~L; + (n+ 1)L,

where n = 0, ¥1,%2,..., L and L, are shown in the Fig.8.

The amplitude of tangential forces 7,(Z2) is described by the same func-
tion with values Tmax and Tiin, instead of poax and puin, respectively. The
values p; and 7y correspond to the plastic yield onset. In the dimensionless
system of coordirates {r,s} (see Sec.5.1), distributions of the normal and
tangential loads, p(%2, s) and 7(%Fz, s), are given by the rules (5.2), in which
Pe(%2) and 7,(T2) are taken instead of prax and Tiax, respectively, It is as-
sumed that all the dynamic wheel/rail interactions caused by inertia forces
are taken into account through the normal and tangential load. However,
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the inertial effects in the plastic zone, because of the negligible small mass
of the plastic layer, are not considered. |

Repeat the analysis presented in Sec.5.2. Consider the stress field com-
ponents: a,,(Fa,8), 0ss(F2, 5) and 0+5(T2, 8), in the plastic zone on the run-
ning surface of a new rail. It easy to see that, after the first passing of the
cyclically changing load, these components are given by the rules (5.14), in
which p.(F2) and 7,(F:2) are taken instead of Pmax and Tax, respectively.
Cyclic oscillations of loads lead to nonuniform fields: 71(Z2), K(%2) and
R(%F2). For simplicity, the argument Z; will be omitted in further consider-
ations. To obtain the above fields, one can use the rules (5.15), (5.16) and
(5.19) with certain modifications. Notice that the rules (5.15), (5.16) and
(5.19), applied to the cyclic loads, lead to stepwise distribution of K and R.
The real distributions of K and R are smooth at the ends of step intervals.
Moreover, 7 and R in the considered rules should determine the constant
Cy in the rule (5.9). This constant was derived for the case of the initial
plastic yield. Then, 7 and R must be taken at the fronts of plastic zones.
However, the residual stresses R, generated by the thin plastic layers, are
partly taken over by the adjacent elastic zones. Then, R takes a certain
mean value between that in the plastic zone and that in the elastic one.
Denote by ?'(f.? and R{i the values of 7(;) and R(; at the fronts of plastic
zones, If the cgistance L) is not too large, it is reasonable to assume that

1 -

(62) Rly = 5 (R{5 + £(3)
where Rfi._ and Rfl."*' are values of Ry; at the points of discontinuity.

Following the rules (5.15) and (5.16), one can obtain the limit of shear
stress after the i-th passing of the load:

@ DN nt 1 (2%0 )21
(63) Ky = {[ max + (A - E) Tt R(f—l)] + (22 “‘“") }

in plastically deformed zones, when pg)ax 2P = Hf{,-), and K(;) = K
in the remaining zones of rail surface layer. The quantity F{i) is calculated
from the relation

—AR!,
~f _ (i-1)
(6.4) T6) = AT 42 i?

2 2 1/2
{A2 (Bfiyy) + (47 +40%) [“‘ 20— (Blin) ] }
+ A? 4 402 ’
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The corresponding residual stresses may be estimated on the basis of the
rule (cf. Eq.(5.19)):

(6.5) Ry = (' y+ (A - -—) [7'(1) - h:pmax]

Observe that the relations (6.2)-(6.5) fully describe the considered problem.
For o = 0, the following rules may be used:

1 . 1
I((;) = 'é“pr(:x!ur’l' (1 - "'"—) Il(, 1) + 2A R(l——l)’
1
66) 7= 5 (2K -yy - Rl ),
1
Ry = (1 — Ax)pQ +2 (1 - A_) Ky + — R(,_l)

Now, consider a series of successive passings of the same cyclically chang-
ing load with amplitudes shifted by the distance L; + I (see Fig.9). Assume
g g
the same data as in Sec. 5.5, i.e.: the initial limit shear stress Ky = 500 MPa,
the initial residual stress Ry = 40MPa,! = 10mm, ¢ = 1 mm, the wheel/rail
contact area — 200mm? and & = 0.4. For the maximum load P equal to
300kN and the case o = 0, the rules {6.6) lead to the following results (see
also Fig.9):
K(1)(T2) = 694 MPa, R(;)(Z2) = —78 MPa
for (4n - 1)L1 LT <L (4?’& + 1)L1,
I{(l)(i:'z) = 500 MPa, R(l)('i‘"z) = 40 MPa
for (d4n+ 1)L < T2 < (4n + 3)1y,
Kg)(72) = 694 MPa, R)(72) = ~78MPa
(4'”. - 1)L1 LTy < (4n + I)Ll,
K(3)(F2) = 671 MPa, R(3(T,) = —123MPa
for (4n+1)L; <73 < (4n + 3)L,,
K(3)(Z2) = 694 MPa, R3(%2) = ~7T8MPa ‘
for (4n - I)Ll Liy £ (4?’& + I)Ll,
.K(g,)(fg) = 671 MPa, R(g}(fg) = —123MPa
for (4n4+1)Ly <75 £ (4n+3)L4,
K(;(T2) = 694MPa, R(;(Z2) = —78 MPa
for (4n—1)L; < < (4n + 1)1y,
I((;)(fz) = 680 MPa, R(,)(fz) = —106 MPa
for (4n+ 1)Ly < %2 < (40 + 3)L;4,

for i=4,5,6,....
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G, 9. Distribution of critical shear stress and residual stresses after successive passings
of loads with shified amplitudes.

The results of calculations show that, alter the second passing, the hard-
ening of the plastically deformed zones is smaller than after the first one,
but the introduced compressive stresses are higher. The situation does
not change after subsequent passings. It means that the peaks of resid-
ual stresses are situated at the weaker places of rail. The places of local
hardening and highest residual stresses do not move along the rails after
successive passings of cyclically changing loads.

Notice that after the third, fifth and next passings, no plastic zones
occur on the running surface of rail. It means that the limit shear stress and
the longitudinal residual stress take their ultimate values after a number of
passings.

7. CONCLUSIONS

The presented analysis proves that elastic-plastic effects due to dynamic
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wheel /rail interactions are responsible for formation of the rail corrugations.
Cyclically changing moving loads cause a heterogeneity of distribution of
both the hardening of material and the residual stresses in rails. Magnitude
of local hardening and residual stresses become stabilized after a few passings
of the load. Places of lower hardening correspond to the positions of peaks
of the residual stresses on the running surface of rails, The considered places
do not move along the rails after successive passings of the load and indicate
the positions of rail corrugations.

Notice that only the highest loads influence the rail properties. A high
load with constant amplitude applied to a new rail may delay formation of
the rail corrugations. Such a load generates a uniform, strong hardening of
the material and uniformly distributed, compressive residual stresses on the
running surface of the rail. Both the factors protect the rails against the
effects of dynamic overloading.

Finally, it is necessary to point out that the problems of rail technology
are close to those which appear during the treatment processes of metal
surface layers in tools and machine elements. Some micromechanical in-
vestigations of a metal surface layer behaviour may be successfully applied
in the design of the running surfaces of rails. Particularly, the texture de-
velopment analysis [5] enables us to take into account the influence of the
advanced plastic yield on the surface layer propertics.

APPENDIX. STRESS STATE OF ELASTIC HALF-SPACE

Consider an elastic half-space under the normal and tangential loads
given by the rules (3.1} and (3.2). Divide them into two groups: a) the
parabolic loads with amplitudes py and o (Fig. 10), b) the piece-linear load
which is an approximation of the fifth degree polynomial (3.2)2 (Fig.11).
The first group of loads generates the stress field o'(x1,x2), the second —
o”(21,22). The total stress field o(21,%2) is the sum of the above ones. Fo
obtain the field o(z1,22), the standard Green’s function approach is used.

Introduce the notations (Fig. 10):

S . T F i T
(A.1) sin@; 5 = i ; cos@rg=—,
1,2 71,2

where

(AQ) o= \/:L% + (2122 F 1)2 N
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L

% {x,%)

Fic. 10. Elastic half-space under parabolic loads.

The solution of the considered problem for parabolic loads is the following:

) .
(A3) op(z1,22) = 2% {%l [sin 2@y — sin 203 + 2(0; — 61)]

m12a:2 (cos20; — cos26;) +

4

2 4
-2—1:-05a {—m—l {cos 2045 —c0s26, +1n (T—z) ]
7l 4 T3 i

_.’B14:l¢2 [(sin 291 — sin 2@2) + 2(@2 - 91)]

v '
d [Sin 20, — sin 264 + 2(@2 — 61)]}

9
T3

+

12 :
y d (cos 264 —6082@2)},

2
(A4) 0’;2(2’!1,322) = 27%% {2&711 + %1- [Siﬂ 2@2 — sin 2@1 + 6(61 - 62)]

4
e L [cos 20, — 0526, + In (2) ]
2 T

Te — 12 R . .
+ 1 [Sll‘l 2@, - sin 20, + 2(92 - & )]

wl? ™

—2—a {2z + s c0s 201 — c0s2@0; —In (—-—-) — 49l

1Tz

[sin 202 ~ sin 20y + 6(O3 — 61)]

2 _ 2 4
zg— ! [cos 20 — cos26, — In (T—z) ] } ,
2 Ti

+
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4
.o Po 3’1
(A.5) oia(z1,29) = 3 { 2 [cos 20, — c0s20; + In (7‘1) ]

_T1Ty

2
[sin 20} — sin 203 + 2(60, - 68,)] + 2 I (cos 20, — cos 292)}

To zf . ]
_2;;-1-,511 2z4 + T [sin 20, — sin 26 + 6(8, — 6,)]

4
e ki [cos 203 — cos201 +In (2) ]
2 ™

rZ 2
+ 2 > [sin 26); — sin 20, + 2(92 - 91)] ’

The piecewise linear load is decomposed into three linear parts: T1(22),
m2(z2) and 73(x9) (Fig.11), where

T T
(A.6) m,3(22) = l—_[')"z(mz Fl), e(zg)= ?U-'Ez-
According fo the rules (A.1), introduce the coordinates {r{ 20012},

{r{ 2,072} and {r{%, 07,} in the intervals {1, —c}, {—¢,c} and {c 1}, re-
spectively

21
2¢
tﬂ
W %
1 v M N - r
T, T, T,
X

FiG. 11. Elastic half-space under piecewise linear load.

The solution of the considered problem for a piecewise linear load is the
following:

270
(A.7) oti(z1,22) = _;r—é(T_j( - a) { [sin 20 — sin 203

+2(04 - o)) - 2t e

_3.‘1([ - C)
4

———(c0s 207 — cos 26%)

[sin 207 — sin 207 + 2(0% — O]
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(A7)
[cont.]

(A.8)

(A.9)

W. GAMBIN

+ ————xz(l; ) (cos 267 — cos 2@'2’)-:;

+a;_£11£ [sin 207" — sin 205" + 2(03" —~ oMl

_Qz:_&__)_( 08204 — cos 20 )}

270

oy(21,22) = m( -a) { 4 [s;n 204 — sin 2604

4
+6(0] — 83)] ~ (z2 + 1) + De [ cos 20} — cos 207 +1n (:—?) ]

1

_f”‘—(%'"—“) e 20 — sin 26 + 6(64 - )]

_ iy 47
_i_f%_i) [cos?@g — 0820y +1n (-E%) ]

1

+21 [ 204 —sin 201" + 6(61 - 67)]
20 — De ,’m 4
—(—27)_ {cos 20% — c0s20] + In ( m) ]}

L

210

r a1
o1a(21,22) = — ol — C) ){1: {cos?@' — cos 20 +111( )

1

__(9:2 1_ De [sin 207 — sin 204 + 2(04 — 01)}:
iy 1]
ml(l4 ) [ 052045 — c0s207 + In (%) :

1

+f2_(’;l:ﬂ [sin 207 — sin 207 + 2(03 — @’1')]"

4
i b [cos 204 — c0s207 +1n (TI”)
4 ] |

(2= De i yoy 26y + 204 - 6]}
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