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ON FATIGUE STRENGTH UNDER OUT-OF-PHASE SINUSOIDAL
LOADINGS

J. KOLENDA (GDANSK)

Let us focus our attention on predicting the influence of phase shifts between sinu-
soidal stress components of equal frequencies upon the safety factor and the number of
cycles-to-failure, in fatigue design of structural members made from structural steels. The
general state of stress is considered and analyzed by means of the stress-based calculation
procedure developed for the case of in-phase siress components. The basic variable space
is divided into the safe region and the failure region. In the failure region the subregion of
high-cycle fatigue is determined. Functionals of safety are defined, the minimum values of
which can be taken as measures of safety in the safe region and in the failure subregion. It
is shown when the phase shift between normal and tangential stress components is most
advantageous.

NoTaTioN

safety factor in the safe region,
Tunctional of safety in the safe region,

fer fys oo, Fze  partial safety factors in the safe region,
{ limiting factor,
T instantaneous limiting factor,
I, 1y, ..., I:x partial imiting factors,

Lz, Ly,..., L:s maximum stress amplitudes corresponding to the highest points of
straight regression lines in the plots log o> vs. log cycles to failure,
log oy vs. log cycles to failure, ...and log rse vs. log cycles to
failure, respectively,

My, My,..., My exponents in equations of straight regression lines in the aforemen-

tioned plots,
n salety factor in the failure subregion,

n functional of safety in the failure subregion,
Ry Ny, .-, By partial safety factors in the failure subregion,
Nazoy Nyo, ..., Nzzo numbers of stress cycles to failure corresponding to the intercepts

of straight lines in the aforementioned plots,
No required number of cycles to achieve a given design life,

N number of stress cycles to failure under combined load,
t time,
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Zgo Iatigue limil for alternate bending,
Zrc Tatigue limit for tension-compression,
Zri [atigue limit for pulsating tension,
Zs; fatigue limit for pulsating torsion,
Zso fatigue limit for twisting,

Zay By, -y Zaz fatigne limits for simple states of stress Tz Oy -« .y Tz, respectively,
@z, 0y,...,&zz phase angles of stress components Gz, Oy -..and Ty, respectively,
Ox,0y,-..,Tex Cartesian stress components, :
TuyOyyenn; T2z amplitudes of the Cartesian stress components,

w angular frequency.

1. INTRODUCTION

The influence of phase shifts between sinusoidal stress components of
equal frequencies on fatigue lifetime and crack propagation was observed
in various tests under combined loads (e.g. [1-3]). For example, in-phase
and out-of-phase bending and torsion, having equal principal stress ranges,
resulted in experimental fatigue lifes of tube-to-plate weldments differing
by an order of magnitude [3]. Another combined load was analyzed in [4],
where the relationship between the safety factor and phase angles in the
case of superposition of two sinusoidal normal stress components of equal
frequencies was derived. As pointed out, the safety factor under out-of-phase
bending and tension-compression is by 41% greater than that under such
loadings in phase.

In the literature analogous relationships for more complex cases of com-
bined loads do not exist. The reasons for that may be the scatier inherent
in fatigue tests and intricacy of fatigue behaviour, as well as the fact that
natural processes produce random rather than sinusoidal excitations, which
makes it difficult to assess the significance of some factors that may influence
the cyclic life.

However, in certain technological processes the phase shifts between load-
ings are imposed by the designer, which substantiates an effort to determine
the relevant interdependencies. For this purpose, in the present paper an
application of the formulae derived in [5,6] on the basis of Huber - Mises
distortion-energy theory and linear logarithmic § — N curves is considered.

The distortion energy theory is valid for ductile materials and is widely
accepted in static problems. In fatigue analysis, a number of theories exist as
to the actual mechanisms of crack initiation: however, there is no one mech-
anism that could be universally accepted [7]. Although some experimental
data indicate applicability of the distortion energy theory to the fatigue life
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prediction [8], other test results may lead to the opposite conclusion [3].
Therefore, in [5,6] an adaptation of this theory for elastic applications in
fatigne design of structural members made from structural steels was pro-
posed, under the assumption that sinusoidal stress components are in phase.
In the following, this assumption will be avoided.

2. SAFETY FACTORS AND FATIGUE LIFETIME UNDER IN-PHASE
SINUSOIDAL LOADINGS

In fatigue design, the basic variable space can be divided into a safe
region and a failure region. For the stress-based fatigue calculations a failure
subregion can be determined [6]. The equation of boundary surface (failure
surface) between the safe region and the failure subregion is

(2.1) fP-1=0,

where f is the safety factor in the safe region defined for in-phase stress
components as [5]

22) = = e f) T = G fe) ™ = (fu )

_ _ ~9]-1/2
Sk el o] I
where
- Z Z,
fa::“_‘y fy:_y, fz:_')
(2.3) O oy o,
foy = Zay Ffuz = Zyz foz = Zes
v Try ’ ¥ Tyz ’ Tzx

are the partial safety factors in the safe region, o, Tyy+ .3 Tzy are the am-
plitudes of Cartesian stress components at a given point of a structural
member, and Z;, Z,,..., Z;; are the respective fatigue limits determined
for each simple state of stress separately. For instance, in a complex state
of stress with in-phase sinusoidal components of amplitudes Oy Oyy Oz, Ty
and 1, produced by tension-compression, pulsating tension, alternate bend-
ing, twisting and pulsating torsion, respectively, and ,, = 0, the following
quantities

Za: = dipcy Zy = er7 Zz = ZLigQ, Z.'J:y = Zsﬂa Zyz = Liggy Tz — 0
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are to be substituted into Eqs. (2.3), where

Z,. fatigue limit for tension-compression,

Z.; fatigue limit for pulsating tension,

Zyo fatigue limit for alternate bending,

Zgo fatigue limit for twisting,

Z,; fatigue limit for pulsating torsion.

The case f < 1 corresponds to the failure region and f > 1 to the safe
region. Safety analysis in both these regions must be based on different
relationships. Equations (2.2) and (2.3) are convenient in the safe region,
whereas in the failure region a safety factor related to fatigue life is more
appropriate, e.g.

(2.4) n =
where N is the number of stress cycles to cause failure under combined load,

and Np is the required number of stress cycles to achieve a given design life.
Such a factor was determined in [6], for the failure suberegion only, as

(2.5) n = [n;2 +agt4ng? - ()" — (mys)™ = (myng) ™
+ngl +ngl + n;:,,‘?]_l’f2 ,
where
S A -

are the partial safety factors in the failure subregion, Nyo is the number of
stress cycles to failure corresponding to the intercept of straight lines in the
plot log o, vs. log cycles to failure, and m; is the exponent in equation of
the regression line in the same plot. Nyo, Nz0,. .-, Nogo and my, Mz, . ..y May
are defined similarly.

Since Eq.(2.5) is valid in the failure subregion only, its outer bound-
ary should be determined as well. According to [6], equation of the outer
boundary surface of the failure subregion reads

(2.7) I"?-1=0.
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In Eq.(2.7), I is the limiting factor defined for in-phase stress components
as

28) 1= [+ 24157 = (L) = (L) — (L)

-1/2
Hod + 2412277,
where
L=22 gl Lk
T Ty z
2.9
29) L=t _Lle L
LY Twy r ¥z T,yz ¥ zT sz

are the partial limiting factors. I, is the maximum stress a.mp]jtudé o
that satisfies the equation of the straight regression line in the plot log o,
vs. log cycles to failure. L, L.,..., L,; are defined analogously. The failure

subregion is exceeded when I < 1.
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bending stress amplitude

bl
Ty,
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Noyo N, torsional stress amplitude

Fra. 1. Log stress amplitude vs. log cycles to failure for alternate bending (a) and
twisting (b). (c) - safe region (r) and failure subregion () for combined in-phase
bending and twisting (in linear scale).

As an example, in Fig. 1c the safe region and the failure subregion for
in-phase sinusoidal stress components of amplitudes o, and Ty Produced
by alternate bending and twisting are illustrated. The corresponding § — N
curves are presented in Fig. 1a and Fig. 1b. In this case Z; = Zyg, Ly = Lgo,
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Zyy = Zso and Lgy = Lg. The boundary between the safe region and the

failure subregion, and the outer boundary of the latter, are denoted {e1) and
(e2), respectively. The equation of curve (e1) (interaction equation) reads

2 2
(2.10) (Ea‘%) + (;”i’)) =1,
g s

whereas that of curve (ep) is

o \’ Toy \ 2
2.11 =] + ( ”“"”) =1
( ) (LQO) Lso

3. SAFETY FACTORS AND FATIGUE LIFETIME UNDER OUT-OF-PHASE
SINUSOIDAL LOADINGS

In the case of in-phase sinusoidal loadings, Cartesian stress components
are

(3.1) Gp = Op sinwi, Gy =oysinwl,..., Top = Tm sin wt.

According to Sec.2 and Egs. (3.1), it is possible to determine the instantan-
eous safety factor in the safe region

G2 FelErefra - (BR)T - (RR) - (RE) o

o m o1=1/2
I+ R+

El

the instantaneous safety factor in the failure subregion
33)  @= [t 4y R — () = ()T - ()

?

. ~ ~—q]—1/2
gD 47k 4 ]

and the instantaneous limiting factor

o

Ga)  T=[Er 4B - (B)7 - @GE) 7 - (B8)”
~1/2

SN i N i IR
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where
ra Z-*"" ra Z‘y r Zzz:
(3.5) - f-’E - ax k] fy - ~y ¥ k] fZ.‘L‘ - sz ]
~ N:L'O (Zr)mx Ny!) Z!l ™
Ny = = ’ Ny = —/ | = s 3
No \ oy No \ 5,
(3.6) N
1 — Nz:r:O (Zza: ) e
= N 1] Fzm ’
~ L; ~ L ~ L
. == L= = L
(3 7) l:L‘ 5:,; ? ¥ ay ) ] lz:c a_wzx

From Egs.(2.2), (2.3), (2.5), (2.6), (2.8), (2.9) and (3.1)-(3.7) it follows
that the instantaneous factors range from

(38) fmin =,
(3.9) Frmin = 0,
(3.10) Toin = 1

at sinwt = +1, to infinity at sinwt = 0. It means that the factors f, n and
I can be regarded as the minimum values of the instantaneous factors fn
and [ in the time domain. Hence it may be concluded that

1) the instantaneous safety factor f can be regarded as the functional of
safety in the safe region and its minimum value can be taken as a measure
of safety in this region when fmin > 1;
and that

2) the instantaneous safety factor # can be regarded as the functional
of safety in the failure subregion and its minimum value can be taken as a
measure of safety in this subregion when f,,;;’;l' <1< ~min.

Consequently, in order to assess the influence of phase angles T R
0z on the safety of a structural member subjected to the stress with com-

ponents

‘ Oz = oy sin(wt + ay),
(3.11) dy = oysin(wt +ay), ...,

Tor = Tag sin(wit + a,5),

the functional of safety in the safe region, determined by-Eqs. (3.2), (3.5)
and (3.11), must be analyzed as a function of time and its minimum value
calculated. Is this value not smaller than unity, the calculations will thus
be completed. In the opposite case, one has to verify if the outer boundary
surface of the failure subregion is not exceeded. For this purpose, Eqs. (3.7
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and (3.11) must be substituted into Eq. (3.4) and the minimum value T nin
of the instantaneous limiting factor must be determined. Should it happen
that s, < 1, the presented calculation procedure cannot be applied. In
the case of Iy, > 1, the number of cycles to failure can be, according to

Eqs. (2.4), (3.3), (3.6), (3.9) and (3.11), evaluated as
(3.12) N = fiminNo-

4. EXAMPLE

As an example, combined alternate bending and twisting of equal fre-
quencies is considered. In this case, the state of stress is determined by the
components

(4.1) Gy = oz sinwt, Fpy = Toy Sin{wl + a).

According to Secs. 2 and 3, the influence of the phase angle a on the safety
factor can be analyzed either in the safe region, i.e. when the condition

oz S Rk
a2 (Z)-@)] | =

min

is Tulfilled, or in the failure subregion, i.e. when the inequalities

~ 2 5 9 -1/2 7 2 7 2
o
13) {|(Z= (ﬂ) << {|(& _]_(ﬂ)
( ) l:(zgn) + Zso LgD LsO
min
are fulfilled. The analyzed effect can be presented as the minimum value of
the quotient

R EANE
(44 - (=E)

in the safe region, and as the minimum value of the quotient

- _oy 1/2
n;? +ng
=l =2
nzg . + Mpy

in the failure subregion. On the basis of Egs.(2.3), (2.6), (3.5), (3.6) and
{(4.1), one gets :

~1/2

min

(4.5)

e -

- 2y ;2' 1/2
(45) §: [f IR ]

—~Zgin? wi + frp? sin?(wi + a)
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in the safe region, and

(4.7) = ng? + ng 2

T | nP(sinwt)me 4 ng2 [sin(wt + @)]2may

in the failure subregion. The results of calculations are depicted in Fig.2.
The minimum values of f/f and %/n presented in Fig. 2 were found within
the time period ¢t € [0,7/2w] (in subsequent periods the results are the
same).
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F1G. 2. Influence of the phase shift between a normal and {angential siress components
on the safety factor in the safe region (curves 7 and 2) and in the failure subregion
(curve 8) for 1. faffey =1, 2. foffoy = 0.5 and 2, 3. Rzfitey =1, My = May = 3.

5. CONCLUDING REMARKS

From the above example it follows that the phase shift between normal
and tangential stress components is advantageous. It means that either
the safety factor becomes greater, or greater stress component amplitudes
can be applied. The smaller is the difference in values of the partial safety
factors, and the closer to 7/2 is the phase shift, the better is the effect.

Eqgs. (4.2)—(4.7) correspond to the elliptical interaction equation (2.10).
In order to account for other forms of interaction equations of normal and
tangential stress components, the similar approach can be employed.
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