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STABILITY OF THE CYLINDRICAL PANEL.
EXPERIMENTAL INVESTIGATIONS AND NUMERICAL ANALYSIS

J MARCINOWSKI and D. ANTONIAK (WROCLAW)

The steel shallow cylindrical shell subjected to the action of a concentrated force ap-
“plied at its center is the subject of the experimental test and numerical analysis. Both in-
vestigations were performed within the large deformation range, At the same time strains
and stresses remained small enough to ensure purely elastic material changes within the
shell. Special attention was focussed on the stability phenomena. The fundamental equi-
tibrium paths with all critical points as well as the postbuckling path were determined
numerically. This solution was compared with the equilibrium path obtained in the ex-
periment. Satisfactory agreement of the obtained solutions confirmed the correctness and
versatility of the program used in the numerical analysis. The conclusions drawn from the
comparative analysis performed are presented in the paper.

1. INTRODUCTION

Very fast and large (in the sénse of processor speed, memory and hard
disk capacity) computers which are at present in common use enable us to
perform the numerical analysis of arbitrary structures within the arbitrary
range of strains and displacement. Of course, besides the computer, also the
program which is capable of performing such an analysis is needed as well.
Here the problem of reliability of the obtained results appears. How can they
be verified? It is possible to compare the solution obtained with the results
given by other authors who used other computer programs. But it would be
only a comparison of two different codes for the same calculation model. The
best verification of both the mathematical and the physical models and the
code correctness would be the comparison with the real object behaviour.
This very comparison analysis was performed and its results are presented
in the paper.

The cylindrical panel loaded by a concentrated force at the center ex-
hibits many interesting features from the point of view of stability analysis.
This is the reason why it is so frequently analyzed by many authors, cf. [1,
2, 3, 4, 5. In these works the shell of a considerable thickness is considered.
Shells of that type are very regular as far as the deformation is concerned.
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Their numerical analysis is comparatively simple. Here a very thin shell is
analyzed. All equilibrium paths are very complicated and so is the whole
numerical and experimental analysis. The fundamental equilibrium paths
exhibit many extremes, loops and turning points. The looping phenomenon
was observed and confirmed the earlier results obtained by TsAI and PALA-
zoTTo [6] for the panel of the radius-to-thickness ratio smaller than for the
panel considered here. '

The preparation of the testing apparatus and the specimen itself is very
expensive and time-consuming. Preparation of the cylindrical panel is com-
paratively simple and inexpensive. This is the reason why we have selected
this very shell as the subject of comparative analysis.

Besides this principal aim (the comparative analysis), the project had also
certain cognitive reasons. Investigation of stability of a spatial structure with
imperfections is a very interesting task, not only for somebody who deals

with the stability problems.

9. EXPERIMENTAL TESTS

2.1. Description of the tesling apparatus

The experiment concerned large deformations of the shell, the dimen-
sions, loading and support conditions of which are shown in Fig. 1. The

hinged edge
usvsw=0

E=210GPa
v=0.3
L/h=800
RM=3210

FIG. 1. Scheme of the examined panel.
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scheme of the testing apparatus is presented in Fig.2. The shell is made of
high-strength steel and its form was obtained by cold rolling. The rectilinear
edges of the shell are supported in vee grooves (4, Fig.2) enabling free ro-
tation of the shell. The grooves are cut in solid channel bars (2) joined to a
rigid laboratory table. Sensor of a force gauge (5) and sensors of two indue-
tive displacement gauges (6 and 7) are attached to a rigid external frame.
The third dial displacement gauge (8) is placed under the shell. Displace-
ments of the center of the shell are measured by this gauge. Displacements
of the central point of the shell are introduced by a screw-jack ( 9) located
between the force gauge and the central point of the shell. The additional
dial displacement gauge (10) was suitably placed to control the horizontal
motion of the supporting channel bars and to verify that the supports were
really rigid.

fo monitoring device

F1G. 2. Testing apparatus scheme.

2.2. Description of the experiment

The principal aim of the experiment was the measurement of nonlinear
equilibrium paths of three shell points A, B and C (Fig.1).

Changing the displacement of the central point by the screw-jack (9) al-
lowed to introduce various deformations in the shell. Afier each increment of
the displacement, readings of the force and displacement gauges were taken.
The force gauge data enabled us to evaluate the load corresponding to the
actual state of displacement. As increasing displacements were introduced,
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successive points on the equilibrium paths were obtained. At a certain in-
stant of the process the sign of the load changed; however, the continuation
of the experiment was still possible since the screw-jack was attached to
the shell with a nut. Observations were conducted until the shell snapped
through and became inverted. The experimentally recorded paths (line with
markers) are plotted together with the numerically determined paths (lines
without markers) in Figs.3 and 6. The experiment was repeated several
times. ‘The dominating form of the stability loss was bifurcation followed by
bulging of the left-hand side of the shell.

3. CALCULATION OF NONLINEAR EQUILIBRIUM PATHS

In the numerical investigations the program described in details in [3] was :

utilized. The finite element method was used to discretize the shell domain.
The curved isoparametric finite element introduced by AuMaD et al [7)
and supplemented in [8], [9] after appropriate developing [3] was applied to
the nonlinear analysis in the program used. Due to the symmetry of the
deformation observed in the experimental test, only one half of the shell
was divided into finite elements. This division is shown in Fig. 1. There are
five degrees of freedom (three displacements in global coordinates and two
independent rotations) in every node. This division leads to 185 degrees of
freedom.

The numerical analysis started from tracing the fundamental path. This
path corresponds to the symmetric form of deformation. T he fundamental
path was determined only in the initial stage since then its characteristics
proved to be very complicated.

During the analysis only displacements were used as control parameters;
they were changed in the cases when the convergence became worse. In the
program the displacement control parameter and its increment were chosen
automatically (the first two steps are an exception from this rule} on the
basis of the two former steps. The best choice of the control parameter fulfils
the condition

Adf,
Adl,

where Adf™ | is the increment of the d™ parameter in the (i — 1) step. The
increment of the control parameter is the fraction of Ad™; and depends on
the number of iterations in the (¢ — 1) step.

It should be mentioned that translations as well as rotations were used
to control the tracing process. All the time the sign of the determinant of

is a maximum,




STABILITY Of THE CYLINDRICAL PANEL 65

the stiffness matrix was monitored. At the very beginning it was positive;
its change was the signal that the type of equilibrium state had changed.

The first change of the stability determinant encountered on the increas-
ing portion of the path proved that the bifurcation point was passed. The
determination of its accurate location was postponed for further analysis
(see below).

The most important portions of the fundamental path for node A are
presented in Fig.3 by a solid line. It presents the set of all equilibrium
configurations, independently of their being stable or not. The initial por-
tion (below point By) and the final one (above point Bg) are stable. The
remaining configurations are unstable. The final portion corresponds to the
inverted form of the panel; it is stable and comparatively very stiff (the path
is nearly vertical). The view of the inverted configurations and its contour
maps are shown in Figs.4 and 5. This configuration was labelled by the
number 1 in Fig. 6. The most important parts of the fundamental path for
the node B (Fig.1) of the pane] are shown in Fig.6 by a solid line.
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Fra. 3. Equilibrium paths on the u# ~ X plane.

At the next step of the numerical analysis the location of the bifurcation
points and both bifurcation paths were determined. The procedure called
the load perturbation approach [10] was adopted here. This numerical pro-
cedure proceeded as follows. First the perturbation force equal to 0.05 was
applied at the node, to the right of point A and directed downwards. The
imperfection path corresponding to this perturbation force (with the main
loading, of course) was traced to the level of the first bifurcation point (point
B,). Strictly speaking, it was traced to the level a little bit above that level.
Then the perturbation load was removed. After a few additional iterations



66 J. MARCINOWSKI and D. ANTONIAK

FIG. 4. View of the deformed panel.
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Fi¢. 5. Contour map of the deformed panel.

the first configuration on the postbuckling path was found. The further
tracing process of the postbuckling path proceeded in the same way as the
calculation of the fundamental path.

The accurate location of the bifurcation point was determined as the
point of intersection of the fundamental and postbuckling paths. In the
same manner the second bifurcation point (B;) was determined.

The dashed line in Fig. 3 represents the postbuckling paths of the node
A. These are really two paths, in spite of the fact that in this figure only
one path is seen. It is the projection on the subspace and in this projection
both paths coincide. In Fig. 6 both postbuckling paths of node B are shown
by dashed lines. They form a characteristic loop.

The configuration labelled 2 in Fig.6 is shown in Fig.7 and is presented
as the contour map in Fig.8. The antisymmetric form of deformation is
visible. On the second postbuckling path the form of deformation will be

exactly opposite.
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Fic. 7. View of the antisymmetrically deformed panel.
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F1G. 8. Contour map of the antisymmetrically deformed panel.
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The solution obtained enables us to describe the phenomenon of stability
loss which may take place. Immediately after the concentrated force exceeds
the value corresponding to the first bifurcation point (B1), the panel will
buckle into an unsymmetric form. This configuration being unstable, further
sudden movement of the panel will terminate at any point on the final
portion of the fundamental path. Jt means that the final configuration will
be the inverted configuration.

The final portion of the fundamental path was determined by a smooth
transition from the postbifurcation path. The antisymmetric form of defor-
mation (which characterized the deformation on the postbifurcation path)
changes at a certain point into a symmetric form. The sign of the tangent
stiffness matrix becomes positive and this is a signal that the return to a
stable configuration on the fundamental path occurs.
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Fic. 9. Fundamental equilibrium path on the ug — A plane.

The complete fundamental path was determined independently, on the
basis of division of one quarter of the shell into four elements, what leads to
a discrete system of 105 degrees of freedom. The entire fundamental path
was calculated within the whole range of load variation. Figures 9 and 10
present the fundamental paths of nodes A and B. In the initial and final
portions they coincide with the charts previously obtained (Figs.3 and 6). A
comment is necessary regarding extremely numerous unstable configurations
lying between those two stable limit ranges. In the Figs. 11 and 12 the same
charts are presented in a different form, i.e. according to the arc parameter.
This allowed us to obtain slightly more convenient images of those curves
presenting their essential features. It is easy to find the center of symmetry
about which the corresponding branches of equilibrium paths propagate.
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This indicates that, in spite of the initial curvature, the response of the shell
in both directions (up and down) is almost identical.
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Large number of unstable configurations and the loops of the fundamental
path in the unstable range may be difficult to understand. Unfortunately,
it is not easy to explain them on the basis of other publications. In this
context let us mention the comparative analysis of a shell with similar ge-
ometry published by RaApwAKSKA [4]. In that paper the equilibrium paths
of a shell with comparable geometry and equivalent load were determined
numerically. The equilibrium paths of the central point of the shell for five
different thicknesses are presented on page 173. A tendency of increasingly
complicated paths for thinner shells is easily observed. The thinnest shell
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L/h and R/h-ratios were equal to 79.4 and 400, while the rise f was equal
to 12.7¥mm. A similar conclusion can be drawn from the results presented
in [6). The geometric parameters of the shell considered there were the
following: 'L/h = 40, B/h = 200 and f = 50.8mm. The corresponding
parameters of the shell examined in this paper were, respectively, 800 and
3210 for f = 14.87mm, what exceeds the values considered in [4] and {6].

To examine the dependence of the path on the mesh density, the path
was also determined (in a Limited range) for a division of 9 (200 dof } and
16 (325 dof) finite elements (a quarter of the shell). The tendency of the
fundamental path with a center of symmetry to form the loops was also
observed in [4]. The result of the comparison made for various mesh densitics
is presented in Fig. 13. Up to the point C, all three curves coincide. At this
point the curve I splits, but curves 2 and 3 still coincide until point D
is reached. Then also these curves are distinct. Further differences are
observed mainly in the values of the extrema reached and the smoothness
of curves.
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F1G. 13. Fundamental equilibrium paths on the uws — A plane.

This additional numerical calculations allowed us to confirm the fact that
there really exist numerous unstable configurations which create character-
istic loops in the load-displacement space. This conclusion-could be drawn
even on the basis of these simple calculations. One can expect that, even
for more refined meshes, the observed differences will concern the extremal
values and the curve smoothness (compare curves 2 and & in Fig. 13).

One must say that, as far as this range is concerned, the mesh corre-
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sponding to 105 dof is not appropriate. The mesh corresponding to 325 dof
may be quite satisfactory. There was no need to trace the fundamental path
in its whole range using such a fine division. From the engineering point
of view this range is not so important as the initial and final parts of the
load-displacement history. Since within the initial range (0 — C interval in
Fig. 13) all three curves coincide, it means that the solutions presented in
Fig.3 to 8 are quite satisfactory as far as the mesh is concerned. Frankly
speaking, there was no possibility to obtain such solutions for finer meshes
due to hardware capabilities (all computations were performed on a PC 386
and 486).

4. FINAL REMARKS AND CONCLUSIONS

Generally speaking, one can say that the comparative analysis performed
yielded satisfactory results. Plots obtained as the result of the numerical
analysis should be referred to the ideal structure without geometric imper-
fections. This ideal geometry was established by averaging the shape of the -
several sections. The panel was not perfectly symmetric (a slight bulge of -
the left-hand side), and this was the reason why a such form of buckling
dominated in several tests. It is obvious that the equilibrium paths ob-
tained experimentally are the imperfection paths. Instead of the bifurcation
points, the limit points appear and this is a rule. Bifurcation points are
the attributes of ideal structures. In a real structure, i.e. a structure with
imperfections, only limit points occur [11, 12].

It should be emphasized that all configurations on the postbuckling paths
are unstable. To answer the question, what kind of bifurcation point were

those encountered on the fundamental path, two additional diagrams were
done. Tn Figs. 14 and 15 bifurcation and fundamental equilibrium paths for =
the node A are shown. The first one refers to the horizontal translation of E
the node, the second one — to the rotation ¢, of this node. Both parameters
remain active only along the bifurcation paths. Along the bifurcation paths
all equilibrium configurations are unstable. The very narrow zones near the
local maximum is the exception from this rule. From this fact and from |
Figs. 14 and 15 it follows that both bifurcation points encountered on the -
fundamental paths are unstable symmetrical points of bifurcation 11,12}, -

Of course, it was not possible to verify experimentally the unstable con- -
figurations obtained numerically in the form of numerous loops. The exam-
ined panel behaves regularly according to the existing imperfections. Only
such a response to the load applied. could be observed.




STABILITY OF THE CYLINDRICAL PANEL 73

i
O

o]
N
1
L

N
M
Iy

Force in [N]

|

—~ | a

o oo W
1

|
N
~

l
W
N

—40
-0.60 ~040 -020 000 0.20 0.40 0.6C

Displacement in [mm]
F1G. 14. Equilibrium paths on the 4f — ) plane,

N
(o]

=

W

O

A
y

N
o]

‘\
/

b
O

Force in [N]
o

-0 ~T =

—20 - =

—30

-40
0.15 -0.10 -005 000 005 010  0.15

Rotation in [rad]
iG. 15. Equilibrium paths on the ¢4 — A plane.

Even though several tests were performed on the same panel, no signifi-
cant permanent deformations were registered. It means that really all defor-
mations were purely elastic and the linearly elastic material model adopted
in the program was adequate to our needs.

Imperfections are the main reason for the insignificant inconsistency be-
tween the numerical and the experimental investigations.. To check if the
mesh size was sufficient, the additional calculation of the fundamental path
for division corresponding to 200 and 325 degrees of freedom (for a quarter
of the shell) in its most important portion was made; the results prove that
the adopted mesh was quite sufficient.
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The numerical analysis was performed on typical PC (of the 386 and 486
family), though one must say that a faster computer (mainframe on a work-
station) would be more adequate to the analysis of the problem discussed
in the paper.
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