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INTERACTION OF MEMBRANE AND BENDING FORCES
IN PLATES AT NONLINEAR VIBRATIONS

W. DORNOWSKI (WARSZAWA)

The subject of this paper is the analysis of the dynamic response of circular and
rectangular elastic-viscoplastic plates subjected to impulsive loading. The range of what
is referred to as moderately large deflections has been considered. All the displacement
components and their time derivatives in the description of the kinematics are included,
The equations of motion have been formulated by using the principle of virtual work.
Approximate solutions are found by the orthogonalization principle. As regards the nu-
merical aspects of this method, they are characterized by the necessity of applying typical
techniques of numerical integration of the equations of motion and the constitutive rela-
tions. Principal emphasis is laid on the study of the co-operation between membrane and
bending forces over a wide range of plate deflection. The influence of such factors as the
type of edge support, the character of dynamic load and the kind of material of the plate
have been discussed. It has been found that plates on hinged supports are more sensitive
to membrane effects than those with clamped edges. Intensive dynamic loads with long
periods of action lead in most cases to membrane-type mechanisms of deformation. Initial
velocity pulses make the plate move with a strongly non-stationary displacement velocity
field, the deformation being characterized by a flexural way of producing deformation.

1. INTRODUCTION

The process of deformation of a plate subjected to a pulse load differs
essentially from a process caused by a static load. In the case of dynamic
load an important role is played by the inertia effects, and the motion of
the plate proceeds with a variable, non-stationary displacement velocity.
The rate of variation of transient forms of motion is influenced above all by
the space-time character of the load and its intensity. In addition, if the
plate undergoes large dynamic deformation, shell-type states of strain, not
necessarily tensile, are produced. :

A precise description of the dynamic process requires giving up some
of the approximate assumptions, commonly used in the analysis of dy-
namic problems of inelastic structures. The character of the model assumed
to describe the behaviour of the material of the plate is very important.
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Rigid-plastic models ensure, in general, rapid and effective appraisal of per-
manent deflection, the time to failure, etc. They do not enable us, however,
to make a correct description of the phenomena occurring in the initial phase
of motion of the plate and the vibrations occurring immediately after the
deflection amplitude has reached its maximum.

Considerable variety of forms of motion in the initial phase of pure elastic
deformation may give rise to high compression forces of plate-type. More-
over, the initially elastic reaction of the plate is essential for the mechanism
of formation of regions of active plastic flow. This mechanism is very much
different from that in the analogous case of a rigid-plastic plate.

The kinematic description of the problem is also of fundamental impor-
tance. The usual simplification which consists in assuming the transverse
displacement component as the only one to be considered in the kinematic
analysis, may lead to the strain distribution in the plate not conformable
to the exprimental results. In the case of large deformation geometrical
nonlinearities must also be considered. They are decided upon by the form
of the strain-displacement relations. In a wide class of plate problems it
suffices to take into consideration the nonlinear components resulting from
the considerable Totations of plate elements out of the plane of the plate. A
critical discussion of the assumptions, methods and results obtained within
the framework of dynamics of inelastic plates can be found in the survey
works of JonEs {1}, WiErzBICKI {2], and NURICK and MARTIN [3,4].

In the case of geometrically and physically nonlinear problems typical
numerical methods of finite elements or differences are effective. The mono-
graph of KLEIBER and WoZNI1aK [5], the works of ARGYRIS et al. [6] and
LEECH et al. [7] are illustrative for the theory and application problem of
numerical techniques in the domain of nonlinear analysis of structures.

In the present paper the analytical-numerical approach of BAK and DoRr-
NOWSKI [8,9] to problems of dynamics of elastic-viscoplastic plates under-
going flexural deformation considered to be moderately large will be used.
A principal feature of that method is integral formulation based on the prin-
ciple of virtual work as applied to the initial undeformed configuration of
the plate. Numerical aspects of that solution method reduce to the fact
that typical numerical integration techniques are needed for the equations
of motion and the constitutive relations.

Circular and rectangular elastic-viscoplastic plates clamped or resting
on hinged supports will be analysed in detail. The loads will be those of
pressure pulse or initial velocity pulse, as applied to a portion or the en-
tire surface of the plate. The kinematic description will take into account
all the displacement components and time derivatives. Principal empha-
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sis will be laid on the interaction between membrane forces and bending
. moments over a wide range of plate deflection. The description of the
~ mechanism of motion will be uniform during the entire deformation process.
- With such an approach no deformation phase will be treated as privileged
_ beforehand.

2. THEORETICAL CONSIDERATIONS

The fundamental assumptions of the von Kdrmdn theory of moderately

large deflections of thin elastic plates will be used. In the case of statical
problems this theory is presented in the textbook of Fung [10] and the
- monographs of KACZKowsKi [11] and WoLMir [12]. Nonlinear problems
of elastic plates and an analogy of the von Kérmdn theory for problems
of dynamics (only transversal inertia being considered) are discussed in the
monograph of CHIA [13]. Having in view the analysis of interaction of vibra-
tions in the plane of the plate with transversal vibrations under conditions
of inelastic deformation, some generalizations will be necessary.
" Let us assume that a plate of uniform thicknes H occupies, at the initial
- instant of time, a region {2 of the physical space. Let us now considere in
that space a Cartesian reference frame {z,,z}, @ = 1,2 in such a manner
that the axes 2, lie in the middle plane £2* of the undeformed plate. Then
the region 2 = 2*xX < —H /2, H/2 > is also a region of variation of the
material coordinates Xp € 2*, A = 1,2, Z €< —H/2, H/2> and will be
termed the initial configuration of the plate. Let us denote by T the time
interval within which the motion of the plate is to be considered. The time
coordinate ¢ corresponds to the time of deformation, ¢t € T. All the quan-
tities considered will be referred to the initial configuration, the material
(Lagrange) description being used. Symbols with lower indices, in the form
of Greek capital letters will be used. These indices take values 1 or 2. The
summation operation will be performed without using the summation sigq,
if an index occurs twice. Partial derivatives will be denoted by a comma.
Thus, for instance, 8(-)/8Xa = (-),a-

By describing the plate by means of a displacement field we can char-
acterize the value of the deformation considered. We analyze, therefore, a
wide class of problems of dynamics of plates, in which the amplitudes of de-
flection of the plate are of the order of plate thickness, and the amplitudes
of in-plane displacement may be considered to be small. Such a deformation
is accompanied by a tensor of displacement gradients, the symmetric part
of which (the strain) being a quantity by one order of magnitude lower than
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the asymmetric (rotation) part and small as compared with unity.

The assumptions just mentioned determine the order of geometrical non-
linearity in the description of the kinematics of the problem. This description
is completed by the following relations resulting from the Kirchhoff - Love
assumption on straight normal lines:

(2.1) Eaa(Xr,2,1) = Laa(Xr,t) + ZK aa(Xr,1),

where E44 denotes the components of the Green displacement strain tensor
with the approximation assumed in the form of finite deformation. The
generalized deformation tensors

1
Laa(Xp,t) = E[UAA(XPJ) + Usa(Xr,t)
(2.2) + WA(XFat)WA(XI"’t)]:
Kaa(Xr,t) = =W,aa(Xr,1)

describe the state of deformation and curvature of the middle surface of
the deformed plate. The symbols Uas, W in the above relations denote the
components of the displacement vector field in the middle plane. Those
components are associated of the relevant directions of the material axes
X4 and Z.

The generalized stresses (internal forces in a plate) are defined on the
basis of the relevant (an appropriate) measure of the state of stress. Such
a measure is the tensor Sa4, which is associated with the assumed tensor
FE a4 in the sense of the principle of virtual work. In view of the limitations
of kinematic nature imposed on the deformation, the measure 544 may be
treated as an approximation to the second Piola - Kirchhoff stress tensor. For
a shell state the internal forces in the plate are determined by the following
relations:

12
Noa(Xr,t) = [ Sas(Xr.2,0)d7,
—H/2
H/2
(23) MAA(X[',t) = f SﬂA(XI",Z,t)ZdZ,
~H/2
H{2
QA(XF,i) = / Saz(Xr, Z, 1) dZ.
-H/f2
Because Eaz = 0, the shear forces @ a have a character of forces which are
passive in the energy sense.
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Equations of dynamic equilibrium are established by giving up local ap-
roach and using an approximate orthogonalization method, the theoretical
‘foundations of which have been explained in [8]. This method may be treated
‘as a generalization of the method of decomposition into series of eigenfunc-
_tions of classical problems of elasticity. The eigenforms of linear elastic
* vibrations loose some of their properties as a result of the changes in the
' geometry of the deformed plate becoming plastic. In further nonlinear anal-
“ysis they are still, however a set of orthogonal functions and satisfy the
‘kinematic boundary conditions assumed. It should be observed that in the
“‘case of a physically nonlinear dynamic problem of plates there exists no set
- of complete orthogonal basic functions of the solution, and the principle of
:.superposition is not valid either. The accuracy of the approximate solution
based on the eigenfunctions of the corresponding linear problem have been
- verified in [9] by confrontation with the experimental results available.

" The components of the displacement field are assumed in the form of the
following combinations

N
_ UA(XAQt) = Z Udn(t)XAn(X/l),
B (24) n;l
: W(Xp,t) = > Wa(t)Fu(X ).

nz=]

- The basic functions xan(X 1), %,(X4) are forms of natural vibrations of the
“corresponding linear problems. '

' By treating the principle of virtual works formulated in the material
“description as an orthogonalization principle, we obtain the following set of
“equations of dynamic equilibrium of the plate

- 1
UAn = ——'2_"“‘/NAAX d*, A not summed,
2 d* An, A
#ﬂf*l/_\n o
(2:5) P, 1
Wa = “‘f‘ - m f(]/V,ANAAWn,A — Mpap¥n an)di2*.
n*

Q‘

The dots in the above ordinary differential equations denote material dif-
ferentiation with respect to the time ¢, and p = pH is the mass per unit
area of the region 2*. The forces of rotational inertia have been neglected
and, in agreement with the kinematic assumptions, the principle of solidi-
fication has ben retained only as regards the equilibrium condition (2.5);.
The influence of the effects of geometrical nonlinearities is seen in Eq. (2.5),.
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The equations of motion are coupled through the forces Najs. The external
excitation component has the form

f p(X s (X 1) 42*
(2.6) | P,(t) =%

[ wxxsae
n#

where p(X4,t) is the dynamic transverse surface load. In the case of a
transverse loading by an initial velocity pulse Vo(X4), Eq. (2.5) is homoge-
‘neous the information on excitation being contained in the following initial
conditions of the problem

Usn(0) = Uan (0) = Wa(0) =0,

/ Vo( X 4)Fn(X 1) d2°
W (0) =%

(2.7)

] B2(X ) d12*
n‘

Tor a plate subjected to a load p(Xa, t) we assume the zero homogeneous
initial boundary conditions

(28) UAn(O) =[j4n (0) = Wn(o) :Wn (0) =0.

The remaining group of equations describing the problem of plate dy-
namics are physical relations. The deformation properties of a metal un-
der dynamic load are well expressed by the constitutive relations of perfect
elasticity-viscoplasticity as formulated by Perzyna for infinitesimal deforma-
tions, [14]. This law will be ased within the range of strain produced by the
accompanying moderately large deflections. They will be expressed by using
measures of strain and stress suitable for the material description assumed,
structure of the latter being preserved. Thus, the following additivity law is
assumed for the strain rate tensor:

(2.9) Ear=E 4n+ Ey-
The elastic part of the strain rate tensor E 44 will be determined from the

linear law of elasticity. For a plane state of stress the following equations
are valid within the range of elastic strains

. 1 . .
EG) = B [(1 +v)Saa—vSrr 5AA] )

: E - ..
Sarn= 13 [(1fV)EAA+VErr5AA]-

(2.10)
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The constants £ and v denote Young’s modulus and the Poisson ratio,
respectively. The material undergoes plastic strains, if the static yield con-
dition is reached

V72

(2.11) P2y,
where

1
(2.12) J2 = £ (3524524 — Sa4544)

in the second invariant of the strain deviator and k¥ denotes the yield point
at pure shear. ‘

The relations describing, the inelastic properties of the material can be
expressed thus by:

5 s . 1

. (2.13) E% =2 (SAA - gSrr54A> ;
Wl_lere

. 1

- (2.14) A= 78(F)—7==

T

* The constant « is the coeflicient of viscosity. The function &(F) should be
selected on the basis of the resuits of experimental investigation into the
~ dynamic properties of the material. In the case of metal plates, the tests
- show that the function &(F) is particularly useful in the form of the power

law

 (2.15) &(F) = F°.

The variation of the actual surface of flow during a dynamic process of
inealastic strain is determined by the dynamic yield condition

' : 1/6
| JIE
(2.16) 0=VEh-k|1+ (Tz) =0,

where

(2.17) 17 = (E A EQ+ EWLE Jt1)1/1)

o=
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is the second invariant of the inelastic strain rate tensor. Those rates
uniquely determine the stress in the viscoplastic state

Sas = %’ (E ZA+ E ?"["SAA) »

(2.18)
3

1/67°
/ I
kil+
Ty
The active process of viscoplastic strain ceases, if

(2.19) F(S54a4) < 0.

Then, the process of elastic unloading must be analysed according to
Eq. (2.10).

The method used here for formulating equations describing the physi-
cal properties of the material is estimated in the paper of DUSZEK [15], in
which large deflections of plastic shells are analysed. Transposition of the
structure of the law of elastic-viscoplastic flow to the region of finite defor-
mations may be justified from the physical point of view if and only if the
real material becomes plastic according to the Huber - Mises - Hencky yield
condition expressed in the Kirchhoff space of stresses, that is according to
Eq.(2.11). The idea of dynamic evolution of the yield condition expressed
by the relation (2.16) and the associated flow law (2.13) will also be cor-
rect for such a material. The lack of experimental verification of the above
postulates means that the subject of our considerations is a hypothetical
material, approximating fairly well the material.

The constitutive relations of elastic-viscoplasticity can be transformed,
by passing to the limit for ¥ = oo, into relations of Prandt]l-Reuss struc-
ture for a perfect elastic-viscoplastic material. Then the scalar factor Ais
determined in a unique manner by the relation (2.18);. Such a possibility
extends in a natural manner the application range of the solutions obtained
for dynamic problems of plates.

To estimate the proportion of the participation in the deformation pro-
cess of states produced by different excitation mechanisms we must assume
a definite measure of those states.

Such a measure may be the work performed by the internal forces on
the total generalized strains until the moment ¢y of reaching by the plate
its first maximum deflection amplitude Wy. We shall differentiate, in a
natural manner, between states produced by a sheet-membrane mechanism
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and a flexural mechanism of producing strains. The work of the forces
~ of sheet-membrane state in the time interval assumed is expressed by the
relation

ty

Qn =f /NAA Laa d2* dt.
b A

:For the flexural state we have

ty

(221) Q= [ [ Manfeanaora
0 0+

© The above states of strain constitute, if considered jointly, a shell state in a
: dynamically deformed plate.

3. NUMERICAL ASPECTS OF THE ANALYSIS

3.1. Discretization of the fundamental equations with respect to lime

To solve the set of Eqgs. (2.5) of the nonlinear problem of plate dynamics
use will be made of an extrapolated difference scheme based on two time
layers. It is a conditionally stable scheme enabling us, with a sufficiently
small time step At, to determine directly the amplitudes Uy, WI at a
moment t7 =7« At, 7 = 1,2,3,...,7T on the basis of values known from
the preceding instants of time:

(3.1) Uk = AP, +2057 - U572,
3.1
W7 = AW 4 2Tl - Wt

The analysis is initiated by using appropriate initiating formulae. For pres-
sure pulses p(X4,%) and the assumed initial conditions (2.8) we obtain

At?
(3.2) Uk, =0, W!= Z—P,,,(o).

In the case of an initial velocity pulse, the initiating formulae are

(3.3) Uka =0,  W!=W, (0)AtL

The quantities P,(0) and W,, (0) should be determined from Egs. (2.6) and
(2.7)2.
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An advantage of the method proposed is that it requires a numerical
procedure of a recurrence character, owing to which there is no necessity
of time-consuming solution of a system of nonlinear algebraic equations for
each particular time step. This problem must be tackled in the case of im-
plicit formulations. A fundamental difficulty in applying the explicit method
of integration of the equations of motion is the fact that the stability of the
method is conditional. The time step At ensuring stability must be suf-
ficiently small. It should be observed, however, that the problem under
consideration is characterized by a high rate of expansion or vanishing of
regions of active plastic flow. A small time step is therefore desirable for
correctness of description of the plastic zones evolution.

The determination of [}L;I, ﬁ/;_l on the basis of Egs. (2.5) requires eval-
uation of the integrals involved. In view of the difficulties of determining the
physical relations at the level of plate section, some of those integrals must
be determined by numerical means. Use will be made of typical procedures
of numerical integration based on Gaussian approximate quadratures.

If integration is performed over the region §2*, we must establish a
network of I X J nodes, the coordinates of which are (Xy;, Xo;) € 2%,
i=1,2,3,...,1,7=1,2,3,...,J.

Integration over the interval < —H /2, H/2>,in order to determine the in-
ternal forces from the integral definitions (2.3), requires separation of the K’
nodes, the coordinates of which are Z, e<—H/2,H/2>,k=1,2,3,..., K.
The numbers I, J, K depend on the order of the quadrature assumed.

It should be observed that the spatial division thus assumed for the region
2 = *x < —H/2,H/2> plays only a practical role in the procedures of
numerical integration and does not discretize the problem in the spatial
sense. Moreover, the constant network of nodes 1, j, k enables us to study
the evaluation of regions of various types of strain.

Denoting the integrand, in a general manner, by G(X 4,17), the procedure
of integration over the rectangular region £2* bounded by line segments of
lengths A4 can be described by the formulae

Az A

f G(X a,1)d02* = / f G(X1, X2,17) d Xy dX,
2+ 0o 0

A14 J I T
4 Z ZG(Xlis X?jat )aiaj:
=1 i=1
Xi= A1+ 8)/2, Xa= Al +55)/2
The value of the parameters oy, aj, Bi, B; depend on the order of the
Gaussian procedure used. The Gaussian approximate quadrature has, as

(3.4) -
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pplied to the integral definitions (2.3), the form

HE
Naa(X1i, X25,t7) = 5 > Saa(Xui Xaj, Ze, 1),
k=1
3.5) Map( X1, Xp5,17) = 5 Y Saa(Xi, Xaj, Ziyt7) Zro,
: k=1
H
Zk = 5 Pr.

“will be evaluated by assuming the values of the relevant forces averaged
_over a time step. On the basis of the relations (2.20) and (2.21) and the
“procedures (3.4) we obtain

A14, A 7—1 T 71,7
Qn = 8 > (NAA +NAA) AL, ey,
=1 j=1 i=1
.. (36) Al Az LA ! -1 =17
Qv = —3 > (MZAA + MEA) ARy 4" oqaj,

=1 j=1 i=1 .
for 7§ = ty/At, where
@) AL = Lh, - LG, AKRM = Kag- K5

“are the increases in the total generalized deformation.

8.2. The method of determining the stresses

The values of U}, and W calculated by means of the recurrence formu-
lae (3.1), make it possible to determine the displacement field and its gradi-
ents at an instant of time 7, To this aim the relations (2.4) are used. The
knowledge of the gradients of the displacement field enables us to determine,
from the geometrical relations (2.1) and (2.2), the total strain components
E7 4 and their increments

(3.8) AERL" = Eqy - E57

Thus, as a result of solving the problem analysed, we know the increase in
total strain between-the instants of time t™=1 and {7, as well as the state
of stress for t™=! at all the nodes of the spatial network. Below we shall

consider the problem of determining a new state of stress, that is the state
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at the moment ¢, on the basis of the values obtained for the increments in
strain, Eq. (3.8). The analysis is performed for a typical mode (i, 7, %) on
the basis of the elastic visco-plastic relations quoted in Sec. 2.

These relations have the form of differential equations and can be solved
by appropriate numerical methods. In the difference method the stresses
are determined on the basis of explicit or implicit statements, In the elas-
tic-plastic case both methods are discussed in [16]. Some algorithms for
determining the stresses by the method of finite elements have been given
in [5]. The implicit procedure for determining stresses discussed in [17] will
be used in the present paper.

The knowledge of the increases in total strain enables us to determine
the stresses

(3.9) S = Shit—ASLA.

The increase in stress ASZ}LT will be calculated on the basis of the in-

cremental form of the relations (2.10)2, by treating the strain increment
AEE,I'T as elastic. The correctness of such procedure is confirmed by the
inequality

(3.10) F(57%,)< 0.

If this inequality is satisfied, this means that, in the neighbourhood of the
node considered, the process is that of elastic strain. It may be a load-
ing or unloading process in regions of pure or secondary elasticity. If the
inequality (3.10) is not satisfied, the value of the stresses computed from
Eq.(3.9) are treated as trial values 5% 4. It is then necessary to consider
the active process of elastic-viscoplastic deformation in an analogous node.
To determine the components S7 4 satisfying the transient yield condition
(2.16) we must decide on the form of separation of the total strain into an
elastic and viscoplastic part. This decision depends on the determination
(in the stress space) of the direction of the viscoplastic strain increment vec-
tor. In the implicit method which is considered, this vector is assumed to
be in agreement with the normal to the instantaneous surface of flow at the
point determined by the components S} ,; the law (2.9) may therefore he
rewritten in the form

(3.11) AELY = AER + AELLY,
where

1
(3.12) APELM = AN (Sg - gs,tpaﬂ,l) .
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- The increases in the total strain in Eq.(3.11) are known. The increases
_in elastic strain determine in a unique manner the increases in stress, in
~ agreement with Eq. (2.10),. Thus, making use of Eqgs. (3.9), (3.11) and (3.12)
~ with the laws (2.10); in their incremental form, we obtain the following set
© of three algebraic equations

Sha= :
AT 1+ v+ 3EANI7

|1+ 90854+ -
(1— 2)BEAN17_

T

1=yt EAx-Taorrad),

(3.13)

the unknowns being S% 4, and AN"1, 7, § 4, denote the known values of the
trial stresses. The set of Eqs. (3.13) is made definite by joining the transient
. yield condition (2.16)

(3.14) o™ (ax17) = 0.’

In view of the nonlinear character of the condition (3.14), the quantity
AXTL7 will be determined by the Newton iteration method.
(3.18) AN T =aAx
907 (AN s \
- [W o7 (AXM7)  r=0,1,2,....

The iteration process is started by assuming an initial value AXT=17 > 0.
The sequence of iterations is broken, if the condition

(3.16) |ANbT - antr

<g,

is satisfied where £ denotes the assumed accuracy. Numerical solution of the
nonlinear equation (3.14) is correctly conditioned, since there exists only one
real root AXT"17, [17]. Some difficulties may be encountered in establishing
the initial value AX™=17", The final value of AX"=27~1 in the sequence of
iterations for the preceding time step is optimum.

3.3. The stability criterion of the meihod

A fundamental difficulty in establishing an explicit difference scheme
(3.1) is connected with the fact of its stability being conditional, and it
consists in the necessity of selecting the length of the time step so as to
make it shorter than a certain critical time period, which depends on the
properties of the system as a whole.
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In the process of elastic-viscoplastic deformation considered here the am-
plitudes of the displacement field remain finite. This means that a perma-
nent tendency to indefinite increase or decrease in the course of the process
would be unjustified from the physical point of view. Thus the natural
frequencies of the discrete model (3.1) should take only real values. Har-
monic analysis of the difference schemes (3.1) leads to a conclusion that this
requirement is satisfied, if '

2
At:rd Ty
"
(3.17) At < wan(t7)
) At"' = .._i__
crZ wdz(tf)

The quantities

ﬁ n T P’n _V.[}
)= o= B

are frequencies of the n-th mode of nonlinear natural vibration, longitudinal
and flexural, respectively. Those frequencies are mutually coupled and de-
pend on the geometrical changes occurzing in the plate due to deformation.
It follows that the values of the critical time steps (3.17) are variable in time.

By appropriate modification of the difference schemes (3.1) the compu-
tation may be carried out with a variable time step. We can also select
a constant value of the time step At such that the criteria (3.17) may be
satisfied during the entire computation process. The latter method is less
troublesome and more effective for the problem under consideration. As re-
gards the evaluation of a constant value At, solution of an appropriate linear
problem, in which the frequencies of the corresponding elastic vibrations can
be determined in a direct manner, may be helpful.

4., DISCUSSION OF THE NUMERICAL RESULTS

4.1. Circular plates

The tesults of the theoretical analysis made in Sec. 2 may also be applied
to a circular plate. To this aim all the fields considered must be transformed
to the material system of cylindrical coordinates {R,¢, Z}, (R, ) € 2%,
Z €< —H/2,H/2>. Because the dimensions of the coordinates {R,$,Z}
are different, the components of the vectors and tensors are replaced with
their physical components.
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. Let us now consider in detail the case of axially symmetric deformation,

which is important for engineering problems. The basic functions assumed

for the description of the displacement field will be the eigenfunctions of

he relevant linear problems. In the case of a displacement field component

f'_associated with the direction R, we are concerned with an eigenfunction of

“elastic vibration of a circular disc, which is expressed by a Bessel function
f the first kind and first order, denoted by J;. The basic function

(4.1) Xpa(P) = T1(Bup),  p=R/A

satisfies the condition of horizontal immobility of the edge of the plate of
“radius A, if

(4.2) ) Ji(Br) = 0.

' An eigenfunction of the problem of flexural elastic vibrations of a circular
plate will be used for the description of the deflection

(“3) (p) = Jo(p) = 3O,

The eigenvalues A, satisfy the following equations
'.(4.4) I]_(/\-n)JQ()\n) + Io(Aﬂ)Jl(r\n) =0

for a clamped plate, and

(45)  HOWT + B () = o Lo(A)a(An) = 0

for a plate on hinged supports. The functions Iy, I; are modified Bessel
functions of the first kind and zero and first order, respectively. The symbol
Jo denotes a Bessel function of the first kind and zero order. Equation
(4.5) results from the condition of the radial bending moment becoming
zero at the edge of an elastic plate. In the case of elastic-plastic deformation
characterized by the formation of regions of active plastic flow, also in the
edge zone, the condition (4.5) may remain unsatisfied. This phenomenon is
due to a change in value of the Poisson ratio in regions which have become
plastic.

In our detailed analysis of the deformation process our attention will
be focussed on the interaction between the forces of sheet-membrane and
flexural state. The factors to be considered are: the type of edge support,
the character of dynamic load, the type of plate material etc.

The object of the present analysis is a circular plate on hinged supports
and a plate with clamped edge. In the first case the load will be assumed
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to be uniform and having the form of a pressure pulse acting over the entire
surface, p(R,1) = const. The clamped plate will be loaded by an initial
velocity pulse Vo(R) = const generated over the entire surface of the plate
or a part of it. The material constants are

po = 2.7t/m>  mass density,

E = 71GPa  Young’s modulus,
0p = 200 MPa yield point,

v =03 Poisson ratio.

The material of the clamped plate is a type of steel sensitive to strain rate
and characterized by the following constants,

po = 7.8t/m> E = 210GPa, oo = 280 MPa,
v = 0.3, + = 350571, § = 5.

The dimensions are the same for both plates,

A =0.10m  plate radius,
H = 0.006m plate thickness.

Numerical analysis has been performed by taking 9 terms of the series
(2.4), N = 9. Stability of the procedure is ensured if the time step is
At = 1.0ps. A discussion of the stability and convergence of the method is
discussed in greater detail in the reference [9] mentioned above.

Figure 1 shows diagrams of the works @n,Qam performed by the longi-
tudinal forces and the bending moment until the instant 7, at which its
flexural amplitude reaches the first maximum Wy, Those works have been
assumed to depend on the load. The other horizontal axis is that of dimen-
sionless values of deflection Wy/H, corresponding to the assumed values of
the load. In the case of a plate on hinged supports (Fig. 1la} p = npy = const,
where pg is the limit load determined on the basis of a kinematic estimate.
As a basis for estimating a deformation range within which sheet-membrane
and flexural effects play similar roles we may choose the deflection, for which
QN = Qur. Let us observe the fact that the differences between particular
ranges thus established may be considerable (up to several times the plate
thickness), depending on the type of load and the edge support conditions.
As regards the plate on hinged supports, the work @y is greater than Qar,
beginning from the load p = po, which corresponds to maximum deflection
equal to about H. The membrane state of strain begins to dominate dis-
tinctly for deflections of some 3 to 4 times the plate thickness. Beyond this
deflection range the work of the bending moments is stabilized at a certain
level.
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FIG. 1. Dependence of the work of tie-membrane forces Qx and flexaral forces ar on
the type and intensity of the load and correlated maximum deflection amplitudes of a
circular plate.

The interaction between the strain mechanisms under. consideration in
the course of the process of deformation of a clamped plate subjected to
an initial velocity pulse (Fig.1b,c) is different. In this case a wide range
of deflections can be observed (W;/H = 3), in which flexural effects are
dominant. Sheet-membrane effects begin to dominate only for much higher
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deflections. Moreover, the work of the bending moments shows a permanent
tendency to increase with increasing pulse Vo. A limitation of the size of the
region of action of the load (Fig. 1c) intensifies the flexural character of the
dynamic reaction of the plate.

Figure 2 illustrates the variation in time of the internal forces at the
midpoint of a plate resting on hinged supports for different values of the
load p/po = 1.0, 4.0. The values of those forces are referred to the relevant
boundary values Ny and My. For a less intense load the character of the
variation of the longitudinal forces Np = Ng is for t € (0,1), similar to
that of the bending moments Mp = My (Fig.2a). The latter reach their
extreme values sconer. The moment of occurrence of the first amplitude of
the longitudinal forces corresponds to the time £;. Immediately after the
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Fiq. 2. Time variation of the internal forces at the central point of a circular
elastic-plastic plate on a hinged support 2) loaded by p = po; b) loaded by p = 4po.
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deflection of the plate has reached its maximum, the plate undergoes an
elastic unloading process. The period of elastic vibration (¢ > ¢ 7) is charac-
terized by symmetric variation of bending moments and by mainly positive
longitudinal forces. An increase in intensity of the load up to p = 4.0py
(Fig.2b) changes in an essential manner the character of variation of the
internal forces in the plate. In the first phase of the motion the loading mo-
ments change repeatedly their sign. This is followed by a substantially long
period of negative flexural reaction. At the same time the longitudinal forces
increase to reach, at the moment t = 0.5¢;, a value making the cross-section
of the plate. The state of pure membrane reaction (no flexural effects) of in
the region about the centre of the plate lasts for about 200ps. The elastic
vibrations are characterized by asymmetric variation of both forces under
consideration. Most bending moments are negative and most longitudinal
forces — positive. This effect is due to a considerable permanent deformation
of the plate.
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Fi¢. 3. Distribution of internal forces in a circular plate on a hinged supports
at the instant of time coresponding to the first maximum amplitude of deflection,
for various intensities of the load p(R,t) = npo = const; the case of
elastic-plastic material.

The curves in Fig. 3 illustrate the distribution of bending moments in a
plate on hinged supportis for various load intensities, at the time t;. With
increasing load, a decay of bending moments is observed in the central part
of the plate, where the membrane forces reach a value making the cross-
section Np = Ny = Np plastic. A flexural reaction of the plate occurs in
the region adjacent to the edge, in interaction with the membrane forces.
It does not die out completely, because the plate assumes the form of a
shallow shell; the conditions of hinged support are not identical with those
of membrane state.
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Figure 4 represents the variation, as a function of time, of the internal
forces in the central section of a clamped plate loaded over its entire surface
by an initial velocity pulse Vo = 79.5m/s. The value of this pulse has been
selected so that the maximum deflection of the plate considered might be
equal to the maximum deflection of a plate on a hinged support and loaded
by a pressure p = 4po (Fig.2b). This enables us to compare the types of
variation of the forces considered for deformations of similar values, but
produced under different conditions. The initiation of a motion of the plate
by a velocity pulse leads to markedly non-stationary development of bending
moments (Fig.4a). The type of generation of longitudinal forces (Fig. 4b)
compressing the central region of the plate is interesting. The degree of
hardening of the material due to the viscoplastic effects is illustrated by the
values of the amplitudes of the forces Np and Mg, which are much higher
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FiG. 4. Time variation of the internal forces at the central point of a clamped circular
elastic-viscoplastic plate for an iaitial velocity pulse V5 = 79.5 m/s; a) bending moments,
b) normal forces.
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than the corresponding values No and Mq. The period of pure membrane-
type reaction in the neighbourhood of the centre of the plate is, in this case,
much shorter and equal to 71.0ps. The subsequent vibrations are of the
elastic-plastic type, which is proved by the decrease in amplitudes of the
longitudinal forces.

4.2. Rectangular plates

Let us consider the rectangular plate, the dimensions of which are 24,
and 24, and thickness H. Let us also assume a uniformly distributed load
over the entire plate by an initial velocity pulse Vo. To formulate the prob-
lem, the biaxial symmetry of the form of motion will be used. To this aim
let us locate the origin of the coordinates {€a, 2} at the centre of the unde-
formed plate. In such a system of coordinates the boundary conditions will
be expressed as follows

UA(XA,t) =0,

(4.6)
W(Xy,t) = VV‘A(XA,T.)ZO for X4 =1A4a.

The displacement field functions are assumed in the form

M N
Ua(X4,t) = z Z Upmn{t)XAmn(X4), A not summed,

m=1 n=1
(4.7) v N
W(tht) - Z szn(t)!pmn(XA),
me]1 n=1
where
X - sin mr X, (ChﬁnXg 3 cosﬁnXg)
tmn = A, \chpnAz cosfpAa/’
_ (che, Xy cosale) . nrXs
(4.8)  Xamn = (chamAz T cos am Al s Ay

chfB,42 cosfBpAs

o = (chamX1 cos ale) (chﬂnXg cosﬂan)

T \chagAd;  cosamAg )
The basic functions (4.8) are combinations of eigenfunctions of the linear
problem of longitudinal and fexural vibration of a beam, respectively. Those
functions are orthogonal in the region of the plate and satisfy the kinematic

boundary conditions (4.6), if
(4.9) tham A1 + tan oAl =0, th B,Az + tan 8, A2 = 0.
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The set of differential equations of the problem is as follows

Ay Ay
UAmn = 2 / fNAAXAmn,AXm dX3, A - do not sum up,
1Ay Az A
(4.10) Cma
Won = — [ [ 8aW a0t~ M, 04 a5 s
pAL A -

The initial conditions have the forms

UAmn(O) = L'rdmn: mn(o) =0.
(4.11)
Wonn (0) = 4 tan e, Ay ta.nﬂ,,,Agv
" B amﬁnAl A2 o

The results of numerical analysis, which have been obtained for three plates
of different dimensions, are collected in Table 1. The material constants of
the plate are

po=2.7t/m*>, E=72GPa, oo =280 MPa,

v =0.3,

Computation has ben performed for M X N = 16 terms of the series (4.7).
With this number of terms the stability of the procedure is ensured, in all
the cases of the plate, with a time step At = 0.5 ps.

v — o0,

Table 1.

No 2A; [cm] 24; [em] £ =AzfA H [cm]
1 12.75 6.36 0.50 0.31
2 12.72 9.57 0.75 0.31
3 12.73 12.72 1.00 0.31

Figure 5 illustrates the dependence of the work of the sheet-membrane
forces v, bending moments and torques Qs on the intensity of the initial
velocity field. The character of the interaction between individual strain
mechanisms is influenced, in this case, by the initial geometry of the plate
which is described by the ratio £ of its side lengths. The range of deflections
in which the effects analysed have a similar share in the deformation process
increases with increasing £. It may be inferred that an elongated rectangular
plate (Tig.5a) has a stronger tendency to the membrane response than a
square plate. Similarly to the case of a clamped circular plate, the values
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FIG. 5. Dependence of the work of the membrane forces @y and the flexural forces Qar
on the intensity of an initial velocity pulse for clamped rectangular elastic-plastic plates;
side lengths ratio; a) £ = 0.5, b) £ = 0.75, c) é=1.0.

Qn are higher than Qas beginning with deflections of order (3 to 4)xH.
Figure 6 illustrates the time variation of the inner forces at the centre of a
plate, the parameter of which is { = 0.5. The pulse Vp = 146.0m/s which
is assumed leads to a maximum deflection Wy/H = 3.56. The initial phase
of motion is characterized by highly non-stationary development of bending
moments, in particular the moment My; acting in a direction parallel to the
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shorter side of the plate (Fig. 6a). Long period of non-flexural reaction of the
central region is characteristic for the same direction. This period lasts until
the deflection amplitude reaches its maximum value. Later vibrations are
of a dissipative character, which is confirmed by the decreasing amplitudes
of the longitudinal forces (Fig. 6b).
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FIG. 6. Time variation of the internal forces at the central point of a clamped
rectangular plate for an initial velocity pulse Vo = 146 m/s a} bending moments,
b} normal forces.

5. CONCLUDING REMARKS

The subject of the numerical analysis presented here were circular and
rectangular plates, with a thickness of 1/47 to 1/24 of the characteristic
in-plane dimension. Such thickness is typical for thin plates. Our attention
was focussed on the co-operation between flexural and membrane forces un-
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der the conditions of development of active elastic-plastic flow. The range of
deflection within which this co-operation is essential depends on the bound-
ary conditions, the type of the load and the form of the plate. It has been
found that plates on hinged supports are more sensitive to membrane effects
than those with clamped edges. Dynamic loads of long duration produce
membrane mechanism of deformation. The motion of a plate forced by an
initial velocity pulse is characterized by a highly nonstationary displacement
field. In such cases a characteristic feature of the deformation is the flexural
mechanism of producing strain. A certain peculiarity of the deformation
process of a clamped circular plate loaded by a velocity pulse is the appear-
ance of a region of high compressive forces. This effect is visible in the initial
phase of acceleration of the plate and is produced by forms of motion having
a negative curvature in the neighbourhood of the central point.

In a deformed, rectangular plate of elongated shape the shell-type reac-
tion is dominated by the tie-arch type response reaction in one direction
which is that of the shorter side.

The method of tackling dynamic problems of inelastic plates discussed
in the present paper makes possible a more precise description of the phe-
nomena occurring during the process of deformation of such plates. The
results obtained show that the assumptions simplifying the analysis should
be selected individually for each particular case. Tentative generalizations
of such assumptions usually lead to important effects being neglected, which
may occur in a particular deformation process.
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