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TRANSVERSE DEFLECTION OF A COLD-WORKED METAL PLATE
CLAMPED AROUND ITS EDGE

R.L. BISH (MELBOURNE)

New principles are applied in an investigation of the general problem of a sheet of
cold-rolled metal, clamped around its rim and displaced transversely. For the particular
case of a circular cold-worked metal sheet clamped at its edge and displaced transversely
at its centre by a flat-ended circular punch, it is predicted that the deflection will vary
in proportion to the logarithm of radial distance from the punch axis, and that circles
engraved on the sheet, concentric with the punch, will neither expand nor contract during
deformation, while the punching load will remain proportional to the punch displacement
and inversely proportional to the logarithm of the ratio of the clamp and punch diameters,
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ij stress tensor,

yield function,

strain tensor,

a multiplier,

shear yield stress,

uniaxial tensile yield stress,
rotation rate,
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wg punch displacement,
01,02 principal siresses in the sheet,
#1,¢2 rotations of elements about the respective o1- and oa-axes,
unit vector parallel to the projection of the g1-axis on the horizontal
(or initial) plane, .
initial sheet thickness,
closed contour in the hoi_izontal plane,
force acting on material within C,
unit vector normal to and drawn outwards from the region contained within C,
ds element of length along C, .
dS element of area in C,
punch radius,
b clamp radius,
7 radial distance from punch axis.
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1. INTRODUCTION

Well known theories of work-hardening [1] and plastic anisotropy [2] treat
these two phenomena as distinct and, moreover assume initial isotropy. As
such, of course, they can only be expected to exhibit restricted ranges of
validity, Moreover, these theories impose taxing demands upon the experi-
mentalist [3], who must measure the coeflicients in them.

On the other hand, a new approach is possible in the case of metals that
have already been cold-worked so as to exhibit a texture. In this new and
simple theory [4], the crystal-grains of the solid rotate so as to align their
crystallographic slip-planes parallel to the principal shear surfaces. This is
how the texture develops but also the rotation rate vector (vorticity in hydro-
or aero-mechanics) must also remain spatially continuous. For if this were
not the case and two adjacent grains were to rotate at markedly different
rates, than their slip-planes could not remain parallel to the local principal
shear surfaces, which are required by equilibrium to remain smooth and
continuous. We shall develop this idea directly.

In addition, a second principle follows from the above fact, that fully tex-
tured metals should obey Tresca’s yield criterion, for each principal shear
surface in a plastically deforming cold-worked solid is enveloped by crystal-
lographic slip-surfaces, each of which is enclosed within a grain boundary.
These slip-system must, collectively, offer a characteristic resistance to ex-
tended slip over the principal shear surface on which the resolved shear stress
is the greatest.

2. MATHEMATICAL PRINCIPLES

2.1. Rotation rate

The domain D, shown in Fig. 1 within a closed contour C, is divided
into a mesh of small domains d, each of which is enclosed by a contour ¢ (we
may view this mesh as the crystal-grain boundary network). Let r be the
position vector of a point on ¢, measured from some fixed origin, O. Then
by Stoke’s theorem [5], if w denotes the rotation-rate vector,

(2.1) /cuﬂw-dS = fw-dr,
d c

where dS is an element of vector area on D;. Since w is continuous so that
contributions to w-dr from adjacent mesh elements are equal and opposite,
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FiG. 1. Surface Dy spanning a closed contour C.

and therefore cancel one another on summing, we obtain, on adding all the
equations (2.1) for the mesh within C,

(2.2) fcurlu-dS = fw-dr.
c

Dy

We may now repeat this operation for a second surface D, also spanning C
and coinciding with Dy over some region within C. Then by subtraction we
cbtain
/ curl w-dS = 0,
DD,

where the normal is drawn outwards from the closed surface Dy.Ds. Since
Dy D, is arbitrary it follows that

(2.3) curlw =0,

which, we have proved, is the necessary condition for the continuity of w.

2.2. The yield condition

In Fig. 2a is shown a yield locus associated with Tresca’s yield condition;
which, as already pointed out, should be applicable to cold-worked metals.
The six sides of the associated yield surface, in o;j-space, if oy, o7 and o3
are the principal stresses, are described by '

) oy — oy = 2k, g, > 0q > 03,
(24) oy — oy = 2k, g2 > 03 > oy,
oy — o3 = 2k, oy > 01 > 03,
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[(2'4)] o3 — o = 2k, 03 > o1 > 02,
cont.
oy — o, = 2k, 03 > 02 > 01,
o1 — o3 = 2k, o] > o0y > 03,

where k& denotes the shear yield stress of the solid. On the other hand,

a) o, A
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de =0 BA .ED
1
dez-O 7,

1
F1G. 2. Modes of deformation associated with the sides of the Tresca yield locus. In (b)
the slip-lines remain inextensible, while in cases (c) and (d), one family of principal
stress lines parallel to the plate remains inextensible. '

wrifing

h(o1,02,02) =0
for the yield surface, and de;; for the incremental strain tensor, PRAGER’S
flow rule [6] requires that
Oh
doi;
where X is a multiplier. Substituting from (2.4) into (2.5) we obtain, in the
case of a sheet, with n denoting the sheet normal and assuming o; and o
to lie within the sheet,
de, =0 for o — oy = 22k,
deqy =0 for o5 = 12k,
deg =0 for oy = +2k.

(2.5) de;; = dA,
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These equations remain true over the free surface of the sheet (o = 0) and
the modes of deformation described by the above equations are illustrated
in Fig. 2; wherein the heavy lines in Figs. 2b, 2c and 2d indicate the traces of
active slip surfaces. The rotations about the sheet normal and oy and o9 axes
are, respectively, ¢, ¢; and ¢;. It may be shown that (2.3) is equivalent (if
we assume incompressibility) to the fact that the strain-rate tensor remains
solenoidal. This fact was utilised in the earlier paper [4] to investigate the
mode shown in Fig, 2b, to derive the properties of the Hencky - Prandtl net.
In the cases shown in Figs. 2c and 2d, there is no Hencky - Prandtl net. The
plate becomes curved, however, and so the interest shifts from the net angle
to the plate deflection. For this reason we proceed directly from (2.3} in
investigating those modes shown in Figs. 2c and 2d.

3. TRANSVERSE DEFLECTION OF A CLAMPED SHEET

Figure 3 shows a section of a clamped and transversely deflected metal
sheet. Let the 0¢- and o3 lines have projections in the initial plane of the

YTds
{ Fds \

Fds

tan"(dw/hLl au)

—_—l -

FiG. 3. Equilibrium of line forces.

sheet along which the respective coordinates are u and v, and the associated
respective scale factors are h, and h,. Then if w is the transverse deflection,
by the usual formula for the rotation-rate (or vorticity),

1 dw 1 0w

= 3how P23 h,0u’

(3.1) $1
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where the time-independent form is chosen because the boundaries are fixed.
We also may re-express (2.3) in the time-independent form,

] d
ga(h'uqS?) - E"(huél) = 0,

and substituting from (3.1) and using the formula [5]
0 (hy, & & (h, 0
22 (Y — =
huh V7 = ou (hu Bu) + dv (hu Bv)’
we obtain
(3.2) Viw=0.

4. FORCES

Figure 3, in which oy has been set equal to the uniaxial yield stress,
Y = 2k, and T is the initial plate thickness, serves to show us how to
calculate the vertical force on any line-element in the plate, i this line is
parallel to the initial plane of the plate. In fact, if ds is the length of the
element then the force F per unit length of the oy-lines is YThb-gradw. On
any closed contour C in the initial plane of the plate, the total (transverse)
force is therefore given by

(4.1) P= f YTn-grad wds,

where n is the outward unit vector normal to C. If ¢’ encloses the punch
then F equals the punching force. If C' does not enclose the punch and lies
outside its perimeter, then F vanishes. For if A is the area enclosed by C in
the initial plane,

fn-gradwds: szwdS,

c A

by Gauss’ divergence theorem, and this integral vanishes, by (3.2). There-
fore the total force on the region within C also vanishes, as required by
equilibrium.

Thus we see that the solution represented by zero extension along the
oy-lines and equations (3.2) and (4.1) satisfies all of the requirements for a
metal sheet that has been cold-worked so that it deforms by slip between
elastic elements, the slip surfaces remaining parallel to the principal shear
stress surfaces. The lines on which the sheet is clamped or displaced remajn
parallel to its initial plane and are not extended or reduced in length; these
are lines of o3 (Fig. 3 and Fig. 2d).
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5. AN EXAMPLE

Applying the above theory to a circular disc, clamped at its edge and
displaced by a flat-ended solid cylinder concentric with the clamp (Fig. 4),
we first note that the o3-lines are now circles concentric with the punch.
They remain circular and neither expand nor contract as the punch continues
to be displaced, and so the circles marked on the sheet surface concentric
with the punch and clamp will neither expand nor contract as the sheet is
deflected. This result, of course, assumes sticking friction over the area of
contact between the punch and sheet. From (3.2), moreover, if a denotes the
punch radius and b the clamp radius, and if the shoulder of the punch is

sharp,

I b
(5.1) = Woln(r/t)

In (a/b)
where r denotes radial distance from the axis, and wg is the punch displace-
ment (Fig.4). Thus we see that the transverse deflection remains propor-
tional to the logarithm of radial distance from the punch azis.
a) b}
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FiG. 4. Punching of a sheet clamped on a circle and deflected transversely by
a concentric circular punch having sharp corners; a) before, b) after punching.

Finally from (4.1), using (5. 1), we obtain for the punching force, assuming
a mean value for Y,

‘ _ 2rTY wg
(5:2) - F= In(a/b) ’

and this formula shows us that the load-displacement relation is linear with
a slope that remains inversely proportional to the logarithm of the ratio of
the clamp and punch diameters.

We should expect these conclusions to remain valid in cases where the
sheet is made of rolled copper or brass, or even rolled iron or strain-aged
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mild-steel. But we would not expect any of these assertions to apply in the
case of, say, a fully annealed copper sheet, because in this material the grains
are not aligned.

APPENDIX 1

The following observations provide a basis for the proposals made by the
author in the present and in earlier publications concerned with the plastic
deformation of cold-worked and textured polycrystalline metals.

As early as 1915, ROSENHAIN [7] showed extended slip-lines on iron sheet
samples that had been heavily deformed after being polished. The “lines”
either extended smoothly across the grain boundaries, or sets of “lines” in
adjacent grains were at right angles.

Apcock [8], a few years later, revealed extended slip in cold-rolled
cupro-nickel samples, the lines of slip again implying crystallographic grain
alignments, bringing slip-planes parallel to what were evidently principal
shear surfaces. Adcock’s method was to section, metallographically prepare,
and electrolytically etch the samples after partial recrystallisation, following
the cold-rolling operation. Adcock claimed that during recrystallisation the
new grains first developed along the lines of extended slip, thus rendering
the latter visible upon etching.

BrowN [9],in 1972, described the lines of extended slip that he had found
on aluminium alloy samples subjected to cold-rolling; the “lines™ ran paral-
lel again to the surfaces of principal shear associated with the cold-rolling
operation. Brown’s method of rendering these features visible was to clad
his sample in polythene before cold-rolling; the impressions of the features
under discussion were observed on the polythene after its removal from the
samples subsequent to cold-rolling.

FreENcH and WEINRICH [10] also succeeded in revealing features similar
to these in heavily deformed tensile test samples of several metals and al-
loys. Their method was to illuminate the prepared and etched cross-sections
through their samples, using polarised light.

In every case of which the author is aware, and those cited are the
outstanding examples, the deformation has been applied slowly and some
special technique has been required to render the “lines” that we are dis-
cussing visible. This is the case because the “lines” exist in an already
heavily cold-worked microstructure, and ordinary etching lacks the sensi-
tivity to differentiate the lines from the matrix. The very recent method
of revealing these features described by ENGLER et al. [11], well illustrates
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this point. Engler’s method depends on the precipitation of fine particles
along the slip-lines in a cold-rolled aluminium alloy, when the samples are
briefly annealed after deformation; an annealing time of 2.5 s is quoted. One
may, moreover, perceive new grains nucleating along these lines on the mi-
crograph that Engler presents, and this is, of course, the mechanism that
Adcock claimed to be responsible for revealing his extended lines of slip [8].
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