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ON LIMITS OF APPLICATION OF KIRCHHOFI’S HYPOTHESIS
IN THE THEORY OF VISCOELASTIC FIBROUS
COMPOSITE PLATES

J. GOLAS (BYDGOSZCZ)

This paper contains the discussion on the application of Kirchhoff’s hypothesis to
viscoelastic fibrous composite plates based on the example of buckling of a plate strip.
It has been assumed, that the plate is made of a fibrous composile, and a simplified
two-phase continual model iniroduced by HoLwick1 SzuLc [8] and SwiTkA [9, 10] is used.
To describe the displacements of the phase I (matrix), the VLasOV’s [11], Hencky - Bolle’s
and Kirchhoff’s kinematic hypotheses were adopted. The matrix material is viscoelastic,
while the fibers (phase II) are made of material which satisfies the Hooke’s law. Buckling
of a plate strip was analyzed within the range of linear theoty of stability, by assnming
the equilibrium equations in a classical form, that is, in accordance with Hencky — Bolle’s
assumptions, The results obtained include closed-form analytical solutions for the immedi-
ate and sustained critical loads applied to a simply supported plate which was reinforced
by fibrous meshes symmetrically distributed across the plate cross-section. A parametric
analysis was performed on the obtained solutions, with Tespect to the plate strip ge-
ometric shape and with respect to the properties of the strip material. The analysis made
enabled the anthor to draw some conclusions pointing to the limits of applicability of the
Kirchhoff’s hypothesis. :

NoOTATIONS

z%,z° = z Cartesian coordinate system,
h,h/a plate’s thickness and the slenderness parameter,
a plate strip width,
u; displacement vector components for any point of the plate,
iy, w displacement vector components for points of the middle plane,

w small initial deflection,

$1,%¥2 rolation angles around the z2 and z! axis of the normals to the middle
plane of the plate,
eij,aij strain tensor and siress tensor components,
€af,€aa components of membrane and transverse shear strains at the middle

plane of the plaie,

20.3 bending strains of the middle plane,

2 - . .
Kag, ?co,a bending and twisting strains causing curvature of the normals to the

middle plane of the plate,
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Young’s modulus and Poisson’s coefficient for matrix
material,

immediate and sustained Kirchhoff’s modulus (shear
modulus) for matrix material,

relaxation kernel of the matrix material,

Young’s modulus of fibers material, single fibre
cross-sectional area, distance between individual fibres,
relative elongation and initial distorsion of fibres,

components of the elongation of fibres,

equivalent distributed membrane force in (A) family of
fibres and its components,

components of the resultant forces in all families of fibres
which constitute the r-th mesh,

fibres directional cosines with respect to the z¥ axes,
density of fibres distribution in a given family (A),

bending stiffness of fibrous composite plate in direction
of the z! axis,

membrane (disk) stiffness for r-th fibrous mesh in direction
of the #! axis, :
moments, longitudinal and transverse forces in a fibrous
composite plate, '

subcritical membrane forces in the plate,

uniform load which compresses the plate strip,

immediate and sustained critical loads of fibrons composite
plate strip,

critical load of fibrous composite plaie strip according to
Kirchhoff’s model. )

Latin indices 4, j run in the range of 1, 2, 3, while Greek indices o, g, §, A assume the
values 1, 2. Upper index, r (r = 1,2,3,...) refers to the r—th mesh of fibres, and the lower
index (A) denotes the given family of fibres in a mesh, and it assnmes the values A = I,
II, L, IV. A subscribed comma was used to denote differentiation with respect to spatial
variables 27, z%, z, while a superscribed dot denotes a time derivative. The summation
convention refers exclusively to Greek indices located at different levels.

1. INTRODUCTION

Classical strength analysis of fibrous composite 2-I structures is usually
limited to linear elastic problems based on the Kirchhoff’s kinematic hy-
pothesis (K). However, since fibrous composite materials find more technical
applications, in many cases it is required to take their rheological properties
into account, and to reject the assumption of the non-deformable normal
to the plate middle plane. Such cases appear nowadays, particularly due to
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a quick development of modern technology, which to a great extent is based
on the application of structural materials in conditions of high loads, which
exposes the influence of creep and shear deformation [1, 2]

Fibrous composite materials used in moldern 2-D structures, are used e.g.
in civil and mechanical engineering, and in the chemical, aviation and ship-
building industries. When compared with classical materials, such as steel,
concrete and wood, they have much better physical-mechanical parameters.
Besides other features, they have also higher specific strength (strength/
weight ratio), lower weight and higher resistance against action of chemical
agents. However, fibrous composites, being plastics, exhibit distinct rheolog-
ical properties and susceptibility to shear loads [2, 3]. These facts cause that
in the strength analysis of fibrous composite plates, more precise physical
and kinematical models than those based on Hooke’s and Kirchhoff’s hy-
potheses are required. From theoretical and experimental surveys [1,2,3, 4,
5, 6, 7] it follows that application of the Kirchhoff’s hypothesis considerably
reduces the magnitudes of displacements and, at the same time, it results in
lower critical loads and in lower magnitudes of the frequencies of free vibra-
tions. For example, due to application of a more accurate plate theory, the
reduction of the critical load for an isotropic, elastic plate with dimensions of
@ X b, simply supported and being subjected to uni-directional compression,
at the ratios a/h = 10 and a/b = 0.2 reaches as much as 73.32% [4]. Even
greater discrepancies may appear, if theological properties of the material
are additionally accounted for.

In this paper, the fibrous composite is defined as a material which is
obtained by bonding at least two material components, one of which creates
the basic phase I (matrix), while the other one creates the fibrous phase II
which is immersed in the first one. Phase I (matrix) acts as a bonding agent
and ensures monolithic structure and the form of the element, while phase II
ensures proper strength and rigidity. The fibrous phase is built of any number
of families of long fibres, which are located in planes parallel to the middle
plane of the plate. Fibres of a given family are thin, they have constant
direction and are distributed with such a density, that a continual model can
be used to describe their properties. It is assumed that the displacements
in both phases are identical. It is estimated that the peak fibrous phase
contents (reinforcement) in plate cross-section can reach as much as 8%.

So, the two-phase continual medium assumed as the theoretical model
of the fibrous composite considered in the present paper, consists of the
continuous phase IT (fibrous phase) which is immersed in the continuum
of phase I. The concept of such a model has been taken from papers by
HoLNickI-SzuLc [8] and SwiTka [9, 10).



606 J. GOLAS

As mentioned above, fibrous composites exhibit distinct rheological prop-
erties and high susceptibility to shear, thus more precise plate theories must
be used for the analysis of composite plates. Recent research trends in more
accurate and appropriate approaches to plate theories are comprehensively
presented in publications [1, 12, 13, 14, 15, 16, 17, 18, 19, 20] and in [5, 11,
21, 22, 23, 24, 25, 26, 27] (in Russian), which also include detailed Lists of
references. Among the above mentioned works the papers by JEMIELITA [18,
19] and REDDY [20] deserve special attention, as they include comparative
analysis of many kinematic hypotheses suggested by several authors.

The subject of consideration of the present paper is the estimation of
the range of applicability of Kirchhoff’s hypothesis. The considerations are
based on the example of linear stability of a viscoelastic fibrous composite
plate in the form of a plate strip, compressed by uniform load p (see Fig. 1)
in the direction perpendicular to the supported edge. To describe the state
of strains and stresses in the matrix, the theory based on kinemafical as-
sumptions of VLASOV [11] is adopted, for which a variationally coherent ex-
pansion for the case of laminated composite plates was presented by REDDY
[15). The theory converges with a generalised, second variant of Timoshenko
type plate theory [22, 23]. In the present theory, straight line segments,
which are normal to the middle plane of the plate before deformation, do
not remain normal and they become curved after deformation (see Fig. 2).
The transverse shear stresses have a parabolic distribution pattern across
the plate thickness, with zero values on the top and bottom surfaces. The
theory assumed in the present study does not require to introduce any shear
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Fig. 2.

correction factor, as it happens in the first order plate shear deformation
theory of Hencky - Bolle.

The results were obtained in the form of closed analytical solutions, which
allow us to determine the immediate and sustained critical loads for a plate
strip, which is reinforced by fibrous meshes located symmetrically in the
cross-section and of such arrangement, that the plate orthotropy coincides
with the parametric directions z® = const. Moreover, a parametric analysis
was also performed by using the obtained solutions. The parameters investi-
gated were: type of kinematic hypothesis, slenderness of the plate strip, the
ratio of longitudinal and transverse elasticity moduli, reinforcement density,
reinforcement mesh type and the ratio of Young’s modulus of the fibre and
matrix materials.

In view of results of the comparative analyses, which are presented in
tables and figures, the limits of applicability of the Kirchhoff’s hypothesis
to the theory of viscoelastic fibrous composite plates become visible.

2. PROBLEM FORMULATION

In the VLASOV’s theory [11], the kinematics of any point M(z!,22,z €
(=(R/2),(h/2))) of the plate is described by the following field of displace-
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ments:
1 .2 1] 4 22
oz, 2%,2) = Uy +2 {Po — ECE(% +w,)l,
.1
D et = e,
while in constitutive equations the assumption of 0% = 0 is made. An
additional numerical factor, C, can be introduced to generalize the relations
(2.1). So, for Vlasov’s theory, C = 1, for Hencky - Bolle theory, C' = 0, while
for Kirchhoff’s theory, C = 0 and %, = —w .
Plate strains resulting from the field of displacements (2.1) have the fol-

lowing form:

0 2
€ = Eap t+ z(naﬂ +022 "'.'a,ﬂ)a

2

(2.2)
€33 = 05 €a3 = €a3 + sz Kad

where

0 1] 0
Eao =g ,oy Eap =Uy g + 8,0
for o 75 ﬂ? Ea3z = 1/’0: + W ey

(2.3) E-'aa:: '!’a,oe 3 gaﬁ'_‘ '!’a,ﬁ + d)ﬁoa
4
for o # 3, fzia3= —ﬁ(% + wa),

2 4 2 4
Eaa= _m("lba.a + waa)s Rapg= _W("I)a,ﬁ + Vg0 + 21 ap)

for  a#p.

The equations of continuity of the strains are satisfied by identity.

It is assumed, that the matrix is made of a transversely isotropic material,
which possesses some rheological properties. The matrix material is linearly
elastic, though, due to its reinforcement made in the form of dense fibre
meshes, which are located in planes parallel to the middle plane of the plate
of the directions coinciding with parametric lines % = const, the viscoelastic
properties are maintained for transverse and in-plane shearing components
of appropriate strain and stress tensors [23].

As aresult of the assumptions made, constitutive equations for the matrix
material have the following form:

O.ll - }11111611 +A1122e22 0.22 — A2222822+A2211€
(2 4) » 11

t
ol? = A2, — ]Rnu(t — 7)eya(T) dr,
[1} .
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t

24
[( I;)] 0’13 = A1313613 - leala(t - 1')613(1') dT,
cont. 0 .
i
o8 = APy, / R2323(t — 7)eqs(7) dT,
0
where
Al 42222 E ANz22 _ 42211 _ Ev
1-—»2’ : 1—-p2°
(2.5)
A2 _ o £ A1313 _ f2323 _ o

T 2140

R'21%(1}, R1313(1), R?323(1) — relaxation kernel of the matrix material.
Fibrous phase consists of families of straight line fibres (A) of constant

direction, which create the meshes located in planes z = 5" (r=1,2,3,..)

that are parallel to the middle plane of the plate (Fig.3). A continual

B2yl
h/2

FiG. 3.

model is used to describe this phase. It is assumed, that the meshes are
symmetrically distributed within the cross-section, and that the system of
individual fibre families (A) in the r-th mesh ensures orthotropy in directions
z% = const. An example of A = I, I, III, IV fibre families distribution in the
7-th mesh is shown in Fig. 4 (with some notation conventions adopted from
papers [28, 29]). It is assumed, that the fibres are very thin, they transmit
longitudinal forces only and that they are made of a linearly elastic material
(9]- The forces in individual fibres are replaced by the force that is distributed

in a continuous manner along a line in the plane of fibres. The force .E'( a) in
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fibres of (A) family and its components § ?f) in z* coordinate system are
as follows:

r .é ‘2 A T Or
(2.6) Say= 254 (‘fm) - 5(4)) »
~ ba)
r T
T o E A A A T Or "a T
(2.7)1 S(f} = =254 (em) — £ (A)) t(a) th)’
ba)
or
ros EayAay (6 A . or \r, P
(2.7) 578 = =244 (t(A)f(A)""(A)SA - 5(4)) t(a) Hay

b(a)

where OET( a) denotes an initial distortion in fibres. For all (4) fibre families,
which belong to the r-th mesh, we will obtain

(28) 5 =359
a

It is assumed, that there is a full adhesion between the matrix and the
fibres, so that the cross-sectional internal forces of the fibrous composite are
equal to the sum of its all individual components.

To define the bifurcational, critical load of the plate, the considerations
arelimited to the linear theory of stability. Within this theory, the subcritical
(pre-buckling) state is bending-free, while the plate buckling phenomenon
means that there are equilibrium locations, which are arbitrarily close to
the subcritical equilibrium configuration [30, 31, 32]. The basic differential
equations were assumed in the form:

N =0, MP-Q° =y,
(2.9) “ a4

Qut N ('w+ ﬂj),ap =0,

0
where subcritical forces N ®# are calculated from equations of the mem-
brane (disk) state in which appropriate boundary conditions are satisfied,

w represents small initial deflection, while w is the post-buckling deflection.
In formulae (2.7); and (2.9) the traditional summation convention holds for
Greek indices which are located on different levels.

The equilibrium equations (2.9) result from the principle of virtual work
with utilization of the Hencky - Bolle’s hypothesis. On the other hand, the
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corresponding equations derived by a consistent use of the Vlasov’s hypoth-
esis are of much more complex form, and they contain quantities which are
difficult to be physically interpreted. The theory based on Vlasov’s hypoth-
esis (2.9) is energetically (variationally) inconsistent (exactly such a theory
was presented by Vlasov), while the theory of Hencky - Bolle is variationally
consistent.

The internal forces are defined in the following way:

hjf2
R T )
—hj2 T
MeP — / a'“'gzdz—i-z ,g'“ﬁzf, Q'G = f a3 dz
—h/2 T —h/2

which can be presented as below after substitution of Eqs. (2.2), (2.3) and
(2.4):

N = B(ego + vEga) + Z 3‘“‘“ for a#p8,
T

N21=N12:1“V

¢
Beia—h j RV2(t — D)ea(r)dr + 3 512,
0 T

0 2
e =P (%m +v '%ﬁ,@) +CD (?"‘em +v ’%-,6,6)

+> §%*2"  for a# B,

1—w» 00 1—-v _ 22
DF12 + C Dkqg

2.11 M2 = pq3—
(2.11) 7 2

h? t 1212 0
_E/R (t—7) k2 (r)dr
0
h? ' 2 2 T
—C@ /Rl 12(1‘ —7) K12 (T)dr + Z 51277,
i) T
Q' =G'h (k - -31—0) (1 + wa)

(k- 0) [ B+ e
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where
Eh 0 En? 2 ERS
. 2 = —, = — ; = -
(2.12) B 1-—p2 b 12(1 - »2) D 80(1 — »2)

and the k factor, which appears in expressions for the shearing forces, has
the following values: k = 1 for Vlasov’s theory (where simultanéously ¢' = 1)
and & = 5/6 for Hencky - Bolle’s theory (where additionally C = 0). ]

3. DETERMINATION OF CRITICAL LOADS

The considerations concern the time-dependent buckling of a fibrous com-
posite plate in a shape of a strip, which is subjected to uni-axial compres-
sion by the force p being uniformly distributed along the supported edges
z! =0, z! = a (Fig. 1). The plate has support conditions, which do not vary
along the support line, and it has orthotropic physical properties in direc-
tions parallel to parametric lines 2® = const. Under the assumed conditions,
the plate experiences cylindrical bending, and the unknown functions are
functions of one variable, namely z1. The aim of considerations includes the
determination of bifurcational loads and a study of the effects of appropriate
parameters.

Under the assumption of the bending-free (disk) pre-buckling state, the
subcritical forces are: :

(3.1) N'=—p, N®=o, mNEI_gu_g

while basic equations and relations take the suitably simplified form. For
example, physical equations for the fibrous phase consisting of m pairs of
identical meshes located symmetrically in the cross-section at distances 2" —
ter1, ke, ..., ten; €n € (0,h/2), take the form:

T T
N™ = Beyy + 2"’12% (E%A))z '?”1:1 - %T(A)] (;%4))2 ’

A ba)
T r
EaA 2 r ] r2 \?
N? = yBeyy +2m Y —‘:;)E‘l [(5%4\)) U, — %(4)] ()
A b

(3.2) 0 5 ror
EaA
M1 =D211 +C' Di%n +2 E E ——(M

. (;%4))463,,, [7/)1,1 - C;—;— (%‘)2 (P11 + w,n)J ,
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2 Fla)A
(3.2) M22 =y 52'-11 +L‘C D?Gu +222 _(i‘)—(dl
[cont.] m A b(d)

. (E%A))z (;%A))2812n ["!’1.1 —'Cg- (%)2(11’1,1 + W,n)] :
Ql = G'h (k - %0) (‘!‘bl + ’w11)

_h (k - %c) j RI3( — 1) [$u(7) + w1 (7)) dr-

Assume the relaxation kernel R'!3 in an exponential form, which is
typical for linear viscoelasticity, as

G' - H' t—T1
3.3 R1313 = ex (- ) .
( ) n13 P M3

it corresponds to the model of the body for which the constitutive rela-
tionship is 013 + n1a6!® = H'eya + n13G'é13, where n13-relaéca.tion time; G',
' - immediate and sustained Kirchhoff’s moduli; () = E( ); then, after
substitution of (2.3), (3.1) and (3.2) into equilibrium equations (2.9), the sys-
tem of integro-differential equations is obtained with w(z?,t), '3,1 (z!,t) and
1(z1,1) displacement functions as unknowns. Now, we express the unknown
functions as the products of functions with separated arguments and which
satisfy the boundary conditions of the problem. Then, having eliminated the
appropriate integral expressions, the system of governing equations can be
brought to the form of a differential equation for the deflection amplitude
F(t) being a function of time. This equation can be presented as:

(3.4) ms (o — 2) F(®) + (B — p) S(&) = pJo,

where pY, pL are immediate and sustained critical loads for a fibrous com-
_posite plate strip, respectively.

Let us now consider, in a detailed manner, the case of buckling of a
fibrous composite plate strip, which is simply supported along its edges
z! = 0, 2! = a, with the cross-section including two fibrous meshes only
(m = 1), which are spaced symmetrically at distances 2" = Xe. Here we
have:

N1 = (B+2f3“) 1,
(3.5) )
NZ = (VB +2322) vy,
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(3.5) 1 _ (_1)0 T2 4 fe\?
oy M =1(1-5¢) D42 hue 1—03(5) i

8 r

-C [1 10)+_ B2 (%)2]

5 3

3]

22 1 0 T 22 2 4 2
M = 1—30 I/_D+QB € I—CE E) 1/)1'1

1 o 8 \ 2
"C [EV D +§ 52282 (E‘) :lw'll,

Q' = G'h (k - %C) (%1 + w,1)

- (k- 30) €= j B (r) + war s -
where

r T T r
B =y Eade (5%4))4, B2 =y Fada (5%4))2

t—71
13

(¢
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wi1,

) dr,

).

a b(a) 4 ba
The following boundary conditions and equilibrium equations are assumed:
(3.6) for ! =0 '2'.1= 0, w= 0, M1=p,
for l=q: N“:—p, w=0, MY=y,
Ni' =0,
ﬁilﬁbl,u - ﬁélw,ul =G'h (k - %C’) (¥ + w,)
(3.7) |

5(o-30) 2 fo -

—11 =11 . * '
Dy 11— Dy wan = p(w a4 w 13).

The following notations in equations (3.7) have been introduced:

=11 _ __1_' 0 1"11 2 _é (3)2
D! _(1 5C)D+2B e [1 3¢(7) |

Pr_cfl18. 8 et
(3.8) D _C(5D+3B =)

— —_ —_ 0
D" = D'+ DI =D 42 p1ez,

t—7

fl13

) dr,
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The quantity D' = '5}1 + ﬁ;l is the bending stiffness of the fibrous com-
posite plate. From (3.7); we obtain N'! = const, and from the boundary
conditions (3.6) N'! = —p. The remaining two equations (3.7) form the sys-
tem of integro-differential equations, which can be reduced to the following
differential equations:

11" —11 —I1. =11
n13Dy ¥1.11+ Dy Y11 — msDy wan — Dy wn

(3.9) = n13G’h (k - %C) (¢1 + "b.l) + H'h (k - %C) (%1 +wa),

=11 —=11 .
Di 1111 — Dg w1111 = p{w i+ w11).

Searching then for solutions of the system of equations (3.9) in the form:

(10)  wh = [T, (e = g eos

and by approximating the initial deflection by w (z!) = fosin(rz!/a), we
will finally have:

™\ =1

—) Dy —p

(3.11) 9(t) = (L)Eﬁ—f(t) - E_iﬁ'fo,
a 1 a 1

ms (P - ) J(&) + (#2 — p) J(1) = pfo,

where
. G'h (k- 13C) ra\?
e &
(3.12) Ti1s = N3 ! ,
H'h (k- 1C) /ay?
14 ———> 7 (=
=11 ( )
D! m
()
u(m
(3.13) Pi\: _ 11a. -p (£)2 1
D, (%) @ = (™\"
1+ & 1+E8y{—
G'h (k - 3C) @

2 .
i (E) .
(3.14) w2 = a -4 (1) 1
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The following notation

11 =11
D
(3.15) T, = ———1—, gy = -__li_l_'
G'h (k _ 50) H'h (k - 50)

was used to denote the ratios of the strip bending stiffness in 2! direction
to the immediate and the sustained lateral stiffnesses.
The solution of Eq. (3.11); satisfying the initial condition

f6=0) = x—sho

which corresponds to the elastic solution, is the function:

vfo ( ?fo vfo ) -p t
3.16 t) = — — exp | — —1,
(3.16)  f) PR-p \pB-p N —p/ P\ N _p
which for ¢ = oo has the value:

f(o0) =

o

3

fo.
2 —p 0

So, the time-dependence of the displacements represented by the buckling
mode shape defined by (3.10), are described by the expressions:

w(e 1) = {Pc’f]?p - (p!ff—op - P§fj )

;pcr p 1 . wxl
< exp - — ] ¢sin —,
P — P Tas a

(3:-17) 1 a ™11 p\ plo
iz, t) = w—ﬁﬁ{( —D; —pcr) 20—

1 Ccr

1l'2— D _ i 1[' 1
_ —2D;1 _p ( gfo _ ]f;fﬂ )exp _pg—p — | % cos Tz .
a Pg—Pp . P — P Por — P M3 a

It follows from the analysis of expression (3.16) and (3.17); that at the mo-
ment when the compressive force p< pZ is applied, the plate will deflect elas-
tically and this deflection will grow with decreasing velocity to the asymp-

1 .
. T .
totic value of w(z!,00) = Plo - sin ——. For p = p2 the deflection growth
pD — a
CcTr

1
L _ph sin "2 How-
13 (pcr - P)
ever, for the force pL < p < pY¥ the deflection will grow at an increasing

velocity will be constant and equal to w(z!,#) =
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velocity, and when p = pN, the immediate loss of stability will appear.
Thus, the stable state of the plate is the state, in which deflection growth
rate is diminishing, while at the unstable state the velocity of the deflection
is increasing. According to the above statement, p = pZ is the limit of the
sustained stability, since at lower loads (p < pZ) the deflections growth de-
creases with time to the upper bound equal to the asymptotic limiting value
pl . wz! )

—=——sin —.

pR—p @

Before we list the formulae for critical loads corresponding to individual
plate theories, it is necessary to specify the way of reaching the solution,
which corresponds to the Kirchhoff’s classical theory. As a matter of fact,
assumption of the rotation angles of normals in the form of 4, = —w , leads
to the elimination of the components of shear deformation e,3 = £,3 =
0, see (2.2), (2.3), but simultaneously it makes the transversal forces Q<,
(2.11)s5, (3.2)5, (3.5)5 vanish, though, in fact, they must have a nonzero value.
However, if the constitutive equation for transverse shearing is presented in
the inverted form, that is:

of w=

!
(318)  ews = a3 = — {Q"’ + (1 - 5) L
G'h (k - —c) '/ ma
3

t
o H’(t — T)

.h/Q (t)exp {__nlgG’ ] d‘r} ,

we can see, that simultaneous satisfaction of the conditions e 3 = £,3 = 0

and Q® # 0 is possible when the transverse shear stiffness of the plate

becomes infinite,

So, the critical loads for a viscoelastic plate strip, considered in this

paper, classified with respect to the plate theory type, are expressed by the
following formulae:

o for Vlasov’s theory (C'=1, k= 1)
; 2
(3‘19) Por = Pg- = (B +2 31162) (%)
' 1
31 40 11 2 4 82 ('ﬂ' 2’
2 2D +2 -2 (X
BT [5 TaB e ( 352 a)

o for the Hencky - Bolle theory (C' =0, k = 5/6)

r 2
(3'20) Der = Pg = (10) +2an32) (g) 1

L ‘"112) m\*’
1+5H,h(D+2B e (;)
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e for Kirchhoff’s theory

— 2 r 2
(321) Py = Porp, = D (g) - (B 2 Bnez) (5) '
As we have already found, the elastic solution of the fibrous composite
plate strip for the buckling problem corresponds to the immediate solution,
which imposes the requirement, that in formulae (3.19) and (3.20) @ is
substituted instead of the sustained Kirchhoff’s modulus, H'. Of course, the
formula (3.21) remains unchanged.
The formula for critical loads for a homogeneous plate strip can be ob-
tained after elimination of the phase II (fibrous phase) from the plate, and

by assuming that ;1( A)= 0, which results in the following:

17311 '—_.522 =0, ﬁ:l = (1 — éC) B,_

=11 _1_ 0 =11 0 En?
Dy =-CD, D"=p=—_"_
2 =5¢D D 12(1 — 12)

and from (3.13), (3.14):

0
p§=D(

3)2 1
@ (1 - lC) D

2
s @
G'h (k - 5(J) a
(3.22) )
D 0 Fig 1
(1 - -5-0) D r\2
H'h (k _ 5c) a

~ From (3.22) it follows, that the critical load for Viasov’s theory (C' =1,
k = 1) and for Hencky - Bolle theory (C' = 0, k = 5/6) are identical and
equal to '

.0 2
(3.23) P =p2 =D (E) . ,

T N,
SH'h \a

while for Kirchhoff’s theory the critical load is

0 T 2
(3-24) Per = PEml =D (E) .
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The solution (3.23) is identical with a solution given by TETERS [23]
(page 283, where the plate with thickness 2h was considered). However, the
solution (3.24), which corresponds to Kirchhoff’s model, is a well known
classical Euler’s solution for a homogeneous plate strip [30, 31].

4. PARAMETRIC ANALYSIS

Let us perform a parametric analysis to illustrate the closed-form ana-
lytical solutions for critical loads obtained in Sec.3 for a simply supported
fibrous composite plate strip, which possesses some viscoelastic properties.
Let us consider the plate made of plastic and of the cross-section reinforced
symmetrically (2” = Ze) by means of two identical meshes according to
variants a), b), c), which are presented in Fig. 4. Moreover, we will assume

that the tension (compression) stiffnesses ( i«:,'( A) ;1(;1))/3( 4) are identical for
all families of fibres in a given mesh. ‘

It is more convenient to perform the analysis after the expressions (3.13),
(3.14) are transformed to the form:

0 (m\? 14 p_0 (T\* _ 7
Wb o)
( ) pcr 'D a 1 +7N ¥ pCl' 'D a 1 +7D y

where

T

e 2
14+ 24(1— Vz)n,u(A) (—) d,

2 2y ;]
72 (l - —C) +24(1 - Vz)n,u.(d) (%) ( - %C%) d

y _E(E)z
Y G \e 12(1—V2)(k— C

)
3
2- 1 2 € 2 T-
E(h)zw (1—50)+24(1——V)n,u(4) (K) I—E(Z'h2 d
Yo = 557\ = - =,
b H'\a 12(1—:12)(&:—%0)

-2
Il

(4) ;1(4) r ™y
n=—05, K =7 ? d= 3
E (4) by ZA ( (A))

Factor :i, which appears in formulae (4.2) is the quantity, which depends
on the selection of the mesh variant and on the fibre inclination angle ¢.
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f2_ TI _ r2 _ rl T -
=0t =0t =1, t{y = cosp, 13 = ~sin g,

Because 1 =1
r r . N r
tiv = cosp, t} = sing, (Fig. 5), then 4 for the particular variant of the
R T ™
mesh is: :t,,: 14+ 2cos* ¢, dy= 2 cost wand .= 1, respectively.
x’

——

¢
T m //,’ m
y r
‘J’
@
I
4
v

REAHK

TN

Fra. 5.

The first term in the formula (4.1) is equal to the Euler’s critical force for
a homogeneous plate strip (3.24), so it is constant for a given strip. According
to the above observation, the influence of the following factors: slenderness

of the plate h/a, shear ratios £/G", E/m, ]:rj( 4) /E, the type of the plate
theory used, the mesh variant, the mesh density and its location within the
cross-section and the fibre inclination angles ¢, are totally included in 7,
Twr ¥p-

The parametric analysis to illustrate the influence of some important
parameters among those mentioned above, which are believed to have the
decisive influence on the limit of applicability of the Kirchhoff’s hypothesis
in the theory of fibrous composite plates, was done in a non-dimensional

form. The analysis was performed for the following numerical data:
T

Ea

¢ physical data: v = 0.2; n =
10, 25, 50, 60, 80, 100, 120,

* geometrical data: e/h = 0.45; a/h = 5, 8, 10, 15, 20, 25, 30, 60; ¢ = 45°.

The error produced by neglecting the shear effects on values of the critical
load is equal to B

L = 10; sy = 0.01(1%); E/H' < 5,

pD = Pex,
(4.3) le| = ——5—"2.100% = 7, -100% .
, Por
Numerical values of the error, ¢, calculated for two theory types and for
three variants of the reinforcement mesh, are given in Table 1.
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Table 1.

l=|%

variant

of

mesh

E/H’

5

10

25

50

60

80

theory
Viasov

theory
H-B

theory |theory
Vlaaov | H—B

theory
Viasov

theory
H-B

theory |theery
Vlazov | H—B

theery |theory
Vlasov | H-B

theory
Vlasov

lheory
H-B

33.7
24.9
29.3

35.0] 67.4; 69.9

25.4
30.2

49.9) 50.7
58.6| 60.3

168.5
124.7
146.6

174.8
126.8
150.8

336.9] 349.5
249.4( 253.6
293.21 301.5

404.3| 419.4
299.3) 304.3
351.8} 361.9

539.0
399.0
469.0

559.2
405.8
482.5

13.2
9.7
11.5

13.6
9.9
11.8

26.3] 27.3
19.5] 19.8
22.9] 23.6

65.8
48.7
57.3

68.3
49.5
58.9

131.6{ 136.5
97.4] 99.1
114.5;117.8

157.9]163.8
116.9]118.9
137.4] 141.6

210.6
155.9
183.2

218.4
158.5
188.5

10

8.4
6.2
7.3

8.7
6.3
7.5

16.8] 17.5
12.5] 12.7
14.7] 15.1

42.1
31.2
36.6

43.7
31.7
37.7

84.2] 87.4
62.3| 63.4
73.3| 75.4

101.11104.9
74.8| 76.1
87.9] 90.5

134.8
99.8
117.3

139.8
101.4
120.6

15

&

3.7
2.8
3.3

3.9
2.82
3.4

7.5 7.8
5.5 5.6
6.5| 6.7

18.7
13.9
16.3

19.4
141
16.8

37.4| 38.8
27.7| 28.2
32.6| 33.5

44.9( 46.6
33.3| 33.8
39.1] 40.2

59.9
44.3
52.1

62.1
45.1
53.6

20

2.11
1.56
1.83

2.18
1.59
19

4.21] 4.37
3.12 3.17
3.66] 3.77

10.5
7.8
9.2

10.9
7.9
9.4

21.1} 21.8
15.6] 15.9
18.3| 18.8

25.3| 26.2
18.7] 19.0
22.0| 22.6

33.7
24.9
29.3

35.0
25.4
30,2

25

1.35
1.00
1.17

1.40
1.01
1.21

2.70| 2.80
2.00( 2.03
2.35) 2.41

6.7
4.5
5.9

7.0
2.1
6.0

13.5| 14.0
10.0| 10.2
11.7] 121

16.2| 16.8
12.0{ 12.2
14.1] 14.5

21.6
16.0
18.8

22.4
16.2
19.2

30

0.94
0.69
0.82

0.97
0.70

1.87} 1.94
1.39) 1.41

0.84

4.7
3.5

1.63| 1.68

4.1

4.9
3.6

4.2

9.4 9.7
6.9 7.0
8.1 8.4

11.2| 11.7
8.3 85

15.0
11.1

9.8 101

13.0

15.5
11.3
13.4

Figure 6 presents variation of the critical loads: pJ — immediate (con-
tinuous line) and pZ - sustained (dashed line), both referred to the Euler’s
force, per (3.21) — pertaining to the fibrous composite strip, of G'/H’ = 2.
In turn, ¥Fig.7 presents variation of pg/pcr( x) Tatio on the plane of vari-

ables (E, -jIE—,) The graphs presented in Figs. 6 and 7 were obtained for the
a

Vlasov’s theory and for the variant of reinforcement as shown in Fig. 4a.
Appropriate numerical values are given in Table 2.

From the above analysis it follows that, if the transverse shear defor-
mations in fibrous composite plates are taken into account, the values of
critical loads are visibly reduced and they depend mostly on the following
parameters: a/h, E/G', E/H’'. However, the selection of the theory type,
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el 2
Peey | Pecris
> ""-..__.
: %\\\ e Er ]
VAN G:s
ag \
N
o6
04
a2
0~ 1 1 1 1 N n
60 30 20 » 10 8 —SL a
Fic. 6.
Table 2.
n
Per hie
Per(x)
0 ] 1/60 | 1/30 | 1/25 | 1/20 | 1/15 [ 1/20 | 1/8 | 1/5
1 1 1 1 1 1 1 1 1
1 0.998 | 0.991 | 0.989 | 0.979 | 0.964 0.923 | 0.883 | 0.748
10 1 0.995 | 0,982 | 0.974 | 0.960 | 0.930 0.856 | 0.792 | 0.597
25 1 0.988 | 0.955 | 0.937 { 0.905 | 0.842 0.704 | 0.603 | 0.372
E/H'r 56 1 0.977 | 0.914 i 0.881 | 0.826 | 0.728 | 0.543 0.432 | 0.229
60 1 0.973 | 0.899 (-0.861 | 0.798 | 0.690 | 0.497 0.388 | 0,198
80 1 0.964 | 0.870 | 0.822 | 0.748 | 0.625 0.426 | 0.322 | 0.156
100 1 0.955 0‘.842 0.788 | 0.704 | 0.572 { 0.372 ! 0.275 0.129
120 1 0.947 | 0.817 0.756 | 0.664 | 0.527 | 0.331 | 0.240 | 0.110

that is, the Vlasov’s or Hencky - Bolle theory, is of lesser importance, though,
in every case the Hencky - Bolle theory produces results which are by some
1.5 - 4.5% higher than those obtained by employing the Vlasov’s hypothesis
(see Table 1).
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pcr
Perix?
19

+ '
25 4 /I/
~
804 /’/ V//
wd N
120
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FiG. 7.

It can be observed that Kirchhoff’s hypothesis can be used only for slen-
der, viscoelastic fibrous composite plates. The decisive contribution to the
plate performance is due to the (h/a)? and E/H' parameters. If some allow-
able error is assumed, for example £ = 3%, then by neglecting the transverse
shear, as it follows from Table 1, the Kirchhoff’s hypothesis can be used in
cases of very slender plates only, that is for (£/H") > 10 at the slendernesses
(a/h) > 30, while for (E/H') = 10 at (a/h) > 20, and for (E/H') = 5 at
(a/h) > 15.
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