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INTERACTIVE ELASTIC BUCKLING OF THIN-WALLED
CLOSED ORTHOTROPIC BEAM-COLUMNS

The present paper deals with an analysis of global and local stabilities and with the in-
vestigation of equilibrium paihs in the initial post-buckling behaviour of elastic thin-walled
beam-columns consisting of orthotropic rectangular walls. Closed or open cross-section
beam-columns, simply supported at the ends, are subject to axial compression, eccentric
compression or pure bending. The problem is solved by means of a variational method
using the asymptotic nonlinear theory of stability of the conservative systems [7, 8]. Nu-
merical calculations employ Byskov’s and Hutchinsen’s asymptotic expansion [3] in the
form of the transition matrix method. The calculation is restricted to the first order non-
linear approximation. The analysis is carried out in order to study the influence of the
wall orthotropy factor of closed cross-section beam-columns (square or trapezoid-shaped)
subject to axial and eccentric compression influences the critical state and the initial
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post-buckling behaviour.
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three-index coeflicients in the nonlinear equilibrinm equations
by Eq.(A.3.1) [3],

width of the i-th wall of column,

Young’s moduli of i-th wall along z and y axes, respectively,
modulus of non-dilatational strain of i-th wall,

thickness of the i-th wall of the column,

length of the column,

number of axial hall-waves of n-th mode,

bending moment resultants for the i-th wall referring to the n-th
mode in the firsi approximation,

number of mode,*

number of interacling modes,

force field, .

in-plane stress resultants for the i-th wall,

pre-buckling in-plane stress for the i-th wall,

in-plane stress resultants for the i-th wall referring to the n-th
mode in the first approximation,

Eq.(A.1.4),

Eq.(A.1.4),

Eq.(A.1.4),

displacement field,
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displacement components of middle surface of the i-th wall,
pre-buckling displacement fields,

buckling displacement fields referring to the n-th buckling mode,
orthotropy factor of the i-th wall,

measure of the applied pressure,

strain tensor components for the middle surface of the i-th wall,
curvature modifications and torsions of the middle surface of the
i-th wall,

scalar load parameter,

value of A at bifurcation mode number =,

maximum value of X for imperfect column,

Poisson’s ratio of the i-th wall; the firsi index indicates transverse
direction and the second shows the direction of load,

amplitude of n-th buckling mode,

imperfection amplitude corresponding to £,

dimensionless stress of the n-th mode,

= min(e7, 03,03 ),

limit dimensionless stress for imperfect column (load carrying
capacity),

==;fb,

=ui[bi.

1. INTRODUCTION

Orthotropic materials, including fibrous composites, are more and more
frequently used as carrying elements of thin-walled structures. Therefore the.
designers seek information concerning the behaviour of thin-walled struc-
tures built of orthotropic materials under various kinds of loads. Carrying
elements are particularly endangered by loads causing a loss of stability. A
full analysis of the behaviour of thin-walled structures very often includes
the following states: pre-buckling, buckling and post-buckling.

It should be remembered, however, that the buckling occurring in thin-
walled structures, especially in flat-walled columns, may have many forms,
both qualitatively and quantitatively different from one another — for in-
stance global flexural or flexural-torsional buckling, lateral and local buck-
ling. _

In cases when the critical load values for different and separately analyzed
buckling modes are close to each other, a so-called coupled (or interactive)
buckling may take place.

The load value at which an interactive buckling occurs is always lower
than the critical loads for each buckling mode considered separately, that is
with no regard to the mutual interaction of those uncoupled buckling modes.
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It is known that the concept of interactive buckling results from Koiter’s
general asymptotic theory of stability [7, 8] which is one of the most effective
methods for solving nonlinear stability problems. A practical application
of Koiter’s theory to the analysis of structure stability was done after its
modification by Byskov and HuTcHINSON [3] when it was converted into
a form more convenient for numerical analysis.

While the interactive buckling of thin-walled structures bmlt of the iso-
tropic material is dealt with by many authors [1, 4, 9, 13, 14, 17-29], not very
much attention has been paid to the same process in thin-walled orthotropic
structures.

For the first order approximation KorrEr and vaN DER NEUT [9] have
proposed a technique in which the interaction of an overall mode with two
local modes (three-modes approach) having the same wavelength has been
considered. The fundamental mode is henceforth called “primary”, and the
nontrivial higher local mode (having the same wavelength as the “primary™)
corresponding to the mode triggered by overall longwave mode is called a
“secondary” one.

A comprehensive review of literature concerning interactive buckling,
published before 1990, has been done by KrOLAK [16, Chapter 5].

In the present paper, basic equations are derived for the stability of
thin-walled beam-columns with rectangular flat walls made of orthotropic
material. An assumption is made that the principal axes of orthotropy are
parallel to the wall edges. Beam-columns with closed or open cross-sections,
simply supported at the ends, are subjected to axial compression, eccentric
compression or pure bending.

The problem is solved by variational method using Koiter’s asymptotic
theory of stability of conservative systems.

The following techniques are employed in the solution and in the com-
puter programme prepared: Byskov’s and Hutchinson’s asymptotic expan-
sion, and the numerical method of transition matrices [6, 30] using Go-
dunov’s orthogonalization [2]. Such an approach enables us to find all global
and local buckling modes of the structures analysed; moreover, it includes
interaction of several buckling modes, the shear-lag effect and the cross-sec-

tional distortions.

Plots are made illustrating the influence of wall orthotropy factor on
the critical state and on the initial post-buckling behaviour of the closed
cross-section (square, trapezoid) columns subjected to axial and eccentric
compression.
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2. SOLUTION OF THE PROBLEM

The considerations concern long prismatic beam-column, of the length
I, whose flat walls are treated as thin orthotropic rectangular plates. These
rectangular plates, of principal axes of orthotropy paralle! to their edges, are
connected along their longitudinal edges and form a beam-column;

The cross-section of a structure composed of a few plates is presented in
Fig. 1 along with local Cartesian systems of coordinates. Columns of closed
or open cross-sections are simply supported at their ends.
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F1G. 1. Prismatic plate structure and the local coordinate system.

The analysis of stability of thin-walled columns is carried out using the
plate model. For the i-th wall, exact geometrical relationships are adopted in
order to enable the consideration of both out-of-plane and in-plane bending

of each wall:
Exi
Eyr
(21) ’
Exyi
Lh
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Physical relationships for the i-th wall are formulated in the following
way':

Ezi = (N.'L'i - sziNyi)/(Exihz')s
(2.2) Eyi = (Nyi — vyaiNz) /[ (Byihi),
Exyi = a:yi'/(2Gihi)-

The dependence between Young’s moduli and Poisson’s ratios in Eqgs.
(2.2) is as follows:

(2.3) E::iyy:r:i = LyiVeyi «

The differential equilibrium equations resulting from the virtual work
principle and corresponding to expressions (2.1) for the i-th wall can be
written as follows:

Nmi,z+Na:yi,y+(Nmi ui,z),a:+(Nyiﬂ£,y),y‘l‘(Nzyi ui,x),y+(nyiui,y),x =0,
(2-4) Nyi,y+N::yi,::+(invi,x),r‘l'(Nyivi,y),y‘l‘(N:nyz'v:',:c),y+(waivi.y),a: = 01
D;VV W —(Ngiwig) e — (Nyitig) y — (Nayi®iz) g — (Nayiwiy) z = 0.

The solution of these equations for each plate should satisfy kinematic
and static conditions at the junctions of adjacent plates and boundary con-
ditions at the ends z = 0 and & = { (see Appendix 1).

The nonlinear problem is solved by the asymptotic KOITER method [7, 8].
Displacement field, U, and sectional force field, N, are expanded in power
series in the buckling mode amplitudes, ¢, (& s the amplitude of n-th
buckling mode divided by the thickness of the first component wall, k,):

U= /\[_I{‘-O)-}-fnﬁgn)-l-...,
N = N2 +6N" 4.,

where the prebuckling fields are TJ_EO), ﬁﬁ‘”, the buckling mode fields are
ﬁgn), -N—gn). The range of indices.is [1, N] where N is the number of inter-
acting modes.

By substituting the expansion (2.5) into equations of equilibrium (2.4),
junction conditions (A.1.3) and boundary conditions (A.1.5), the boundary
value problems of zero and first order can be obtained. The zero approxima-
tion describes the pre-buckling state while the first approximation, that is
the linear problem of stability, enables us to determine the critical loads of
global and local value and the buckling modes. This question can be reduced
to a homogeneous system of differential equilibrium equations.

(2.5)
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The plates with a linearly varying stresses along their widths are divided
into several strips under uniformly distributed compressive (tensile) stresses
(Fig.2). Instead of the finite strips method, the exact transition matrix
method is used in this case.
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FiG. 2. Discretization of a linear distribution of stresses by means of finite strips.

The pre-buckling solution of an orthotropic wall consisting of homogene-
ous fields is assumed as:

u? =7"wiAi5
(2.6) v = veyini 4,
wi =0,

. where A; is the actual loading. This loading is spemﬁed as the product of a
unit loading system and a scalar load factor A;.

Numerical aspects of the problem being solved for the first order fields
(unlike those of papers [13, 14]), resulted in the introduction of the following
orthogonal functions in the sense of boundary conditions for two longltudmal
edges (see Appendix 2):

) = N0 o (14 2o
@7) + Vi (L+ vayiAA; — A AT
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The differential equilibrium equations for the first order a.pprommatlon
can be written as follows:

& = — [09i — (Beif By — V245 — 2vayigyi) VA T,
—gui [1 = (1 - v A AN TR
B = —[1 — 3 = VayityaiAAT Y, ~ vyt [ — (1 — vayi)AA] 3,
&) = [B7) /g0 ~ (14 wyid A = AN /(1 - 204,
(2.8) d(") [@™ = vyi (1 + 2233 d A = AANEP] [(1+ 2wegid ),

2 = 77
:’7 !
70 = g — vyl
7 =B — 19,7,
Eg:;) = — -_,,-;‘/ Ey [Vywiﬂz)(n + EE’?CCC

F12(1 — Vayivas)(bi/Ri)AAET .

The first order solutions may be formulated as follows:

_(") A(“)('r,') sin ——— mrr('b , EE") = ﬁf")(q) cos @ ,
o = T (n) cos ™ ‘5” B =D T,
(29) %) ver- +m _ 7 Cb-
GRES A R(0) Sin'T'a i=F (ﬂ)Sin——l—',
—(."‘) G(n)(n) sin TS0 C 1 , E(-"') = _IT(-n)(n) sin ____mirl"le; .

Imtla,]ly the unknown functions A ") B(ﬂ) 6("') D(n) _(n) F(") G("')
_,(-") (with the m-th harmonic) will be defined by the numerlca.l method
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of transition matrix. The system of ordinary differential equations of the
first order with appropriate junction conditions for the adjacent plates is
solved by the transition matrices method, using numerical integration of
the equilibrium equations in transverse direction, in order to obtain a rela-
tion between the state vectors on two longitudinal edges by means of the
Godunov orthogonalization method [2].

The omission of the displacements of the fundamental state implies that
the difference between the configuration of the undeformed state and the
fundamental state are neglected; consequently, the displacements defined
earlier, u? and v¢, can be considered as additional ones from the fundamental
state to the adjacent state.

The assumed fields for the first order of nonlinear approximation ensure
compatibility of the corner displacements of the constituent plates. Thus
v = 0 at the ends, implying that the plates are restrained in their plane at
the ends (for a more detailed analysis see [25]).

The global buckling mode occurs at m = 1 and the local modes at m > 1
(with b; < [). Each buckling mode is normalized so that the maximum
" normal displacement is equal to the thickness of the first constituent wall, hy.

At the point where load parameter, A reaches its maximum value, A, for
the imperfect structure (limit load parameter), the Jacobian of nonlinear
system of equations [3]:

(2.10) (1—%)§J+a,‘_ﬂ§;§j+-..=;—l‘rﬁj at J=12,...N
J
is equal to zero.

Expression for a;;7 is given in Appendix 3. The formulae for the post-
buckling coefficients e;;7 involve only the buckling modes. The result of in-
tegration along z indicates that post-buckling coefficients a;;; are zero when
the sum of the wave numbers associated with the three modes (m;+m;+m,)
is even. .

Since for the first order approximation the limit load is always lower
than the minimum value of a bifurcational load obtained in the linear anal-
ysis, this approximation can be used as a lower bound estimation of a load
carrying capacity.

3. CAPABILITIES OF THE PREPARED COMPUTER PROGRAMME
On the basis of the formulae and equations obtained, a computer pro-

gramme is prepared. Due to a suitable formulation of equilibrium equa-
tions, stress-strain continuity conditions and boundary conditions, it has a
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very broad range of application. The programme enables a division of each
girder wall into a few plate strips of different material properties, thick-
nesses, widths and external loads (compressive or tensile) applied at the
ends of these strips (Fig. 2).

The program enables the analysis of the stability (critical state) and the
initial post-buckling equilibrium paths of thin-walled beam-columns with
different cross-section shapes {closed and open profiles) subjected to axial
compression, eccentric compression or pure bending. In circumferential di-
rection of the column, the division of the walls into plate strips enables
abrupt changes (at the strip boundary) of material properties, wall thick-
ness and beam-column loads. Moreover, the programme allows to calculate
columns with longitudinal stiffeners (especially profiled walls — intermedi-
ate stiffeners) and with initial deflections of column walls and axes, like in
paper [15] where isotropic columns were discussed. The correctness of the
solution obtained and of the programme worked out was tested by a com-
parison of the calculated results with those obtained by other authors, e.g.
CHANDRA and RAJU [5] and with those obtained for isotropic beam-column
[10-12, 15]. The programme can be easily applied in a computer-aided sys-
tem, CAD/CAM.

4. CALCULATION RESULTS

Detailed numerical calculations are carried out for a thin-walled square-
section column subjected to uniform and eccentric compression and for a
thin-walled column of isosceles trapezoidal section subjected to uniform
compression. Eccentric compression in a square column is accomplished by
means of a triangular load (stress) distribution at two opposite column walls
(Fig. 3).

The following column dimensions are assumed:

e square-section column:

by =by;=b3=100[mm], Ay =hy=hs=1[mm], !=2750[mm],
s trapezoidal-section colﬁmn:
by = 50 [mm], b =95.476 [mm], b3 = 100 [mm],
hy=05[mm|, hy=1.075[mm], hs=17[mm], I=2750 [mm].

It should be noted that geometrical dimensions of the cross-section were
selected so that the second moment of area of the section relative to the
central axes of inertia could be identical [10, 12].
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F16. 3. Type of closed cross-section considered.

The main purpose of calculations is to analyse the influence of the or-
thotropy factor, 8; = E;/E,; of column walls upon the global and local crit-
ical load values and upon the interactive (coupled) buckling. Calculations
are carried out for columns where all walls are made of the same orthotropic
or isotropic material. Material constants for the orthotropic walls are taken
from paper [5]. Calculations are made for columns with 13 different material
constants as listed in Table 1.

Table 1. Elastic constants for various cases of composite beam-columus.

Spec. no. f8=E;/E, Vey Vys G/E.
1 0.0728 0.02184 0.3 0.4065
2 0.1315 0.03945 0.3 0.4091
3 0.3031 0.09093 0.3 0.4002
4 0.5064 0.15192 0.3 0.3937
) 0.7041 0.21123 0.3 0.4009
6 0.8358 0.25074 0.3 0.3882
T 1.0000 0.3 0.3 0.3846
8 1.1964 0.3 0.25074 0.3245
9 1.4202 0.3 0.21123 0.2823

10 1.9747 0.3 0.15192 0.1994
11 3.2992 0.3 0.09093 0.1213
12 7.6045 0.3 0.03945 0.0538
13 13.7362 0.3 0.02184 0.0296

Results are presented in a graphic form. Figure 4 shows plots of the global
(flexural) critical stress and the lowest local critical stresses of the analysed
columns as functions of the wall orthotropy factor, 3; = § = E;;/F;, =
E;/E,.
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F1G. 4. Dimensionless stress o, carried by the orthotropy factor 8. Gurves: a — global
buckling for uniformly compressed square column, & — local buckling for uniformly
compressed square column, ¢ — global buckling for eccentrically compressed square
beam-column, d — local buckling for eccentrically compressed square beam-column,

e — global buckling for uniformly compressed trapezoid column, f~ local buckling
for uniformly compressed trapezoid column at the first minimum, g - local
buckling for uniformly compressed trapezoid column at the second minimum.

The plots indicate that for 8 < 1, the overall critical stresses are practi-
cally independent of the wall orthotropy factor, or, to be more accurate, of
the moduli E, when dimensionless critical loads measured along the ¥ -axes,
ok = o, 103/ E,, are dependent on E,(= Ej;).

If the wall orthotropy factor § varies within the limits 1 < 8 < 13.7362,
the dimensionless global critical stresses decrease, £, being constant, by the
maximum of:

19% — the square column under axial compression;

13.4% — the trapezoidal column under axial compression;

29% — the square column under eccentric compression.

It should be remembered, however, that dimensional critical stresses
change proportionally to the moduli £, because o, = o} E,/1000.

The adoption of the plate model for the column allowed us to take into
account the effect of factor B (moduli E,) on the critical values of global
buckling stresses which would not be possible if a bar model was applied.
Numerical calculations proved that in the column under analysis, the wall
orthotropy factor 8 influences the lowest critical stresses of local buckling
much more significantly than those of global buckling. In -the considered
range of 8 factor values, the dimensionless local critical stresses in columns
with orthotropic walls, as compared to those with isotropic walls, are chang-
ing in the following way:

at § = 0.0728 they increased by approx. 2.2 — 2.3 times;
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at 8 = 13.7362 they decreased by approx. 5.9 — 6.2 times.

In case of a trapezoid-section column, two minimum values are found
of the local buckling critical stresses; one of those is an absolute minimum
while the other is a local one.

These minimum values differ in the critical stress values and in the num-
ber of half-waves, m, hence also in the eigenvalue modes. Therefore, in a
compressed trapezoid-shaped column made of an isotropic material (8 = 1),
the absolute minimum occurs at m = 33 while the local one at m = 79. The
critical stress for the second minimum of local buckling mode is by about
16% higher than the critical stress related to the absolute minimum. The
number of half-waves being formed over the length of the column analysed,
changes along with the factor 8. The change in the number of half-waves for
the first and the second minimum of local buckling modes of the trapezoidal
column under compression is presented in Fig. 5.
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FiG. 5. The number of half-waves m carried by the orthotropy factor 4. Curves: 7 — local
buckling for uniformly compressed square column, 2 - local buckling for eccentrically
compressed square beam-column, $ - local buckling for uniformly compressed trapezoid
column at the first minimum, 4 — local buckling for unifermly compressed trapezoid
column at the second minimum.

The plots in }ig. 5 show that the number of half-waves, m, in a column of
B = 13.7362 decreases nearly twice as much in relation to the column made
of the isotropic material; for # = 0.0728 it increases almost by a factor
of two. The ratio of half-waves numbers of local bucklings referring to the
second minimum (greater number of half-waves) and the first one (smaller
number of m) buckling modes is about 2.4, and practically does not depend
on 3 in the analysed range of variation.
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Figure 6a presents the curves of wall deflection in a section running
through the middle of a half-wave of the local buckling mode corresponding
to the first minimum; Figure 6b illustrates the same at the second minimum
relating to three trapezoid-section column, their 8 factor being 0.0728, 1.0
and 13.7362.

a)

p:o_0728; s

P=00728; 10; 13736

I
-

F1G. 6. Local buckling modes for the trapezoid column corresponding to the first (a) and
the second (b) minimum.

Figures 6 illustrate that local buckling modes, being completely different
for the first and the second minimum, depend only slightly on 8 (except the
half-wave length in the direction of compression).
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Figures 7 present plots of the bending moments, M,-(; ), also for the first
and the second minimum of the trapezoid column; the section is identical
to that in Figs. 6.

a)
b}

00728, 13736

|
|
| A=00726; 13736
|
I

p=lo

FiG. 7. Bending moments M'(: } for the first (a) and the second minimum (b) of the
trapezoid column.

An analysis of plots representing deflections and bending moments, M,-(; ) s
leads to a conclusion that in the trapezoidal column under analysis the weak-
est wall, regarding its local stability, is the narrowest wall of the column (in
our calculations, wall No.1). As hy /b for the first wall has the lowest value
0.01, such a result could be predicted. In the present paper, unlike in papers
[10-14], the influence of the number of half-waves with given imperfections,
on the load carrying capacity is neglected.

One of the more important aims of this paper is to determine the load
carrying capacity, o¥ = o, 1000/E; = A,4;1000 of columns calculated for
different values of the wall orthotropy factor 8. Figure 8 shows plots illus-
trating the ratio of the limit load o7 to the minimum critical load o}, as a
function of 3, the imperfections being |£;| = 1.0, |£,] = 0.2, &5 = 0.0.

In each case the sign of the imperfections has been chosen in the most
unfavourable way, i.e. so that ¢} would have its minimum value (see [10-12]

for a more detailed discussion).
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F1G. 8. Load carrying capacity o} /o, carried by ortholropy factor #. Curves:
a — uniformly compressed square column, b — eccentrically compressed square
beam-column, ¢ — uniformly compressed trapezoid column at the first minimum,
d — uniformly compressed trapezoid column at the second minimum.

An interaction of the global buckling mode with two local modes, primary
and secondary, having the same wavelength are considered.

As can be seen in Fig. 8, the orthotropy factor # has an insignificant effect
upon the ratio of the load carrying capacity to the minimum critical stress,
ayfaoy,.

In case of eccentric compression of the square-section column, the value
of the dimensionless local critical load (Fig. 4) is higher than under uniform
compression, due to a greater stability of disk-bent webs and unloaded bot-
tom flange (Fig.3). Along with the growing eccentricity, the ratio o /oy,
(compare curves a and b in Fig. 8) decreases; therefore the imperfection sen-
sitivity increases together with the eccentricity of compressive load.

In case of the trapezoid-section columns, the interaction is considered be-
tween global buckling mode and two local modes, having the same numbers
of half-waves, referring to the two different minimum values. It turned out
that the interaction of global mode with two local modes referring to the
gecond local minimum causes.a greater relative decrease in the limit load,
o*/o%,, than does the interaction of the global mode with the local ones
corresponding to the first minimum.

The dimensionless limit load o for the interaction between global buck-
ling and local modes referring to the second minimum is by 2 — 4% higher
at B = 0.0728 — 3.2992 and by less than 3% lower at g = 7.6045 — 13.736
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than o, corresponding to the interaction between global buckling and lo-
cal modes referring to the first minimum. Attention should be paid to the
proper selection of local buckling modes. This can be accomplished only by
means of nonlinear analysis.

5. CONCLUSIONS

The paper presents a solution to the stability problem of thin-walled
beam-columns built of orthotropic rectangular plates. A computer program-
me with a broad range of application has been worked out and tested.
Detailed calculations are made for thin-walled columns with closed cross-
sections (square, trapezoid) subjected to axial and eccentric compression.
Analysis is carried out of how the wall orthotropy factor, 8 = E,/F, influ-
ences the following:

¢ global and local critical stress values;
¢ limit load values for columns with imperfections.

Global and local buckling modes are determined for the columns un-
der analysis. The plate model of the column adopted in the analysis en-
abled us to study the influence of § factor upon the global (flexural and
flexural-torsional) stability of the column. An interaction is analysed be-
tween global and two local buckling modes, having the same numbers of
half-waves referring to the two lowest characteristic values.

The applied method describing the buckling of thin-walled structures
from the global to the local loss of stability can be easily adopted in the
computer-aided system, CAD/CAM.

The present analysis has to be completed by including the second approx-
imation, in order to investigate post-buckling in case when the first order
interaction is weak.
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APPENDIX 1

The sectional internal forces appearing in the paper by following rela-
tionships:

Nz:z' = Kgi€ri + I(zyisyz' ’
Nyi = DpyiEai + Kyl'eyi |
Npwi = 2K €000
(A.1.1) b i
Ma;i = Dzi”zi + nyiﬁ"yi 3
Myi = -D:i:yi""'zi + Dyiﬁyi »
Ma:'yi = 2Dsi"f:ﬂ:y£ s
where
K = E:cihi/(l - nyi”yxi)a
I(y:' = Eyih'i/(l - V.’t:yi”ywi)a
Ka:yi = Vyxi-Kxi = meiKyz';
K, = Gih;,
(A12)

Dy = E,,;,'h?/(12(1 — VgyiVyzi))
Dy = Ey,'h‘?/(12(1 — VeyiVyai))s
Da:yi = Vy:.t:iD:ni = V:ryi-Dyi ’

D,; = G;h3/12.

The kinematical and statical continuity conditions at the junctions of
adjacent plates may be written in the form:
0 +

"’1'+1| = ’H.{] s

wit1]® = wil*cos(i) — il Fsin(2),

vip1|” = wil sin(p:) + v Feos(i),
wi+1,ylo = wi',y|+1

(A.1.3) My =Myl = 0,
N;(£+1)|0—N;;|+CO§(99£) ~ Qi|*sin(p;) = 0,
Q3 o1y P+ N Fin(i) — Qi eos(ipi) = O,
' Ny — NlT =0,
where
N;i = Nyi+ Nyiviy + Noyi¥i oy
(A.1.4) "Q;-' = Nyiwiy + Noyiiz — Dyilw; yyy + (Vryi + 4Gy Wi zzy),

>
= Na:'yi + Na:yiui,r + Nyiui,y y

Ty

Gzi = I{m/I(:m ? Gyi = I('"-/I{y'. '
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The boundary conditions referring to the simple supports of the beam-
columns at both ends are assumed to be:

Z E];T./Ng;i(ﬂ'?i =0, ) dyi = z bl.-fNﬁ(wi =1 wi)dy: = ZN&’

v(z; =0, v =v(zi =1, 5)=0,
(A15) i( i) ( )
wi(2; =0, 4i) = wi(z; =1, %) =0,

My(z; =0, %) = My(zi =1, 4)=0.

APPENDIX 2

The conditions resulting from the variational principle for two longitudi-
nal edges on which a relation between the state vectors is derived using the
modified transition matrices method, may he written in the form

{ i
[Wisvazi=0, [ Nisudei=o,
0 0

{

(A.2.1) i
./M.-yéw,-,y dr; = 0, fQ:yEw dz; = 0.
0 0

APPENDIX 3

The coefficients in the nonlinear equilibrium equations (2.10) a;;7 are
given by the following expressions (see Byskov and HuTcHiNsoN [3] for a
more detailed analysis)

o)1y (UO, UD) 4 2091130, U )]
2g(N.e(J) ) )

(A.3.1) ;7 =
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