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FINITE ELEMENT APPLICATIONS TO EVALUATE THE STRESS
AND STRAIN FIELD IN THE VICINITY OF AN IMPERFECTION
IN THIN SHELLS

S. KAPINSKI (WARSZAWA)

The paper presents the method of calculation of the mechanical and technological par-
ameters of thin spherical shells loaded by internal pressure. The FEM and the plasticity
law of the material are introduced to the calculation. The deviations from the designed
geometry of spherical shells may be due to fabrication and installation defects, and for that
reason it is necessary to evaluate the level of stresses and the nature of the siress redistri-
bution. Numerical results are presenied on the diagrams to demonstrate the efficiency of
the method and general conclusions are also given at the end of paper.

1. INTRODUCTION

Spherical shells often present deviations from the designed geometry with
amplitudes of the order of the shell thickness. Such deviations may be due
to fabrication and installation defects, accidental loads, damage to the shell.
In that case, it may be necessary to evaluate the level of stresses and the
nature of the stress redistribution that takes place in the shell with modified
geometry.

“Typical forms of imperfections can be classified as meridional, circumfer-
ential or local, depending on whether curvature errors are introduced in the
meridian, in the circumference or both in the meridian and the parallel cir-
cle. To evaluate the stress and strain field in the vicinity of an imperfection
profile, the usual approach comsists in assuming an imperfection profile and
carrying out the corresponding deterministic analysis.

The first investigation on the behaviour of imperfect spheres was made by
HEYMAN [3]. CALLADINE [4] studied axisymmetric imperfections in cylindri-
cal shells, and the results were extended to spherical shells using Geckeler’s
assumptions. Fernando and Godoy examined imperfections of shells using
the finite element method [5]. The information on the finite element appli-
cations to evaluate the stress and strain field in thin shells are reported, for
example, in Ref. [2, 6].
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2. NONLINEAR ANALYSIS OF IMPERFECT SHELLS OF REVOLUTION UNDER,
NON-AXISYMMETRIC LOADING

The finite element method is employed to study equilibrium and stability
configurations in shells of revolution under internal pressure and non-axi-
symmetric loading conditions, while the computed load-displacement path
may be linear or nonlinear. Bifurcation loads can also be computed from
the load-displacement paths. The equations considered in this paper are
obtained from those proposed by SANDERS [1]. If membrane deformations
of the middle surface of the shell ¢;; and changes in the curvature of the
middle surface of the shell &;; represent the membrane deformations and
changes in the curvature of the middle surface, the strain-displacements
relations for the shell of revolution lead to
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where 71 — radius of the meridian curve, + — parallel radius, u,v,w — dis-
placement in directions of x; (longitudinal coordinate measured along the
meridian), k; (angular coordinate along the parallel), x3 (longitudinal co-
ordinate along the normal to the shell); ¢ — angular coordinate along the
meridian, and
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Based on the principle of virtual work, the equation of equilibrium can be
expressed as:

1 .
(2.3) 2 [/(Mnﬁﬁn + Mazbkaa + 2M26Kk12 + Nuibenr + Nozbeoy
S .
+2Nyabenn)ds — [ (pabu+ pabv + pobu) ds
s
- j T (Plﬁ'u + Pgﬁ'v + P36w + Mléﬂl)dl = 0,
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where s — area of the middle surface of the shell, I — length of parallel with

line loads.
The constitutive relations are the same as those for plane stress, and
resultants of forces after integration across the thickness can be expressed as:

N1 = Clen +vezs),
Nog = Clean + venr),
ng = C(l - 1/)2612,
M1 = D(k11 + vka2),

My = D(ra2 + v&11),
) M12 = D(]. — V)2I€12 N

(2.4)

where C — shell membrane stiffness, D — shell bending stiffness.
. The virtual work equation can be written in mairix form

(2.5) ola) = f / B'Ndv— f=o.

BT — transpose of a matrix B, where B is defined by the relation
- (2.6) bc = Bla
and i
N = (N1, Nag, Nig, M1, Mg, Mys),
(2.7) € = (€11,€22,€12, K11, K22, K12)
a = (u,v,w).

The operator deformation-displacements matrix B can be decomposed into
By independent of nodal displacements e, and nonlinear deformation-dis-
placements matrix By dependent on «,

(2.8) B = By + Br(a).
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To solve Eq.(2.5) by a numerical algorithm, it is necessary to know the
relation between 1 and @, which is

(2.9) dip = f f dBTN ds + f f B” dNds.
5 S .

The differential of N, using Eqs. (2.4) and (2.5), can be written in the form
(2.10) dN = Dde = D (Bda+ dBa)

and, according to Eq. (2.8), |

(2.11) D = dBy,.

Hence, Eq. (2.9) 9 yields

(2.12) dip = / f dBN ds + K da,
8
where
(2.13) = /f BTD (B+By)ds = Ko+ Ky,.
) |

Ky is the small displacements stiffness matrix

(2.14) Ko = ff BT D Bods,
S

while K, is known as the large displacements matrix and may be written as

(2.15) Ki = ] ] (BEDBo+2BI DBy + 28] D BL) ds.
S

The linear and nonlinear deformation components are obtained as follows:

(2.16) E=¢Es+€&p = Boa+ Br(a)a
and

(2.17) 0¢ = be, + be, = Boba + Brba,
where

T _r.v v w LY W u v w
da —[ao,ao,uo,...aj,aj,aj,...aﬂ_l,an_l,an_l].



FINITE ELEMENT APPLICATIONS TO EVALUATE THE STRESS AND STRAIN FIELD 549

The solution of Eq. (2.9) in incremental form is derived through a modified
Newton - Raphson technique.

The formulation has been extended to deal with an elasto-plastic material
and to calculate bifurcation from a nonlinear fundamental path in which
the geometric nonlinearity and plasticity are taken into account [7]. The
situation is complicated by the fact that different classes of materials exhibit
different elasto-plastic characteristics. In this method of calculation the von

‘Mises law, which closely approximates the plastic behaviour of metals, is

applied.
The computer program presented in paper [8] has been used to solve the
problem considered here.

3. THE INFLUENCE OF DEVIATIONS FROM THE PERFECT GEOMETRY AND
DIMENSIONS

The stress concentrations associated with an imperfection should be con-
sidered in the design owing to possible plastic yielding of the material and
also in cases in which fatigue is an important design element. Typical forms
of imperfections in thin shells of revolution are classified as meridional, cir-
cumferential or local imperfections. The usual approach consists in assum-
ing an imperfection profile and performing the corresponding deterministic

analysis.
Ll Sl Ll Ll

ST

~ F1G. 1. Spherical shell with local imperfection, loaded by pressure p.

The radial coordinate g; of a shell with an imperfection of amplitude ¢ is
given by p; = R+£ (Fig. 1). Although the finite element formulation develo-
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ped is capable of handling any shape of imperfection without difficulties,
the studies which follow are restricted to a particular deterministic local
imperfection of the form

0 (B (),

in which ¢; is the central angle of imperfection in the meridional direction,
0; is the angle in the circumferential direction, and §; is the maximum am-
plitude of imperfection. This particular type of imperfect shell preserves
slope continuity at all points, but exhibits discontinuities in curvature at
the intersections between perfect and imperfect segments of the shell. Equa-
tion (3.1) represents an idealization of real imperfections that may occur
in practice. However, the studies reported in the literature on the effects of
different profiles of imperfection on the stresses in thin shells of revolution
have shown that the stress distributions due to different imperfections do
not differ very much from each other. Thus, although the present studies
are restricted to one particular imperfection profile, they may be used to
foresee the behaviour of the shell with other kinds of imperfections. The
numerical analysis has been carried out considering a spherical sector under
internal pressure as the basic structure. Twenty elements are used in the
computations to model the structure, 10 of which cover the imperfection
zone defined by £,

The membrane boundary conditions have been applied at the ends of the
zone of influence. Studies of convergence indicate that such a discretization
represents an adequate approximation to the solution.

An example reported in this section is concerned with a shell having an
aspect ratio R/t = 300, Young’s modulus E = 2 x 10° N/mm?, Poisson’s
ratio v = 0.3 and the parameter of yielding o, = 280 N/mm?. The imper-
fection considered is defined by the parameters R/& = 300 and ¢; = 10°,
which is an imperfection of moderate extent and amplitude equal to the
thickness. The membrane stresses have been computed as the equivalent
(Huber - Mises) stress at the mid-surface of the shell.

The maximum pressure p = 400 N/mm? has been used to obtain the
result shown in Fig. 2. The diagrams illustrate the variation of displacements
and membrane stresses with the dimension parameter b/P;.

The results show a nonlinear dependence of displacements and stress
on the pressure considered, and thus it is necessary to limit the values of
pressure to practical values. In this case it is possible to define the influence
of the pressure on the stress and displacements of the material.
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F1G. 2. The membrane stress variation at the mid-surface of the shell (a). The normal

displacements variation of the material points of the imperfect shell (b).

4. CONCLUSIONS

The finite element method has been applied to the analysis of spherical
shells under internal pressure. The example presented in this paper was
chosen to illustrate the usefulness of the FEM, and accounting for other
kinds of imperfections in the shell is also possible. Thus, for shells with local
changes in curvature along the meridian subject to internal pressure, the

FEM analysis in which geometric nonlinearity is taken into account should

be applied.

In certain cases the finite element method is extremely helpful in verify-
ing the quality of the material of shell under internal pressure. In complex
problems, the finite element approach is shown to be the only possible and

very useful method.
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