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THE PROBLEM OF BENDING OF FIBRE COMPOSITE
VISCOELASTIC PLATES

M. OLEINICZAK (BYDGOSICZ)

A method is proposed for solving the problems of bending of prestressed fibre-rein-
forced viscoelastic plates, subjected to durable loads. The plate considered is made of the
primary material (the matrix, phase I), reinforced with densely spaced fibres (phase II)
distributed in planes parallel to the middle plane of the plate. The compatibility condition
of the two phases is introduced: ¢ = &' = &', ¢ = o' + o'". A numerical algorithm has
been prepared, the finite element method being applied. The problem is discretized with
respect to time. The paper includes some examples of analysis and inferences.

1. INTRODUCTION

The subject of the present work is a theory and an associated computer
method for strength analysis of a fibre composite plates made of a viscoelas-
tic material, subject to bending. Under the name of composite plate we shall
understand a plate made of a primary filling material, referred to as a ma-
trix, and reinforced with fibres arranged to form one or several families of
curves in planes parallel to the middle plane of the plate. The aim of the
present work is to elaborate a numerical algorithm for the analysis of stress
and strain distribution and its variation as a function of time in a prestressed
plate subjected to a prolonged load.

The analysis of the problem of bending of a fibre composite plate is
connected with the necessity of overcoming certain difficulties resulting from
the complexity of the internal structure of the plate, if presiressed plates
are considered in particular, or if the influence of rheological phenomena
is studied. The participation of rheological phenomena in the process of
bending of a plate is particularly distinct, if synthetic materials are used
[1, 2].

In most cases the state of stress and strain in a composite medium is
determined on the grounds of continual theories, in which a composite is
treated as a homogeneous anisotropic material [3, 4, 5]. The anisotropy con-
stants are determined by homogenization theories [6, 7, 8], which are used,
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in particular, for the construction of models exhibiting certain regularity.
Some new perspectives are opened by the theory of microlocal parameters
[9], use being made of the modern apparatus of functional analysis.

In considerations concerning prestressed fibre-reinforced composites, a
very important role is played by the description of the interaction between
particular phases. In case of a fibre-reinforced composite, which shows no
slip between phases, it may be assumed that the strains in the matrix are
in agreement with the strains in the fibres in the direction of the fibres
[10]. It may also be assumed that the deformations are identical in all the
directions [11, 12]. The latter idea has been made use of to derive equations
of a plane fibre composite elastic girder [13], and also to solve the problem
of a prestressed diphase viscoelastic disc [14, 15).

The present paper is a continuation of earlier considerations concerning
composite media, in agreement with the idea presented in [11]. It is assumed
that the material of the plate is a diphase composite, one of the phases con-
stituting the matrix (phase I) and the other phase being any number of
families of fibres (phase II) distributed sufficiently densely in the fundamen-
tal phase to be treated as “fuzzy”. The compatibility condition is introduced
for those two phases, which means that their deformation is common. From
the above it follows that ¢ = el = ¢!, 0 = ol + ol

It is assumed that the load applied to the plate is a preseribed funciion
of time. Discontinuities of the first and second kind are admitted for this
function and its derivative with respect to time, which means that the load
or the load rate may also vary in time in a stepwise manner, the problem
being confined to the quasistatic case, however.

Accepting the necessity of applying numerical methods, the finite element
method (FEM) has been selected for spatial discretization [16], and the
method described in [17] for discretization in time.

The method presented in [17] consists in subdivision of the time axis
into finite intervals of 9, = ¢, —¢,_; in length, approximation of the stresses
by polynomials, and rigorous solution of the differential equations obtained
from the constitutive relation

(1.1) ag0; + 416, + a0, = boer + &, + boE .,

where a, and b, are the viscosity parameters of the material. As a result,
we obtain for any instant of time ¢, (r = 0,1,2,... — denoting the number
of that instant) a recurrence equation, in which the stress o, is expressed
in terms of £, and depends on the state of the system at the former in-
stant of time £,._;. The equation expressing the relation between o, and
¢; and the state at the moment £,_, is formulated separately. In the case
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of discontinuity of the stress function (Ag,) or the stress rate (Ad), it is
necessary to evaluate the right-hand limit of those functions: ¢! = o, + Ag,,
0! = a.+Ad,. If the function expressing the stress and the stress rate is dis-
continuous, we establish equations relating Ao, and Ag, with Ae, and Aé,.

The relations derived for a one-dimensional state of stress have been
generalized to the spatial state of stress [18], then adapted to a diphase
viscoelastic disc with distortions [14].

In the present paper, modified constitutive relations will be derived for
diphase viscoelastic plates subjected to bending. Those relations are super-
positions of the initial and service state due to the external load. Next, a
set of equations of the finite elements method will be derived for any instant
of time ¢,. Modified finite elements (HCT) according to the GALLAGHER
formulation [19], and discussed in detail in [20], will be assumed for dis-
cretization in space.

Equations of the finite elements method will be used as a bassis for a
program for numerical analysis of fibre composite viscoelastic plates with
distortions. The paper includes examples of computation and inferences.

2. CONSTITUTIVE EQUATIONS

Figure 1 shows an clement of the plate with the 7-th family of fibres
distributed in a plane at a distance 2" from the middle plane. The number
of families of fibres is arbitrary (r = 1,2,...). It is assumed that initial
strains AZ" can be introduced at t = 0 into the fibres of the r-th family.
This can be done by prestressing the fibres before the two phases are joined.

P AT A A
S,

FiG. 1.

The influence of the stresses 033, on the strains in the matrix is disre-
garded, which leads to the following constitutive relation [14]

(2.1) o, = p.,i,e.f + 4. Gre;_y + Hyel_y, r=1,2,...,
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the vectors €}_;, €5_, expressing the state of the system at the preceding
instant of time 2,_;

o, = 601(03,75 Ty,1y Ta:y,'r)a € = COI(EI‘,,., Eyyra 7::;1;,1')1

e:-'_l = 001(67—1 3 é1'—1, 3:—-1, ':3;-—11 As,_q, Aé‘r—l),

€r-1 = €x7-1 + Ey,r=1 + Ez,r=1, Sr—1 = 0gr-1+ Oy, =1y
e:—l = Col(e::,'r—l ] E;,'r—l L] 1.’::3;,1'--1! e;,‘r—l)’

E;,T-—-l = COI(Em,T-—ls ér,f—la 0';:,1'—13 &;:,1'—1) Aﬂ's:,fr—ly A&x,r-l)a
G, = COI('T;IA? - 71PA14171{1A$ - 71PA¢: 0)$

A, = [Co,r, €1,7> @0C2,7 — V14 Q0C3,r + aicyr — 71-'191-,

a1C5 r + @2C6,7) aZCE,T]-;

2
4-‘1_ = 19—2(“0&1,1' + Glca;ﬂr + 6262'7)7
T

E+29P P -7 0
X,=| = A2 0 o= 1 ,
1 724+ 97)
0 0 77507
——1—AD 0 0 i (7D_7A)AD
11_) T T\IiT T T
1 _
Ho=| 0 ——;A2 0 u(yP—1p)AP
1
0 0 ———AP 0

T

The upper index D concerns the quantities relating the strain deviator
with that of stress, and the upper index A — the spherical parts of the two
tensors. The coeflicients ¢; . are listed in [17]. The comma following the
index (in the expression ¢, for instance) does not denote differentiation,
its aim being only to separate indices (spatial, for instance) from the ordinal
number of the instant of time. The “prime” denotes the right-hand limits at
discontinuity points on the axis of time.

Making use of the following relation resulting from the Kirchhoff- Love
theory :

(2.2) e, = 20w, + €,
we obtain

(2.3) Or = Zp N OW, + o N Er + Oy,
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0? a? 02
col| - v—,-v—=,-2—751,
0z2° Oy? dzdy
071 = #:Grer_; + Heep .

The viscoelastic properties of the fibre phase are described making use of
the relations for a uniaxial state of stress. By replacing the forces in single
fibres S{,,, with a continuously distributed force we can formulate, for the
r-th family, the relation

(2.4) ST =

where

o

b“y, [(s ~ A8y — Alel ]
where
e';r—l = CO]'( €1 — AE E'r—lii 'r—li T liAa*r 1,A0‘ )
- We form now a tensor of forces in the fibre phase. Making use of the
Kirchhoff - Love theory we express ¢7. in terms of w,
(2.5) e = (T)T (&, + 2" dw,).
On substituting (2.5) into (2.4) we find

(2.6) ST = b THT(E, + 2" 8w,) - ST, —S".
T
Here
* AT T AT *r 2 A r
o= o ~T7ATey,, S§'= br,,;T "AET,

T} = col(s=I= Spy SySys 558 )
The tensors of normal forces and moments acting in the plane of the
fibre-reinforced plate are assumed according to the definitions:

hi2 h{2
(2.7) N, = f o, dz+EST,, M, = / o'fzdz+ES,’rz’.
—h/2 T —h/2 T

On substituting the relations (2.3), (2.6) into (2.7) we obtain

(2.8) N, = [h,u,,x +Zbr r’I"’(T )T]

A" 7T T ® o
‘|‘Z vl Ti(T7) 0w, —N7_;— N,

(29) M, [ Tl T+Zbr T(z’")zT (T )Tl dw,

7.

+ Z b"'y;? ZTT;(TDTET - M:-—l_ M,
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where
h/2
-1 = ZS*T f or-14, N=)_ s,
—h}2 4
hf2
ﬁ:_l = ZS*_lz — / or_zdz, 1\3:[: Z 32"
T —hf2 ’

The state of bending is the only state to be considered in the present
paper. If we reject the stretching state, we have N, = 0, therefore we obtain
the following matrix equation, from which we find the stress tensor in the
middle plane of the plate [13]

(2.10) € — Y. 2C] (THT0w, + € _+¢*
T
where
- -1 Qw1
E"1-—1—:[{ N,r 1 € —Kq— N,

AT
Cl = col(CL,, Cr ., Chy0) = ——=K71TT.
! by
The symbol K, = 17:3" = [E,‘j‘,r]3x3 in Eq.(2.10) denotes a matrix, the elem-
ents of which are:

~ A
kll,‘r = h#¢(2’}’£ + 7‘1{‘) + E br.-yr (8;)4’
r T

. A,

bizr = (9P = 92) 4 30 3o (V)
r T

-~ AT ry3

k13|‘1’ = Z b‘r‘y; (‘53 S

-~ D A AT ry4

k22,'r = hﬂ”,-(2‘7,r + 1r ) + E E;.-F(sy) !

k23,7 = E b,,. ,. x('gy)s

1 1 A T T
kaar = ghie (202 +92) + 20 g (L))
r T

(2.11)

Substitution of (2.10) into the formula (2.9) leads to the following matrix
equation describing the tensor of moments at the instant of time ¢,

(2.12) M, = D, 8w, - M*_,— M*.
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In the equation (2.12) D, is the viscoelasticity matrix, M * is a tensor of
initial state with distortions, and M7 _, is a tensor describing the state of
the system at the preceding moment #,_4,

b

I
D-r = 1_2'#1-x1' + ;

A‘l‘
T
1,

Ar rmr T 5 L] 5
—Z o X I(TI)TEZ CT(TI)T,
ral :

AT T
I~k
T z’T{ (T{ € _1,
T

M:——l = ~;-1 - Z

Vi v AT r o
Nt =N - Y e T (T
T T
The shear forces are determined by making use of the relation
(2.13) T, =oM,,
h
where 9 5
a oy
Ty = col(Tz,ry Tyr), 8=
' 0 02
Oy Oz

The strain rate tensor €, in the matrix and the strain rate tensor in the
fibres £7 are expressed in terms of the stresses at the instant of time ¢, and
by the state of the system at the preceding instant of time #;_;:

AT 1 . .
Y7 Frer_y + 3_-EN751-—1’
T .

. 1. 1
(2-14) Ef -_ 561-0.1- + E

(2.15) & = qloT + Aler .

In the above equations: B,r, N., Fs, A, are matrices of viscoelasticity par-
ameters and result from the formulae given in [17] and [14].

The strain component £, is expressed in terms of the components ¢z,
and ¢, , and the state of the-system at the preceding instant of time t,_;.
The strain rate éz',. is determined in a similar manner.

- The formula for the strain rate tensor results directly from the approxi-
mate formula for the stress function within the time interval 9, [17)]. For the
matrix and the fibres we have: -

. 2 .
(2.16) : ¢, = —(0,—-0o" )—a._,,
Ur
. 2 .
(2.17) o7 = —(o7 — 07 1) -7,
T
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The formulae derived above enable us to calculate the left-hand limits
of the stress and stress rate functions in the matrix and the fibres. If at
the moment ¢, (7 = 0,1,2,...) there is discontinuity of those functions, the
right-hand limits of the stresses and stress rates must be evaluated for the

matrix and the fibres:
UI=UT+AG‘T7 &!r=°"r+A&r,
(2.18)

r — T T . AT 5
o = ol + Aol ol =ay+ Adl.

Stepwise increments of stress and strain and their rates for a plane state
of stress are related by the equations [14]:

(2.19) Ao, = poroAe,,
(2.20) AG, = poRoAE, + iy Ae,
where

AUT = CO].(AU'I'T » Ao-y,'r Y ATm’y,‘r),
AET = COI(AE;;'T y AEy"r » A‘Ta:y,‘r),
2B + 1) — 1B + 238

M= | 2% (18 +1§) — 1878 3% + 10)
0
29810 (v8 +48) — 1818 (3% + 75 0
—278%0 (16 +18) — 1§18 (370 +27%5) 0
0 ~0.5% (215 + 18

The corresponding relations for the fibres are:

r

Asy = A aen - adn),

(2.21) %
st = A L%(Aef AET) =0
O A TR
T
AST = bf _AcT
(222) v
AfT = Z_pgm - L 10

— Aer, =1,2,....
b T T w R TR

By assuming the increases in forces and force rates in the plane of the
fibres to be continuous, and proceeding as was done above, we derive the
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formulae enabling us to calculate the increment of the force tensor and its
rate in the fibre phase.

If the plate is subjected to bending omly, the increment of the normal
forces AN, in the plane of the plate and the increment of the normal force

rate AN, become also zero:
h/2
f Ao, dz+Y " AS =0,
—hf2 4
hj2
f Aé,dz+ Y AST =0,
~h/2 T

AN,

(2.23)
AN,

These formulae are used to derive the following equations determining
the increments of strain tensors and their rates in the middle plane of the
plate

(2.24) A%, = - ) 7 ACT(T]) 8 Aw, + Ac*,
(2.25)  Ag, = - ) 2" ACT(T]) 0w,

+AH®Aw, — Ae™, 1=0,1,...,

the tensors of the initial states: Ae* and Ag ™ being determined only for
t=0

Ae* = Y ACTAE,

ASF =Y 1—2410’"4\3’ +Ryae,
T 0

AHp = Y %z’AC‘T(T’{)T + R3S 2racn(Ty)T,
r 10 r

=y~ rr—1-~ ;YT (T
Kj = hudKg'%io - Z,Y—EAC (T7)".
r 10

Elements of the matrices AC™ and AKj are the same as in (2.10) and (2.11).
The stepwise increments of moments and rates of moments in the plane
of the plate are defined as it was done for (2.7). Thus we find:

(2.26) AM, = DydAw, — AM”,
(2.27) AM, = DdAD, + DgdAw, — AM ™,
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where Dy and Dg are matrices of instantaneous elasticity,

& AT T T 0%
Aﬁ[*:ZAs’"z’—Zbr _"T(T})T Ag,

= —ZAS M4 +E " r)2 T T; )TZAC"’AE

rOr T 7 8 4%s % 5 A 9%s
+Zb%z (T 27—;40 Ag* + K5 ) Ac* A€

r

TjA8", AST=10ag"

[+]
T _
AST =g %

The increments of shear forces and shear force rates will be determined
from the formulae

(2.28) AT, =8,4M,, AT, =98,AM,.

Knowing the constitutive equations which have already been derived,
we can easily obtain, for any instant of time, three equations, the unknowns
being the deflection of the plate w,(z,y), the stepwise increment of deflection
Aw;(z,y) and the stepwise increment of the deflection rate Aw,(z, y). Thus,
three problems must be solved, in general, for every instant of time ¢,. It is
assumed that the plate remains undeformed for ¢t < 0. For ¢ = 0 distortions
are introduced into the fibre phase A€, and the plate is loaded (Apo, Apy),
therefore it is necessary to determine Awg and Awy. At any subsequent
instant of time #, (7 = 1,2,...) we determine w,. If Ap, # 0 or Ap_ # 0,
the quantities Aw, and Aw, must also be determined.

3. THE EQUATIONS OF THE FINITE ELEMENTS METHOD

It is assumed that the plate is acted on by a vertical load of intensity
p(x,1). According to the approximation which has been used with respect
to the time, this load is represented by a sequence of functions p,(x), r =
1,2,.... The load and the load rate may undergo, at selected instants of
time, stepmse increments Ap,(x) and Ap,(x).

The boundary conditions should be referred to the deflections and the
forces at any time ,, to the stepwise increments of deflection and force and
stepwise increments of deflection and force rates at the discontinuity points
pr and p_ on the time axis. If the boundary conditions are of a static type,
the prescribed quantities are the vectors of generalized boundary forces: R,
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AR, and AR If they are of the kinematic type, we define the generalized
boundary conditions using: T;, AT, and AT;.

Under a load, the plate undergoes deflection w(x,%) represented by the
series of w,(x), of the increments of deflection being Aw,(x) and of the
deflection rate Aw,(x). The vector normal to the middle plane undergoes
the rotations 8z ,(x) and 8, .(x}, the increments of rotation being A8, .(x)

and A8, ,(x) and increments of rotation rate Afy,(x) and Ad, ,(x).

M [ -uelir

Mly-‘,_neyf,r

Fi1G. 2.

- The problem is solved by using a suitable triangular element as shown in
Fig. 2. The macroelement (Aj23) is composed of three subelements denoted

by the letters a, b and ¢. The origin of the system of local coordinates will be

located at the gravity centre of the macroelement. The displacement fields:

w2, w? and w¢ in the relevant subelements are approximated by a complete

cubic polynomial: |

(3-1) wp = pTa'ry ’wf- = pr‘l' ’ wy = pch ’

where

I 12

p = col(1,2',¢',2%, 2"y, ¥, 2%, 2%, o'y, v®),
ar = co}»(“l,’ra 02,703,744 .589,7, alO,f) etc.

The fields of displacement increment: Aw?, Aw?, AwS and displacement
rate increments: A2, Aw?, AwS are a,ppromma,ted in a similar manner.

Thus, the deflection w, in a macroelement is described in terms of 30
parameters. Making use of .the compatibility conditions for the generalized
displacements at the central node we eliminate 6 parameters. The remain-
ing compatibility conditions for principal and intermediate nodes of the
macroclement and the subelements lead to a matrix equation, which reduces
to the following form [20]

32 & = Alr,
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where A%, is a matrix ensuring continuity of the approximation and its
normal derivatives at the boundaries between the subelements,

I,‘:, = C()l(wl'f, 01_1;,7, 01-9,1--. W ry 921:,7; 02y,’r7 W3, r, 931:,T93y,'r1 0411.,15 057:,1'; gﬁﬂ.,f)s
ES- = COl(a'l,'ra L3 TR b3,‘ra b4,77 v s €373 Cary - -5 CO c10,‘!‘)-

The equation of virtual work is expressed at the level of a finite element
(3.3) j f 8(8w, )M, df2 = f / Sw,p, d2 + f 5¥TR, d(302).
{2 f2e ane

This equation is written for every element, for which the constitutive
equations (which have been derived) are taken into consideration as well as
the relations resulting from the approximation assumed. For the subelement
o we have

(34) & / / (8p7)"D,0p” dRa, = ba] [ ] pp. df2
. e 2a

+ f PR, d(892) + f j @pT)I'M*_, d2 + / / ®pT) M dﬂ]

ana

The equations for the elements b and ¢ will be formulated in the same way.
By aggregating the subelements and taking into consideration the rela-

tion (3.2), we obtain the following equations of the finite elements method

for a macroelement in the local system of coordinates

(3.5) (KL)ere = ()" + (Py)° + (Prey ) + (B™)5,
where
(K7)° = (AL)*(K7)*(Aw),
(Ph) = (ALY(®Y, (B = (AQ)F(P,)  ete.
The symbol (K’)* in Eq.(3.5) denotes the stiffness matrix of the macro-

element, (P!)° and (P,)¢ are load vectors, (P7_;)° is a vector expressmg
the state of the system at the preceding instant of time, and (P =) is
a vectar of distortion states in the macroelement. The tilde ~ denotes the
corresponding matrices before static condensation.

Expressions for the stiffness matrix of the macroelement and the load
vectors in the global system will be obtained by the following transforma-

tions

(3.6) = (T (KAT?),  Po=(TY(RL)°  ete.
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The global matrix of viscoelastic stiffness of the plate K, and the global
vectors of load are constructed according to the general principles of the
finite elements method. For the entire systemn we finally obtain the equation

(3.7) K,r, =P, + P, + PI_,+ P*,

with which the kinematic boundary conditions must be satisfied. From (3.7)
we obtain the global vector of generalized displacements r,.

At the discontinuity points of the load vector or the load rate vector
on the time axis there occur jump-like variations of the internal forces and
gtrains and their rates, both in the matrix and in the fibres. Those variations
are caused by, among other factors, prestressing. In this connection we must
determine the vectors of increment of nodal displacements Ar, and nodal
displacement rates Ar,. '

Equations of the finite elements method for Ar, and Ar;, can be derived
in a manner analogous to that described above. For this aim the following
equations are used:

(3.8) ] f §(8Aw,)T AM, df2 = / / 5 Aw, Ap, df2
{1= ne
+ [ §ATT AR, d(992),
ane
(3.9) f f §(8Ai, )T AM, d02 = f / § Ao, Ap, 2
e e
+ / §ATT AR, d(092),
afnle

as well as the constitutive equations (2.26) and (2.27) and the aproximation
relations. Equations (3.9) are obtained from the equations of equilibrium
expressed in terms of rates by performing typical operations, use being made
of the boundary and geometrical equations.

On aggregating the entire system we obtain:

KoAro = APq + APo + AP*,

KoAfg = APo+ APy — KoAro + AP™,  7=0,

KoAr, = AP, + AP, ,
,KOAET=A1')T+AT.’-,—K0A1'T, r=12,....

(3.10)

(3.11)

After determining the global vector of displacement r; from the (3.7),
the global vector of increment of displacement Ar; and the global vector of
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increment of the displacement rate Ar, (from (3.10) and (3.11)), we must
determine, for each subelement, the tensor fields of strain, the increment of
strains and the increments of rates of those tensor fields. Making use of the
physical equations which have already been derived we calculate the internal
forces in the matrix and in the fibres, the increments of these forces and the
stepwise variations of their rates.

The equations of the method of finite elements, the constitutive relations
and the computation procedure described above enable us to determine the
state of the system at any instant of time £, (7 = 0,1,2,...). After solving
the set of equations presented above it is possible to proceed to consider the
next instant of time ¢, 47, for which a similar problem must be solved. Initial
conditions for 3 must be formulated to determine the left-hand limit of the
vector fields of displacements and their rates.

The theory discussed above and the equations of the finite elements
method have been used to develop a computer program for solving prob-
lems of prestressed viscoelastic plates of any form, subjected to any external
load.

4. EXAMPLES OF ANALYSIS

4.1. Ezample 1

The subject of this analysis is the behaviour of a rectangular diphase plate
as represented in Fig. 3. The plate is acted on by a uniformly distributed
load p, = 10kN/m? applied at the instant £ = 0%, and then held constant.
The dead weight of the plate (g) is taken into consideration.

1

40m

BARARRERIRLURRARURRRNNN

FiG. 3.

The plate has been prestressed by steel fibres ¢ = 0.008m in diameter.
It is assumed that the fibres have been initially tensioned with a force §,
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thus producing, after the joining process with the matrix is finished, a state
of initial strain. The numerical analysis was made assuming various values

for the force § (0 to 10kN).

The rheological parameters of the matrix were assumed according to the
data contained in the monograph of KisIEL [21] and concerning the investi-
gation by Mitzel and Dziendziel, who determined the viscoelastic parameters
of concrete: E; = 3.5-10¢ MPa, E; = 9.5.10° MPa, 7, = 4.992-10% MPah.

. Tt was assumned that the stress and strain deviator tensors are interrelated
by the following differential relation of the Zener model of the first kind
. Hipi2 iz .

41 Oijr + By = 2 gy
(4.1) YT e T Tt ¥ 1+ B2
E;

15,7y
i=1,2,

where 7 is the coefficient of shear viscosity and g; (¢ = 1,2) is the shear
modulus.

As regards the spherical parts of the tensors it was assumed that a vis-
coelastic body behaves, under hydrostatic tension or compression, in the
same manner as an elastic body, therefore we have the following relation

(4.2) Okk,r = 3K ekp,r

where K = E/(3(1 — 2v)). It was assumed for computation that £ = F; =
E; = 3.5:100 MPa, v = v, = 1, = 0.18. The properties of the fibres were

-__described by an equation of the Hooke model (E™ = 2.05-10° MPa). Numer-

ical analysis was made for a time interval {0, 3000 h) with a step 9, = 120h.
Discretization of the plate in space was performed in agreement with Fig. 4.

g

(5}
N,

NN

2

Fic. 4.

The influence of the prestressing force on the results of computatioﬁ is
illustrated by an example of the plate deflections at the points 1 (solid line)
and 2 (dashed line) (Fig. 5), and by the variation of the distribution of the
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bending moments in the section a — a (Fig. 6). The moments were obtained
as mean values of the moments occuring in adjacent elements. The influence
of the prestressing force on the values of M. at the points 1 and 3 (Fig.7)
was also studied. Similarly to the case of deflection (Fig.5), the relation

between § and M} and M3 was found to be linear.

4 8 w0 S rini
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———— t=3000h

Fig. 6.
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———— +:3000h
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5 |
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The time dependence was determined for the deflection at the point 2.
Figure 8 shows essential changes in displacement for the prestressed plate.

The results for a non-prestressed fibre-reinforced plate (§= 0) are also pre-
sented.

[} 6?0 ' ]2:00 , 1800 ZfOO | 3000 tihl
i 1 I

8
2 F 5

CREE
I g
w, 10" tm]

Fic. 8.

Another subject of the analysis was the time variation of the bend-
ing moments. Taking as an example the moment M2, it is shown that
those variations are insignificant, in particular if we are concerned with a
non-prestressed fibre-reinforced plate (Fig. 9).

—,5 . ,s- 0
or 3=5kN
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0 , , , th]
) 750 7500 2250 5000

N 10kN
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Finally, the time variation of the form of the plate prestressed by a force

§'= 8 kN are presented in Fig. 10. The scale of the drawing and that of the
displacements are different.

4.2. Exzample 2

A rectangular diphase plate, the dimensions of which are shown in Fig. 11,
is reinforced in its upper part with two families of fibres (¢ = 0.008 m) in
planes parallel to the middle plane of the plate, their directions being parallel
to the edges of the plate. It is assumed that the fibres belonging to the family

I may be prestressed with a force .°5*1 and those of the family IT — with a

force § ™. The analysis was made for various values of S§Tand 50 (0 to
8kN}, for a period of 1200h, by steps ¥, = 120h. It was assumed that
Pr = 61(N/m2 = const. The rheological parameters of the matrix and the
fibres were the same as in the Example 1.
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/lllllllllll S
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L 40m o

FiG. 11.

0 0

The influence of the prestressing forces ! and § on the deflection of
the plate are illustrated taking as an example the deflection of the point 1.
This deflection (denoted w;) at the initial moment is shown in Fig.12 as a
function of two variables § I and fé II The image of that function is found

) 0 Q
to be a plane. The variation of the deflection w; as a function §! and 5T
after a period of 12001 is illustrated in a similar manner.

Another subject of the analysis was the influence of the prestress on the
distribution of the bending moments and their variation in time. Let us
consuler the case in which the plate is presiressed in the direction T only
(.S' I = 0). The distribution of the bending moment M, in the section 8 —
is shown in Fig. 13, diagrams of M, in the section @ — a (normal to the
direction of reinforcement) being shown in Fig. 14.



8
6
‘ t=0 ol
//
2 e
0 -7
rd
v
4 rd
1k ey
Al SN
t=1200h
3
w,-10° [m]
FiG. 12.

0 05 10 15 20 ylml

M) tkiNm/m]
FiG. 13.

M. “[kNm/m]1

Fic. 14,
[523]



524 M. OLEJNICZAK

In the second case the plate was prestressed in the direction of the z-axis
(f_c}H = 0). The distribution of the moment M, in the section 8 — # and M,
in the section & — «, and their variation as functions of time, are shown in
Figs. 15 and 16. Figure 16 shows that the influence of the force ST on the

value of M, is considerable and is insignificant as regards the variation of
the distribution of the moments M, in the section g — §.

2

.16 | 57=0
22 B S =8N —_— te0
sl ———— t=1200h
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0 as 10 15 20 yiml
VR
MP tkNm/m]
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7 2 3 4 xfml

M [kNm/m]
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" The variation of the deflection in time, depending on the prestress, is
illustrated in Fig. 17. The solid line illustrates the variation of the displace-
ment before the external load is removed, and the dashed line shows the
results obtained after its removal for ¢t = 1200 h.
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0 600 1200 1800tk
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5. INFERENCES

The aim of the considerations presented above was to prepare an effective
methed for analysis of the influence of prestressing and of the external load
on the stress and strain in a diphase viscoelastic plate. Although the model
assumed here introduces a limitation to the range of rheological problems
considered to linear viscoelasticity (which is of course a simplification), its
analysis may furnish much information essential for the estimation of the
influence of the phenomenon of creep of particular phases on the behaviour
of the system as a whole. ‘

The present method of solution of that problem has been developed hav-
~ing in view the possibility of studying the rheological processes in plates
from the moment of prestressing till their practical end.

The examples of solution illustrate the functioning of the algorithm and
the computer program. Analyses of the results show that the influence of
the rheological phenomena in prestressed plates with densely distributed
fibres are essential. It has been shown that the method of prestressing is
also essential for the creep process. The solutions obtained may be used
for further analyses including optimization of the parameters for reinforced
viscoelastic plates.

The diphase model of a solid is an idealization of the real structure. It
follows that the computed distributions of displacements and internal forces
and their variation in time constitute a certain approximation to real civil
engineering problems (such as those of pretensioned prestressed concrete or
plates of synthetic materials reinforced with glass, carbon or metal fibres).
Thus, it is legitimate to state that the model used is more adequate for finer
and more densely distributed fibres of the reinforcement.
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