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ON MICROPOLAR FLUID MODEL FOR BLOOD FLOW
THROUGH AN ARTERY WITH MILD STENOQSIS

K.N. DEY and H.P. MAZUMDAR (CALCUTTA)

Blood flow through an artery with various shapes of mild constrictions has been anal-
ysed by characterising it as a micropolar fluid. Microstructural effects on the pressure
gradient, resistance to the flow and the wall shear stress are determined. The results are
numerically computed and discussed.

1. INTRODUCTION

Analytical and experimental investigations of blood flow through arteries
are considered to be very important since various cardiovascular diseases are
closely associated with the flow conditions in the blood vessels. ‘The normal
flow of blood is disturbed due to some abnormal growths, e.g. stenosis in
the lumen of the artery. The specific reason for the initiation of such growth
is actually not known but it is obvious that its presence may lead to serious
cardiovascular diseases. At low shear rates, while blood is flowing through an
arterial tube of small diameter, it exhibits non-Newtonian behaviour while
al high shear rates, commonly formed in large arteries, blood behaves like a
Newtonian fluid (cf CokELET [1], HUCKABA et al. [2 ] BUGLIARELLO [3]).
Recently, many researchers have studied the flow characteristics of blood
in an artery with mild stenosis by considering blood both as a Newtonian
and non-Newtonian fluid (cf. SHUKLA et al. [4, 5], HALDER [6], HALDER
et al. [7], CHAKRAVARTY et al. [8]). ERINGEN [9] developed ihe theory of
micro-fluids, which is applied to flow in rheologically complex fluids, such as
liquid erystals, polymeric suspensions and animal blood. A subclass of these
fluids which can support couple stresses and body couples and exhibit mi-
crorotational effects and microrotational inertia are termed the micropolar
fluids (ERINGEN [10]). ARIMAN et al. [11], KANG et al. [12], PARVATHAMMA
et al. [13] have constructed models of microcirculation considering the micro-
polar character of the fluid, which are useful in explaining certain aspects of
blood flow through capillaries. Micro-structural and peripheral layer viscos-
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ity effects on the flow of blood through artery with mild stenosis have been
studied by TANDON et al. [14].

It is known that heart produces a periodic or pulsating flow on the ar-
terial side of the circulatory system. The amplitude of the flow pulse is the
largest in the aorta and becomes gradually smaller as the system branches
(Ropkiewicz [15]). OKA [16] conjectured that the blood flow in microvessels
can be treated approximately as a steady flow, where the pressure gradient
becomes constant in time. In the present paper we study the effect of vari-
ous shapes of mild constrictions on the characteristics of steady blood flow
through the arterial tube of a sufficiently small diameter. In our analysis,
we treat the blood as a micropolar fluid and consider the shape of the con-
strictions to be different from the usually assumed cosine curve (TANDON et
al, [14). The shape of the constriction is not symmetric about its maximum.

2. ANALYSIS OF THE PROBLEM

We consider axially symmetric, laminar, steady, one-dimensional flow of
the blood in a circular rigid tube past a mild stenosis. Blood is considered
to be a micropolar, incompressible fluid. The assumption is well justified in
the small blood vessels, where the shear rates are low (PARVATHAMMA et
al. [13]). The geometry of the stenosis is assumed to be manifested in the
arterial segment according to CHAKRAVARTY et al. [8] by

R}gw)=1—A[L3“1(m—d)—($~d)"}a for d<z<d+ Ly,
(1) °

R(z) _ ;

R = 1, otherwise,

where R(z) is the radius of the artery in the stenotic region, Rp is the radius
of the normal artery, Lo is the length of the stenosis, n (> 2} is a parameter
determining the shape of the stenosis, d indicates its location, and A is given
by

£ nn/(”_l)
T Rol? (n-1)°

(2) 4

Here ¢ is the maximum height of the stenosis located at

_ Lo
nlf{n-l) ?

(3) X=d+

such that ¢/ Ro < 1 (Pig. 1).
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F1G. 1. Geometry of the stenosis.

Under the assumption of slow viscous motion, neglecting the inertia
terms, the basic equations of motion in cylindrical polar coordinates are

v\ k, 9 _dp
(4) (#v + Lv)_ ( 37.) + 6T(Tw) - :i; ’
BV
(5) Yo [; g(fﬂ»')] ~ ko = 2kyw = 0,

where V' is the axial velocity, dp/dz is the pressure gradient, p, is the vis-
cosity of the fluid, w is the suspending particle rotation, k, is the relative
rotational viscosity and v, is the viscosity gradient of total rotation.

The corresponding boundary conditions are

V  isfinite and w=0 at =0,
(6) 19
V=40 and - 5;(7'10) =0 at r=R.

Solutions of Eqs. (4) and (5) with the boundary conditions (6) are given
by
_ 1 [ 2 Il(Ar)]
(N ws= 2k, + 2;1.1,) dz " T ALOR)
1 2\ 2(pho + k)
8 V=-——— [ R* -
®) TGk @ 1B TGy o)
4k,  I(Ar)— Ig()\R)]
(ko + 21)  A2L(AR) ’

_|_
where
o ky (ky + 24,

(9) 22 o (Rot 20)
Yo (,“v + ky)
and I, (z) is the modified Bessel function of order n.

The volumetric flow rate @ of the fluid across any cross-section in the
stenotic region of the tube is '

R
Q=/27rr-Vdr.
0
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Substituting the expression for V given in (8) and integrating we obtain

T d_p (e + k) By 8k, R
(e + ko) da [(hy+ 20) " (o + 200) MI(AR)

: {% LR) - %Io(AR)}] :

(10) Q=-

where A? is given by Eq. (9).
If Qo is the flow rate of the fluid in the tube in absence of stenosis, then

4o + kv) o Llko 4+ 200) " (ku + 2p8) A2Io(ARo)

{ h(ARy) — —Ia()\Ro)}] )

(1) Qo=-

d ‘1 .
where (ﬁ) is the presssure gradient of the fluid in the unconstricted tube.

0
I Q and Q¢ occur in the same system, then ¢ = (o and thus we obtain
from (10) and (11)

Ry 1
4 0
dp\ /( dp oR+8b3 M2 Io(ARo) { 1A Ro) - IO(ARU)}
)  (3)/N&), = R4+8b£;{ L(AR) - IAR} ,
X L(AR) LA o(AR)
where
Hey + kv _k'u
13 =y b=
( ) k'v+2ﬂﬂu’ k'u"*“zﬂ"u

Now, for large values of z, the modified Bessel function may be expressed
by the approximate formula

a:

\/211'.1:

Thus from (12}, on using (14), we obtain the relative local pressure gradient
as
dp , . 8bEq (1 Ro)
(dw) Rt AT

(%) (&) " BE(LCE)
dﬂ? 0 A? A 2

where R/ Ry is given by Eq. (1).

(14) In(w) =
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From Eq. (10)

dp  A(pytky) T 86 1 1 R -1

Integrating Eq. (16) and applying (14) we obtain the resistance to flow A
expressed in the form :

‘ I,
-Pi_PO 41u'v+kv) dzx
(an  A==g—= ( - R4+8_bR(l R)
S TRl &
Lod
Ay ) L— I, N o dz
T 8 1_5%/4@(;5)’
all +A2R0()\ 5 / d ak +)‘2R b\ 5

wherep= Piatz =0Qandp=pyatz =1, L being the length of the artery.

In the case of no stenosis (B = Ry), the resistance to flow Ay (normal
artery) is given by -

e Mty L
- T 4 Sb 1 R[] )
R+ 5k (55

From (17) and (18) we obtain the non-dimensional form of resistance to the
flow as

(18)

b 1
A L GRS + iRCI (_' - &)”)

_q Lo A2 A2
(19  yo=1-74 -

Lgtd

dz
' 8. /1 R\’
4 — — —
d al? - )\2 R (A 9 )
where R/Rq is given by (1), and constants e, b are given by (13).
The fluid flowing past a stationary solid boundary always exerts a shear
stresses on the boundary. Thus there is a non-zero shear rate dv /dr at the

wall, and hence a non-zero shear stress at the surface of the stenosis is given
by the formula '

‘ dv
(20) Th = [_ﬂv 5] R ’
which, on using (8), becomes
o me dp[ b LOm)
) TR T (o + ky) do [ Ado(AR)]
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Lo

nl/(n—1)7
is 7, and 1, is the shear stress at the wall in absence of stenosis, then using

(14), the non-dimensional form of 7, will be

o2 (ren (- )+ o S (3 29

/(e (1) 5o () - 5 () (o),

If the value of 7, at the throat of the stenosis, i.e. at z = d +

3. NUMERICAL RESULTS AND DISCUSSIONS

Numerical computations are done wih the use of the data given below
and exhibited in Figs.2 7. For different shapes of the stenosis we consider
n = 2,6, 11. We use also the values of the constants given by (TANDON et

15 -

( dp/dx) / (dp/ddx ),
b P’y
I I
2

s
T
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]'00 az2 G4 as o8 0 x

F1a. 2, Distribution of relative pressure gradient for different n.
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al. [17], CHATURANI et al. [18])

Hy = 0.8, 1, 1.4dcp, L =5cm, Lg=1em,
ky, = 0.82, 0.98, 1.14 cp, Ry = 0.16 cm, d=0,
o = 12 X 10~ g cm /s, £ -01,02,...,06.

Eo

The variation of relative local pressure gradient with the length of the
stenosis are shown in Fig.2. It is seen that in each case of n = 2, 6,11,
the maximum pressure gradient is attained at the throat of the stenosis. It
is also observed that the maximum pressure gradient for the case n = 2
(symmetric shape) is attained at z = 0.5, while for the cases n = 6 and
n = 11, such maxima are respectively located at z = 0.7 and 2 = 0.79.

. n=2
o551
Hy= H
050
S s
X
>
3
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040
035
| 1 i i i
039 0z 04 06 08 0 x

F16. 3. Distribution of pressure gradient for different K.

Figure 3 illustrates the variation of pressure gradient with the length of
the stenosis for different values of k,. It is seen that the pressure gradient
increases as the increasing rotational viscosity k,. ARIMAN et al. [11] found
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that the rotational viscosity increases with the increase of hematocrit value.
Thus we may conclude that the pressure gradient increases with the increase
of hematocrit value indicating the fall of the pressure. Thus the lowest pres-
sure occurs at the throat of the stenosis due to rise of the hematocrit.
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F1G. 4. Variation of flow resistance with e/Rq for different p,.

Variations of low resistance with ¢ / Rq for different values of 14 have been
shown in Fig.4. The integration at the right-hand side of Fq. (17) is done
numerically. It is observed that in each case of p,, = 0.8, 1, 1.4, the resistance
increases with the increase of ¢ /Ro, and this increase is faster with greater
stenosis height. This observation agrees well with the results obtained by
SHUKLA et al. [4]. Tt is also seen that the resistarice grows rapidly with the
increase of p,. This result may be considered significant from the clinical
point of view. Deviations in the blood flow from the normal conditions may
be not only due to the heart failure or blood vessel disorder, but may also
result from high values of blood viscosity as observed in many diseases.
DINTENFAsS [19] studied intensively the high viscosity syndroms in various
diseases (e.g. ischaemic, sickle cell, hemolitic.anemia, polycythemia etc.).
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F16. 5. Variation of flow resistance with /Ry for different K.

Figure 5 indicates that the resistance to the flow increases with the in-
crease of rotational viscosity k,. From ARIMAN et al. [11] we have seen that
the rotational viscosity increases with the increase of the hematocrit value.
Thus we arrive at the conclusion that the resistance to the flow increases
with the increase of the hematocrit value. The result is important from the
clinical point of view. For a patient suffering from coronary artery discase
and, in particular, with vascular narrowing, the determination of optimal
hematocrit is considered to be of primary interest. As far as the cerebrovas-
cular disease is concerned, it is reported by TroMAS et al. [20] that the
cerebral blood flow for patients with hematocrits of 47 — 53% is significantly
lower than that in patients with hematocrits of 36 —46%. By reducing the
hematocrit level, the cerebral blood velocity, however, may be increased for
the higher group. Such improvement of blood flow is mainly due to reduction
of viscosity (Oxa [16]).
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I'1G. 6. Variation of AfAy with &/Rq for different n.
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Fig. 7, Variation of v with £/ Ro.
[484]
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It is seen form T'ig. 6 that the resistance to the flow is maximum for n = 2
i.e., for the case of axially symmetric stenosis. The resistance decreases as n
increases. It is seen from Fig. 1 that the location of maximum height of the
stenosis is displaced towards its right end with the increase in the value of n.
Thus the stenosis having that shape, with shifting of the maximum height
towards the right end, produces a smaller resistance. This observation is
also important with respect to the clinical point of view. This result is in
qualitative agreement with CHAKRAVARTY et al. [8].

The variation of wall shearing stress with stenosis height are presented
in Fig. 7. It is noticed that the wall shear increases with the increase of the
stenosis height. This result is similar in nature to that of SHUKLA et al. {4].
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