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TRIGONOMETRICAL REPRESENTATION OF TRANSFER MATRIX
FOR LAYERED ELASTIC MATERIAL

Z. WESOLOWSKI (WARSZAWA)

A harmonic wave of a fixed frequency propagates across the periodic system of elas-
tic layers, The elementary cell consisis of three layers. The transfer matrix M may be
expressed by two real parameters ¢, 1 and a set P of 64 further scalar parameters
M = M{p, 9, P}. The parameters are uniquely defired for the particular M and may
be calculated from a system of trigonometrical equations. It has been proved numerically
that, for materials and dimensions given in advance, this function for each integer n satis-
fies the identity [M (@, ¥, P)]" = M (nyp, ni, P}. The derived identity drastically simplifies
the calculation of displacements and stresses in the periodically layered medium.

1. INTRODUCTION

In the previous paper [2] the author considered the harmonic wave of fixed
frequency propagating in a system of elastic layers periodic in space. The
elementary cell consisted of two layers, and the 4 x 4 transfer matrix M for
the elementary cell could be expressed by 2 x4+ 1 physical quantities: elastic
moduli, thicknesses, densities and propagation direction. Since the transfer
matrix has 16 complex components, there exist some relations (symmetries)
between the components. These relations resulted in drastic simplification
of algebra and analytical proof of important formula for M*.

In the present paper each cell consists not of two, but of three layers, In
this situation the transfer matrix M can be expressed by 3 x 441 = 13
physical quantities. Therefore the number of relations between the compo-
nents of M is smaller than in the case of a cell consisting of two layers only.
In other words, M is less symmetric. This fact results in extremely complex
computations, that probably exclude the possibility of analytic proof.

In contrast to [2], only numerical analysis is given. The proposed iden-
tity has been checked numerically for many dimensions, and many different
physical properties of the three layers constituting the elementary cell.



462 Z. WESOLOWSKI

2. TRANSFER MATRIX

In order to obtain the formulae for a cell consisting of three layers, we
present short preliminary calculations. Consider two elastic materials sep-
arated by the plane z = =z5. The layer sitnated between z; and z,, its
displacement, strain and stress will be identified by the label 1, whereas the
layer between z2 and z3 will be identified by the label 2. The waves are not
perpendicular to the y-axis, Fig. 1. Full lines denote the longitudinal waves,
and dashed lines — the transverse waves. The longitudinal wave propagating
in Medium 1, reflecting on a plane produces the reflected longitudinal and
transverse waves propagating in Medium 1 and transmitted longitudinal and
transverse waves propagating in the Medium 2.
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Fig. 1.

In both regions the displacements are represented by the displacement
potentials ¢, and ., i = 1,2. The potential ¢, rtepresents the sum of
all longitudinal waves propagating in the layer K, and the potential 4, —
the sum of all transverse waves propagating in the layer K. We consider the
case when the displacement is in the z, y plane. The wave with displacement
in the direction perpendicular to zy-plane was considered in [3]. Since the
problems are linear, the present paper together with [3] describe the general
case.

We expect the following potentials in the regions K =1,2:

. = Agexpi[-wt + prlz — zx) + sy]
+Bg expi[-wt — pr(z — 2x) + sy],

(2.0 |
P = Crexpi[-wt + gx(z — oK) + sy]

+Dg expi[-wt — gx(z — z2x) + sy],
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where pg, qr, 3 are constant parameters. The amplitudes are Ax, Bk,
Cr, and Dg. The terms proportional to Ax, Bg represent two harmonic
longitudinal waves of amplitudes Ay, Bg. The terms proportional to Ck,
Dy represent two transverse waves of amplitudes Cg, Dg. All waves possess
the same frequency w. If a wave does not exist, then the corresponding
amplitude equals zero. The parameter s defines the incidence angle.

The planes of constant phase are

tpr{z — xx) + sy = const, +qx(z — 2x) + sy = const.

The direction perpendicular to the plane of constant phase is the propaga-
tion direction. Denote by o, and a,,, the angles between the propagation
direction and the normal to the layers in the k-th layer. There is

(22) tga, . = :Es‘/pK , tg oy = £8/¢x .

The parameters px, ¢gg may be derived from the equations of motion.
The displacement components ug, u,, ¢, in each layer may be calculated

from the formulae
Uiy = 0Pk [0z — 0Pk [Dy,
(2.3)
wy = 0Pk [0y + 8V [Oz, upy = 0.

The above potentials must satisfy the equations of motion

(2.4) 001/ + P i [y = 0" |08,
LK

(2.5) 000" + Uk [ By = 0" [OF,
LT

where ¢ and ery are the longitudinal and transverse wave speeds, respec-
tively, and t is time. It follows that the five parameters s, px, gr in Eq. (2.1)
are not arbitrary, but must satisfy the relations

(2'6) P%( +s* = w?/CJ%K 5 C%K = (AK + 2!'-”1()/91( »
(2.7) ‘ﬁ( + 5 = wz/c%Ka C%K = JU'K/QK )

where g, is the density of the material. If in particular the parameters s
and w are given in advance, then the parameters py, q; are defined by (2.6),
(2.7). From (2.2) it follows that the angles a ., o, are defined by s and
the properties of the K-th layer. Only one wave direction in one layer is
arbitrary, the other wave directions must match the first one (Snellius rule).
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The expressions for the potentials allow to calculate the displacements
and stresses in both layers as functions of z. Of particular interest are the
values on the interface 2 = 25. Simple calculations result in the formulae for
the displacements and stresses at this point in the first and second layer

— iUy P1 - -5 =S
—iu s $ i -
(2.8) 1 =
Tex -2 -z 2pqis 2pqrs
Tey 1 —2pps 2ppams W wy
expimh 0 0 0 Ay
0 GXp(Wiplll) 0 0 B1
X =
0 0 exp tg1 1y 0 |’
0 0 0 exp(—igh)] LD
—ttg P2 -p2 -5 =8 A
-1y 8 8 q —{ B
(2.9) v _ 2 2 2 ,
Tow —2 -2z 2uqes 2pqes | | O
Tey g —2up28 2papas  wa Wy Dy
where
(2.10) WK = ”1\'(32 - ‘1?{)1 b=z -,
(2'11) IR = ‘)\K(‘p?{' + 52) + 2”1(]’%\’ .

At both sides of the boundary between the regions, the stress vector and the
displacement vector have the same values. In order to express the amplitudes
Aq, By, Cy, Dy by the amplitudes Ay, By, C1, D1, the inverse matrix of that
in (2.9) must be calculated. As the final result, the relation

As Aq

By By
2.12 =M
(2.12) e, e

Dy Dy

is obtained. The transfer matrix A, allows to calculate the amplitudes of
the waves propagating in the Region 2 provided the amplitudes of the waves
propagating in the Region 1 are known. The complex-valued components of
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M are given by the relations

My = [aa(2p1p18% — prws) + b2 22028% + goq Vexpipily,
My = [ag(—241p18° + prwa) + ba( 202028 + quz1)] exp(—iprh),

Mz = [ags(we — w) + 2b2q1q28(p2 — 1) expiqily
(2.13) My = [azs(wy — wi) — 2b3q1¢25(p2 - )] exp(—iquly),
. Mz = [—2ayp1pzs(pe — p1) + bas{z2 — 21)]expipyly
M3y = [2a9p1pas(ua — ) + bas(z — 2 )] exp(—ipily), -
Mz = [ag(2u2p28” — pawn) + ba(211q18° + )] expiq
My = [a2(202p25% ~ pawy) — ba(2p1q18® + qu22) exp(—iqily),
(2.14) My = Myz, My =My, My=-My, My=-M3,
) My =-Myp, Mp=-Ms, Mg=Ms, My=-Mg,
1 1 1 1
2.15 a9 — — , b E e ——
(2.15) 772 2112p25% — pawy 272 2p2q25° + pp2p

The matrix of symmetry (2.14) will be called w-symmetric. The product of
two w-symmetric matrices is w-symmetric.
The following identity may be obtained from (2.10)

(2.16)  p(A1AL — BuBy) + @1 (CiCh — D DY)
= pa(Azds — BaB3) + 2(C2C2 — Do Dy).

It expresses the fact that the energy fluxes in both regions are equal.

3. ELEMENTARY CELL

Assume that a fixed set of the above layers is repeated in space. The
smallest such set constitutes the elementary cell, and may consist of any
number of layers. We consider here the case when the cell consists of three
layers: the layer of material m, of thickness /,, material m, of thickness I,
and material m, of thickness I, Fig. 2. The generalisation to larger number
of layers is trivial. The purpose of the present Section is to calculate the
transfer matrix for the elementary cell,

Concentrate our attention at the right-hand side of (2.13). Replace the
suffixes 1 by the suffixes ¢ and the suffixes 2 by b. Denote the resulting
transfer matrix by M. Replace in turn the suflixes 1 by the suffixes b and
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T T ~ \‘

FiG. 2.

the suffixes 2 by ¢ and denote the resulting transfer matrix by M;.. Replace
finally the suffixes 1 by the suffixes ¢ and the suffixes 2 by ¢ and denote the
resulting transfer matrix by M,,.
The transfer matrix for the transitions & = b is the matrix My;; the
transition matrix for the transition & = ¢ is the matrix Mj.; and the transfer
‘matrix for the transition ¢ = « is the matrix M. In all cells the transfer
- matrices My, M., M., are the same. The transfer matrix M for one cell is
the product

(3'1) M= McaMbcMabo

The matrix M is the product of three w-symmetric matrices, and there-
fore is w-symmetric. Note that M has a very complex algebraic structure.
Each component of M, is a sum of four complex numbers. Therefore each
component of the product is a sum of 64 complex numbers. Finally M is
formed by 1024 complex numbers. It is impossible to give here the very
long, full algebraic expressions for the components of M. In the example the
multiplications will be performed numerically.

The formulae (2.12) may now be chained to obtain

Asy, | Ao
By, x | Bo
- M ,
CSk Co
Dy, | Do
[ Agjq1 | Ag
| Bara k| Bo
3.2 = MyM :
(3:2) Cart1 b Co
| Dagta | Dy
[ Az | Ag
B3ya x| Bo
= My MM
Cakse beab Co
| Daky2 | Dy




TRIGONOMETRICAL REPRESENTATION OF TRANSFER MATRIX 467

The displacement field in the subsequent cells may be expressed by the
amplitudes in the first cell, the powers of the transfer matrix M1, M2 M3,
..., and the matrices M,y, My.. It is seen that essential for the calculation of
displacement in a system of large number of cells is the calcnlation of M*.

In [2] was considered the case, when the cell consisted of two layers only.
In this situation the transfer matrix for one cell equals the product of two
w-symmetric matrices, and therefore it may be expressed by the nine real
physical quantities (frequency w does not influence M)

(3.3) s, (Anp,enh), (Mg, pa,02,02).

In general, the complex-valued w-symmetric matrix possesses 15 indepen-
dent components (not 16, since the determinant equals 1). It follows that
the transfer matrix for elementary cell consisting of two layers possesses ad-
ditional symmetries, which can be expressed as nonlinear relations between
the components. Obviously each M may be represented in the following form
(and in thousands of other forms)

(3.4) M;; = a;;sinp + by;sin o + ¢;; cos @ + dyj cos P
+ifes;sinp + f;jsin ¢ + gi; cos ¢ + hy; cos ),

where ¢, 4, a;;, b;j, ..., h;; are constants. For definiteness, not restricting
the generality, we may assume cosp < cos9, 0 < < 2m,0< 9 < 2r. In
[2] it has been proved analytically that for a cell consisting of two layers,
the powers of M for k = 1,2,3,4,... satisfy the very useful relation

(3.5) (Mk);j = ay; sin kg + b;;sin kv + ¢;5 cos ky + dj; cos ki
+ile;jsink 4 fijsin kb + gi; cos ko + hi; cos kep].

The constants @, ¥, @;;, b;;, ..., h;; are not arbitrary, but must be apprio-
priately calculated basing on the components of M.

If the cell consists of three layers, the transfer matrix M for one cell is
determined by 13 real quantities

(36) 8, (Aa,ﬂay Qaala)a (Abs#b, 85, lb): ('\caﬂlcagca lc)

For a cell consisting of three layers, matrix M possesses only some (not all)
additional symmetries that were discussed in [2]. We shall prove numerically
that the relation (3.5) holds even in this case. The direct analytic proof would
demand an enormous amount of algebraic computations.
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If (3.5) holds, then the constants @, ¥, a,;, b;;, ..., hi; are uniquely defined
by the following system of real equations

Re(M);; = a;jsinp + bi;sin ) + ¢;5 cos ¢ + d;jcos

Re (Mz),;j = ai;sin 2¢ + by; sin 21) + €5 05 29 + dy; cos 2,
Re (ﬁfIa)ij = a;; 510 3¢ + by; sin 39 + ¢5 cos 3o + dj; cos 3P,

(37) Re (M4),;J- = a5 sin 4 + bjj sin 44 + ¢;5 cos dip + dj; cos def

Re (ME),'j = a;;sin 5 4 b;; sin By + ¢;; cos b + d;j cos 5yp,

Re (MG),-J- = a;;sin 6 + by;5in 69 + c;5 cos 6y + d;; cos 67,
Im(M);; = ey;sing + fijsin + gijcosp + hyjcosip,

Im (Mz)ij = e;;8in 2@ + fi; sin 2¢p 4 g5 cos 2 + hy; cos 29,

(3.8) Im (MB).,-J- = e;;8in 3¢ + fi; sin 31h + g5 cos 3 + hyj cos 39,

Im (MY);; = e;jsinde + fijsinde + gij cos 4 + hyj cos 4y,
Im (M®);; = e;jsinbe + fi;sin 51 + gi; cos 5o + hyj cos 5y,
Im (Mﬁ)ij = e;;5in 6 + f;; sin 6% + g, cos Gy + hy; cos 69,

The above system contains 64+2 unknowns. Obviously, we could con-
sider rather only the equations for powers of M up to 4 (64 equations) and
two arbitrary equations concerning the expressions for M3. We prefer to
solve the overdetermined system (3.7)—(3.8) since in this situation the sys-
tem of equations separates into 16 subsystems, each of them consisting of
6 equations with six unknowns. Such subsystem constitutes e.g. (3.7) for
i =1, § = 3. From each subsystem may be calculated the constants that are
present in this subsystem only, and additionally ¢ and % that are present in
all subsystems. We shall demonstrate that from each subsystem, practically
the same ¢, ¥ are obtained.

It is evident, that it is entirely impossible to solve analytically the system
(3.7-(3.8). In [2] some preliminary numerical analysis resulted in purely
analytic proof of {3.3). Here the situation is more diflicult and we must
confine our analysis to numerical treatment only.

4., NUMERICAL CALCULATION OF TIE COEFFICIENTS

The purpose of this paper is to demonstrate the possibility of special
representation (3.4) of the transfer matrix M satisfying the identity (3.5).
Taking this into account we do not consume space for introduction of the
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dimensioneless variables and take the data corresponding to essentially dif-
ferent layers. The calculations will be peformed for the following data:

(4.1) w=1,
(4.2) ' s = .25,

Ae=1, pa=1, =1,
(4.3) =2, m=2 =1,

de=4,  pe=4, =1L

In order to calculate the transfer matrix Mg, for the layers a, b, the
following constants must be substituted into (2.13):

AL = /\aa H1 = fg, 01 = CQa, hy= ha; h = Iaa
Az = Ap, K2 = pi, 02 = 0, hy = he, Iy = 1.

There results the transfer matrix M,

(4.4)

(Ma )iy = 110009 + 630487,  (Mup)ia = —.12402 + 071084,
(45) (Mgp)is = .16462 4+ .23938i,  (Mup)1s = —.10975 + 159554,
(Mgp)ar = —.13338 — 076443,  (Mas)sz = 09238 +.99100:,
(Mg)az = 68176 +.99109i,  (May)sq = —.04417 + 064215 .

The remaining components are determined by the w-symmetry. We pre-
sented above 5 digits only, but the numerical calculations were performed
with accuracy of 16 digits.
In order to calculate the transfer matrices My, M., for the layers b, ¢
and ¢, ¢, we must substitute in turn
M=X  pm=m, o=, =,

4.6
( ) A2 = Ac’ H2 = Jbe, 02 = Qe hy = hm

(47) A=A H1 = Me, 01 = P, hy = hca
Az = Ag H2 = e, &2 = Q¢ hy = he.

There result the transfer matrices My, M.,. We do not quote here their
numerical values, -

Perform now the multi'plication (3.1). There results the transfer matrix
for the elementary cell

My = 45995 + 92089, Mz = —.14018 — 19368,
M3 = 25107+ .06063i, My = —.26602 — 021163,
Mg = 12622 — 05079,  Msy = —.03471 + .136404,
Mas = — 44419 + 90350,  Maq = —.07879 — .070654.

(4.8)
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Calculate the powers of M up to M® and substitute into the systems of
equations (3.7)~(3.8). From these nonlinear systems of trigonometric equa-
tions, the coefficients a;;, b;;, ..., hi; may be calculated. Using the method
of successive approximations, the following values were obiained:

a1 = 0, b1 = 0,
a1y = —.023573, big = —.136384,
a1z = .083868, b1z = —.075406,
a1y = —.113383, big = —.074406,
az; = —.045078, by = .040529,
as, = .060942, b3, = —.039992,
asz = 0, bsz = 0,
(4.9) azq = —.056234, bza = —.033254,
' el = 025163, dyy = .974837,
c1z = 0, diz = 0,
e13 = —.255182, diz = 255182,
e14 = 105790, diy = 105790,
€31 = —137156, d31 = 137156,
eap = 056860, day = —.056860,
c33 = .974837, d3z = .025163,
c3q = 0, dzq = 0;
en; = .050383, fi1 = 1.001422,
e12 = —.036737, fiz = —.184222,
e13 = —.242045, fiz = 250572,
e14 = —.084413, fia = —.071849,
a1 = —.130095, fa1 = .120965,
eaz = .045371, faa = 038618,
eaz = .978637, fz3.=  .044255,
€34 = —.065284, faq = —.014815,
(4.10) g1 = 0, hi1 =0,
g1z =0, hiz = 0,
iz = —081471, h13 = 081471,
g1a = —.122171, hg = 122171,
ga = .043789, hg1 = —.043789,
g3z = —.065665, hay = .065665,
g33 = 0, haz = 0,

g34 = Oa h’3‘l = 0
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Each of the above coeflicients was obtained only once, from one definite
subsystem (3.7), or (3.8). In contrast to this, the values of ¢ and ¢ were
obtained from each of the 16 subsystems. Obviously, they were different due
to the numerics. However, the differences are small. The solutions are equal
(to within seven decimal digits)

(4.11) @ = 2.057994, 4 = 1.065687.

In order to improve the accuracy in further 16-digit calculations, the
mean value of all 16 calculated values of ¢, 1) was used. To within 7 dlglts,
the mean value is given by (4.11).

Now we are in a position to check the validity of (3.5). Substitute the
above coefficients and calculate twice the k-th power of M:

i. From the formula (3.5).

ii. From (4.8) using the recursive formula M* = M M*-1,

In the table below are quoted the values calculated from (3. 5), and the
values calculated from the recursive formula.

from- (3.5) | from M* = MMF?

(M%), | 946254 — 293689 | 946251 — 2936891
(M), | 056704 + .081487i | 056703 + .081488i
(M19%)5| 175625 4 .264275i | 175625 + 2642773
(M100)35 | 048822 — .989083i | .048816 ~ .989092:

The remaining components exhibit differences between both values of the
same order. Note that the differences should not be attributed to the cor-
rectness of the formula (3.5). This conclusion is supported by the values
calculated with different accaracies for & = 200. For calculations with the
accuracy of 7 or 16 digits, the following values are obtained:

from (3.5) from M* = MM*-1 | digits

(M), | 834602 — 4745817 | 834597 — 475578i | 16
(M55 | —.051422 — 0698513 | 051440 — 0698515 | 16
(M20),, | 834602 — A7A584i | 834607 — .4TA570¢
(M200)55 | 951419 — .069917i | 951398 — .069869i

Comparison of the above results proves that the values calculated from (3.5)
are scattered less than the values calculated from the recursive formula. This
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suggests that the differences should be attributed to errors arising during the
recursive computation of M0, The formula (3.5) was checked many times
for other dimensions and properties (4.1) - (4.3). In all cases the validity of
(3.5) was confirmed.

5. SIMPLIFICATION OF COMPUTATION

Inspection of (4.9) and (4.10) proves that, with high accuracy (first 6
decimal digits equal zero), there is

(5.1) aij = bj; =0 for i=3,
(5.2) dyy = 1—cu, e3z = du, dsz = e,
(5.3) dij = —C{j, h,’j = —4i; for i 95 j.

The above relations allow to simplify the calculations. In accord with (5.1)—
(5.2) there is

e11cos@+ (1 —cp)cosyp = Re{M)u,
11 €08 2 + (1 — ¢11) cos 2p = Re (M )1,

(1 —e11)cosp+eqrcost = Re(M)s3,
(1 — c11) cos2¢ + €11 cos 2¢ = Re (M?)33.

(5.4)

Let us produce two further equations by adding together the first and the
third equations, and the second and the fourth equations,

cos @ + cosp = Re(M)11 + Re(M)as,

(5.5) ) 5
cos 2p + cos 29 = Re (M *)11 + Re (M ")as.

In this system there are only two unknowns: ¢ and 4. Squaring the first
equation and transforming the second one, we obtain

(5:6) cos? ¢ + cos? 9 + 2cos peos i = [Re (M1 + Re (M)as]?,
. 1
cos’ o+ cos?p—1 = E[Re (M?*)11 4+ Re (M*)a3}.

Subtracting both the equations, we obtain

(5.7) 2cos@cosyy + 1 = [Re (M)11 + Re (M)33]?
~% [Re (M%)11 + Re (M?)gs]
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The parameter 1 may now be eliminated, and the resulting quadratic equa-
tion for cos ¢ may be solved. The two resulting solutions (w1, 1), (2, %2)
are essentially the same: @y = %y, 92 = (. Further calculations are based
on the solution satisfying the demand cos @ < cos1). The resulting solntion
is

{(5.8) 2cosp = Re (M)y1 + Re (M)as

= [2+ Re (M?)1x + Re (M?)53 — [Re (M) + Re (M)so?]
(5.9) 2cosf = Re (M )11 + Re (M )as

+ [24 Re (M) + Re (M) — [Re (M)11 + Re (M)aa?] .

Equation (5.4) allows to calculate the coefficient ¢;7. In accord with (5.2),
there is

. _ 1 (Re(M)11 + Re(M)a3) g =1 —c
11—2 1+COS(,0-‘“COS’¢ » 11 = 11,

caz = di1, daz = eq1.

(5.10)

Since the parameters ¢, ¢ are already known, the calculations are consider-
ably simplified. In accord with (5.1)-(5.3), we have

aij sin @ + bijsin + ¢;5(cos  — cos ) = Re (M);;,
(5.11)  ayjsin 2 + bi; sin 29 + ¢;5(cos 2p — cos 2¢) = Re (M),
a;; sin 3¢ + b sin 31 + ¢;;(cos 3¢ — cos39) = Re (Ms).;j ,

dijsin @ 4 ey sin g+ fi;(cos o — cosyp) = Im(M);;,
(5.12) di;sin2¢ + eij sin 29 + fi;(cos 20 — cos2¢) = Im(ﬁffz);j ,
dijsin 3 + ;5 sin 39 + f;(cos 3 — cos3h) = Im(MS).;j .

Instead of six nonlinear trigonometric equations (3.7), we face now three
linear algebraic equations (5.11}, and instead of six nonlinear trigonometric
equations (3.8) — three linear algebraic equations (5.12).

In (5.11) the subscripts (if) equal to (11) or (33) should be excluded,
since the coefficients ayy, byy, €11, ..., caz have been already calculated. The
numerical values of a;;, b;;, ..., fi; up to the first 6 digits do not differ from
those calculated from (3.7), (3.8) and quoted in (4.9), (4.10).

Note that in the previous chapter, in order to solve (3.7) - (3.8) we were
forced to use approximate computational methods. In this chapter ¢, 3 have
been calculated from a simple trigonometric equation, and the coefficients
@ij, bij, .. fij — from the systems consisting of three linear algebraic equa-
tions.
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