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ELASTIC-PLASTIC PLATES SEALING A LIQUID;
TESTS AND ANALYSIS

J.SOKOL-SUPEL, JLA. SUPEL (WARSZAWA)
and G. GUERLEMENT (MONS)

Circular steel plates sealing the vessels containing compressible liquid are considered.
The edge of the plate is built into the vessel wall. The plate is loaded at its central part and
suppoerted by the liquid pressure. The material is assumed to be elastic-perfectly plastic,
obeying the Tresca yield criterion and the associated flow rule. A closed-form analytical
solution is obtained in the case of monotonically increasing load. The corresponding ex-
perimental study is aimed at verification of the analytical approach. Special attention is
given to the evolution of the apparent compressibility of the liguid due to air residuals
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and to the deformations of the lateral walls of the vessel.

NoTATION

Dimensional guantities

polar coordinates,

plate radius,

load radius,

radius of plastic zone,

plate thickness,

plate slenderness,

Poisson’s ratio,

Young’s modulus,

elastic bulk modulus,

plate stiffness,

deflection, central deflection,

coeflicient of the liquid (subgrade) reaction,
buoy_a.ncj' pressure,

distributed load,

total load,

total collapse load for plate sealing incompressible liquid,
unknown pressure of the sealing liguid, .
change of volume of sealed liquid due to its compressibility,
radial and circumferential moments,

shear force,

curvatures,

denotes rate of an appropriate quantity.
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Reference quantities

L [cm] reference length,

L= 3/Dfk for plate resting on the elastic subgrade,
L = R, for plate without effect of bueyancy,
Mo {daNemfcm] plastic moment per unit width of the plate.
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

In this paper, the problem of describing the deformation process of a
thin, circular plate sealing a compressible fluid is considered (see TFig.1),

and agreement of the theoretical solutions with the experimental results is
studied. ‘
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FiG. 1. Plate sealing a lignid.

Problems of circular plates resting on a continuous subgrade concerns the
classical “soil-structure” interaction {8, 9], as well as floating structures and
plates sealing a liquid in a constant-volume vessel. The last category of the

problems has been treated until now either as elastic (2, 3, 4] or rigid-plastic
[1, 6] ones. '
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In the present analysis the plate is assumed to be elastic-perfectly plastic,
obeying Tresca’s yield condition. The classical Kirchhoff-Love thin plates
theory is followed at small deflections, and the plastic flow rule is used.

The hypothesis of lumped-type plastic deformation is assumed; cross-sec-
tions are considered to be either elastic or fully plastic. The above assump-
tion is accurate in case of sandwich plates.

The external load uniformly distributed over a circular central region
produces an unknown, uniformly distributed pressure ¢ at the liquid-plate
interface.

The effect of buoyancy pressure is negligible as compared with the effect
of the sealed liquid pressure [2, 3]. It is strictly nonexistent if the plate is
covered additionally by a thin layer of the liquid.

Under the above assumptions, basic relations governing the plate be-
haviour, in terms of dimensionless quantities, are as follows:

Equilibrium equaiions:

(1.1) (so) +(p—qe =0,
(1.2) (m.0) — mg — se = 0,

geometrical relations:
(1.3) K = —w'" kg = —u' [ p,
curvature decomposition into the elastic and plastic parts:
(1.4) Ky = K+ K, Kg = K§ + Kb,

Hooke's law:
1
1—2

1
(1.5) Ki = —(m, — vmy), KG =

. (mg — vm,),

the associated plastic flow rule:
ar oFr
: L= Ap— = A
(]' 6) Koy 8m?‘ ) Ko 87”*6 p

with the Tresca yield condition as a plastic potential, see I'ig. 2

A>0,

(L.7) F = sup(|mq|, |mqgl, [m, — mgl) = my.

The plate displacements due to external load change the volume of the
liquid sealed below the plate according to the formula

Ry
(18) AV = 27rfWR dR,
1]
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D 3

F1G. 2. The Tresca yield condition.

or, in dimensionless quantities,

20
(1.9) Av = AVD/MoL = 2r / wo do.
! 0

This volume may be either constant (Av = 0, incompressible fluid, nonde-
formable vessel walls), or its change may be a function of the liquid pressure.
This function should be linear, since the liquid compressibility and elastic
deformations of the vessel contribute to the volume changes:

(1.10) AV = 3Q, (Q = ‘%{) ,

where ¢ = V;/E;, [cm®/daN] is the coefficient of compressibility; V; is the
initial liquid volume, and Ej is the elastic bulk modulus.

If$ =0 (I =), then the liquid is incompressible,

if ®=>x (E;=0),then Q = 0,

(the plate deforms like a plate sealing an empty vessel).
In the case of linear compressibility, the condition (1.9) takes the form

e}
(1.11) fwa do = g,
Q

where
1 D

o= b
L4 27 IS
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is a non-dimensional coefficient of compressibility. In practice, when ¢ > 3,
the liquid pressure can be neglected.

However, if a small amount of highly compressible gas is present (voids
in the washer, the sealing device and the liquid-gas foam), these functions
may be strongly nonlinear. Such a situation occurred in our experimental
study and was confirmed by explosive behaviour that happened sometimes
at rupture tests of containment structures loaded by oil pressure {7].

Thus the change of volume of the sealed liquid can be a nonlinear function
of pressure,

(1.12) AV = £(Q).

A method worked out for plates resting on elastic subgrade [8, 9, 10] is
used now to solve the problem of a plate sealing a compressible liquid. The
governing differential equations and their solutions, as well as the analytical
expresions for the fields of general stresses and strains for different zones,
are collected in the Appendix.

The solution of a specific case must describe spreading of plastic zones
and possible evolution of their configuration during the process of loading. At
each qualitatively distinct stage of the loading process, the external bound-
ary ‘condition, together with the continuity requirements between different
zones

(1.13) w] = w'] = m,] = mg) = 5] =0,

have to be satisfied by the general solution.

Thus, a system of algebraic equations is obtained; they are linear with
respect to the integration constants C; and the pressure of the liquid ¢, but
nonlinear in terms of the radii describing configuration of the zones.

2. EXPERIMENTAL TESTS

To compare the results of the above analysis, a short series of tests on
steel models was performed at the Chair of Mechanics of Materials and
Structures at the Faculté Polytechnique de Mons.

The specimens were cut from commercial hot-rolled steel and formed
by turning to the needed shape (see Fig.3). The material yleld stress was
oo = 210.2 MPa.

The test device consisted of a heavy steel ba,ckmg ring, to which the plate
specimen ‘was clamped by means of bolts through a large clamping ring (see
Fig. 4).
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20 mm

F1a. 3. Details of the tested plates.
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F1G. 4. Details of the test device,

The load was applied through a rigid central punch loaded by means of
a universal testing machine. Deflections were measured by Hewlett Packard
gauges 7TDCDT500 of the sensitivity 3.848/Volt and in the range £12.7 mm
and recorded by digital voltmeter on an IBM/PC computer, Fluid pressure
was monitored by a standard gauge of the sensitivity 29.93 bar/Volt and in
the range 0--150 bar.
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Common assumptions of incompressibility or linear compressibility of the
liquid were in disagreement with the results of experiments. Therefore it was
necessary to conduct some tests describing the effective compressibility law
of the sealed fluid (oil, air bubbles, volume changes), (see Fig. 5).

toad

membrane

liquid V. 2400 cm®

pressure vesse!
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v

I16G. 5. Layout of the test used for calibrating compressibility of the fluid.
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F1G. 6. Results of the effective compressibility tests.

The results of these simple tests are shown in Fig. 6. The shape of the
volume changes versus pressure curve varied from test to test, depending on
the initial volume of the air bubbles V5. The changes of the fluid volume
should be described as a sum of two components. The first one depends
on the pressure and is sigiliﬁéa,nt only for high pressure. The second one
depends on the air bubble volume in fluid and is important at the beginning
of the process. The total volume change can be expressed as

(2.1) AV = dQ + VD-L

QD‘}'Q’.

where Vy and Qg are initial air bubble volume and inijtial pressure, respec-
tively. Figure 7 elucidates this relation. To describe compressibility of the



434 J. SOKOE-SUPEL, J.A. SUPEL and G. GUERLEMENT

fluid, it is necessary to find two parameters ¢ and V5. The first one depends
upon a material constant and on the initial volume of the liquid sealed under
a plate. The second one depends upon the unknown volume of air bubbles.
They can be found analytically for a plate in elastic régime for external loads
F and pressures Qg, ¢} obtained from the test and the volume changes AV
obtained from the elastic solutions.

avt
AV=4Q

a_,___-———")/_

[a)

QV = const

11

v
Fi1G. 7. Simplified description of compressibility of the fluid.

3. RESULTS AND CONCLUSIONS

Three plates were tested having the same external radius By = 100 mm
and the same diameter of the loading punch 24 = 40 mm. The thickness
was H = 4.37 mm, 5.57 mm and 6.59 mm, corresponding to the slenderness
ratio n = 45, 40 and 35.

Load versus punch deflection and load versus liquid pressure curves ob-
tained from the tests are given in Figs.8 and 9. Nearly linear parts of the
load-deflection curves corresponding to elastic behaviour of the plate (be-
ginning of the loading process, unloading, reloading) are not parallel. It is
due, first of all, to the variation of the liquid effective compressibility, which
is important at the first loading (low liquid pressure). For a more advanced
deformation process, the compressibility is nearly constant and some steep-
ening of the curves indicates rather a geometrical hardening due to large
deformation.

Comparison of the test and theoretical results for the plate of n = 45 is
given in Figs. 10 and 11.

The theoretical solutions for an incompressible liquid (¢ = 0) and for
linear compressibility (@ = 0.1, 0.5, 1, 2, co cm®/dN) presented in Figs. 10
and 11, are qualitatively different from the test results. :
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F1G. 8. Test results: load-deflection behaviocur.
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F1G. 9. Test results: load — liquid pressure relationship.
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Q 04 08 12

W/H (deflection)

F1G. 10. Comparison of the theoreiical and experimental results: load-deflection
relationship.

Therefore the nonlinear compressibility law was applied, following Eq.
(2.1). The parameters ¢ = (.05 cm® JdN and Vp = 11 cm?® were found from
the requirement that the elastic solution complies with the corresponding
part of the experimental curve. The coincidence is no more exact in the
elastic-plastic phase, but is qualitatively acceptable. The inconsistency is due
to membrane forces (geometrical hardening) and to the material hardening,.

To conclude:

Confrontation of the experimental and theoretical data proved that the
commonly accepted assumptions of either incompressibility or linear com-
pressibility are far from the reality.
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Fi1G. 11, Comparisor of the theoretical and experimental results: load-liquid pressure
relationship.

‘The theoretical aproach assuming the nonlinear compressible liquid (2.1)
in the framework of the small deflection theory lead to acceptable results for
displacements not exceeding one half of the thickness of the plate. However,

for a more advanced deformation process, geometrical hardening should be
taken into account. '

APPENDIX

Zone elastic, [12]
Differential equation -
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Deflection, moments, shear force
4
2 2 2
w=C1+C0" + Cse’lng+ Calng+(p—a)gy,

1 3
w' = 2020 + Cap(1+ 21In g) + Caz + (- q)%

My = m202(1+V) - “( e,
1 1
Mg = —202(1—1—1/)— Ca(3+3v+2(1+v)Ing) — C'4 —(p—g)—— +3V 0%,
= —-Cs——(p—q)=.
8 39 (r '1)2
B A
Zone AB; p=0¢€ AB
Differential equation
2 P—9q
v o _
w”+ gw 1—-p2’
/wgdg 01 +C 0’ My ot o+ r—q 6
23 T80+ Tt

Deflection, moments, shear force

_ _ M 2 P—q 4
w = Cl + 029 2(1+ V)g + 72(1 _ Vz)g b
W=y 0, P

T+ 18(1—w2)%"
92

my = mom(Pﬂq)—G-,
1ig = g,

8= —(P—Q')‘g-

Zone AB (DE)
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Differential equation

2
wrv+ Wl = r—q

9 T 12
2 3 4
0 4 0 aflne 1) P—q ¢
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/we o=Ci + Cagp + Uo7+ Cae ( 3 " o) T mea-
Deflection, moments, shear force
w = Cy+ Cao+ Ca0® + Caplnp+ oo ——p
72(1 - 12)"
I r—4q 3
= 2C! 141 ——7
w C2+ 3Q+C4( + IlQ)+ 18(1—14’2)9 3
1 2 2
my = fvmg — 205(1 — 1) — Cy— --(p—q)%,
fiig = ﬂ:mﬂu .
1-
s = 7 mg - 202~ (p— ).
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A
Zone CD (AF) c v
D
Differential equation
| ]w9d9201§+02%4_&§(pl—“:“q;.—2)96-

Deflection, moments, shear force

w = Cy 4 Cap? — (- q)é(l—il;g—)Q",

w! = 2Cq0 — (p - Q)ﬁgs’

My = :Fmo 3

1
mg = Fvrmg — 202(1 — V2) + (p - Q)§Q2a

v 1 1
s=F mo + 2C3(1 — VZ)E —{p-aze.
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