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' DESCRIPTION OF CREEP STRAIN ANISOTROPY OF THE
LIGNOSTONE IN THE FORM OF TENSOR POLYNOMIAL
AND A MODIFIED TENSOR POLYNOMIAL

M. CZECH (BIALYSTOK)

The results of creep investigations of the lignostone nunder axial compression are pre-
sented in the paper. The specimens were cut off from the lignostone bars at dilferent angles
to the main orthotropy axis. The tensor polyromial in the form {1.2) and the modified
tensor polynomial in the form (1.3) were used to describe creep strain for different angles
of cutting the specimens. The first and the third terms of the polynomials provide a cor-
rect description in both methods, however a betier description has been obfained for the
second one.

1. INTRODUCTION

Solution of initial-boundary value problems as well as technological prob-
lems require the knowledge of physical and mechanical properties of the
materials used, both the short-term and the long-term ones [1}.

The aim of the paper is the identification of creep processes of a nonlin-
ear visco-elastic orthotropic body, that is the formulation of mathematical
models, determination of model parameters and verification of the correct
description for the models proposed.

The tensor polynomial in the form (1.1) describing the instantaneous
strain of anisotropic body is used by many authors, for instance [2, 3]

(1.1) Eij = QiR + Cijklmn OB Tmn + Cijklmnop Tk TmnTop + « « -

The mathematical model in the form {1.2) describing creep of an anisotropic
body is applied in many papers [3] by analogy to Eq.(1.1)

4
(L.2)  eli(t) = oy {aim + /Iffjkz(t —7)dr
0

t
! {4 ! r}
0T mn ﬂijktmn‘FfI‘ijktmn(t—T) dr
0
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i
1.2) ,
( + a‘;cla:nna;p [a;jklmnop + /I‘;fjk]mnop(t — T) dT} +...,
0

[cont.]
Lok GLmn,.. .= 1,2,3,

where aj;1;, @40, - - .— components of linear and nonlinear anisotropy ten-
sors (constant deformability tensors) for transformed system, K fikts Kiktmms
+-.— components of linear and nonlinear creep kernel tensors, a%, of, | ...~
components of the transformed system stress tensor. Creep can be described
by taking a sufficient number of terms (1.2). The number of constants re-
quired to determine Eqgs. (1.2) rapidly rises with the number of terms, what
increases the number of experimental tests, For those reasons two terms only
are taken. However, such limitation not always gives the correct description.

The modified tensor polynomial in form (1.3) as the second mathematical

model is applied in the paper
t

(1.3) & = @l + Cmn Tl Ty + - .-+ (o)™ /Iqjkt(t —T7)dr
Q

. 1
ool ) /Ifgjk,mn(t YT, GGk L mn,...=1,2.3,
0

where @, = [1 4+ (n — 1)r]/n, n-th term of polynomial, r = 3. The other
notations are the same as in the formula (1.2).

2. EXPERIMENTAL TESTS

The cuboidal specimens for creep tests under compression are presented
in Fig. 1. Loading directions are coincident with directions at what the sam-
ples were cutt off from the lignostone bar, and they are also presented in
the Fig. 1.

The manufacturing conditions are given in [4]. Specimens for creep tests
were made of birch-wood lignostone with the density 990kg/m3 and com-
pression ratio 1.45. :

The tests were performed for five different values of . Five specimens
for each stress level were made for @ = 0° and & = 90° (five stress levels),
and three specimens for each stress level were made for & = 30°, 45° and
60° (four stress levels). Prior to testing, the specimens were seasoned in
the air of humidity (65 £ 2.5)% and at the temperature of (293 + 3)K.
Creep tests under compression were performed under identical conditions.
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FIG. 1. Test specimens and directions at which they were cut off from the lignostone bar;
a) load direction and strain measurement directions, b) material orthotropy axis and
off-cut directions of the specimens. '

The creep strains were measured by strain gauges with accuracy of 1 pm for
small values of strains; larger strains were measured by means of dial gauges
with accuracy of 10pm and 100 pm.

3. TEST RESULTS

The results of creep tests under compression in the plane 2-3 are pre-
sented for instance in the Figs. 2—4 for longitudinal strains, and for transverse
strains they are presented in the Figs. 5-10.

4, DESCRIPTION OF CREEP IN THE FORM OF TENSOR POLYNOMIAL

The global strain £}; will be a sum of the instantaneous strain and the
creep strain

(4.1) E;j(tﬁaz'z) = E'}j(O,a;z) + 5;3'(1‘: O59)-

Formula, (4.2) describes the instantaneous strain resulting from Eqgs. (1.1)
or (1.2)

(4.2) Eij(O,Uéﬂ = @900 + a252222220§32
= Abing0ha [ B+ Aligaanna(05/ BY,

where R = Ras = 44.7 MPa — compression strength in the direction of axis 2.
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F1G. 2. Creep &5, curves of lignostone for o = 30°; points ~ experimental data,
dashed lines — theoretical curves ace. to (1.2), full lines - theoretical curves acc. (1.3).
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F1c. 3. Creep e4; curves of lignostone for @ = 45°; points — experimental data,
dashed lines ~ theoretical curves acc. to (1.2), full lines — theoretical curves acc. (1.3).
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F1a. 4. Creep €5, curves of lignostone for o = 60°; points — experimental data,
dashed lines — theoretical curves acc. to (1.2}, full lines — theoretical curves acc. (1.3).
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F1c. 5. Creep ehy curves of lignostone for o = 30°; points — experimental data,
dashed lines ~ theoretical curves acc. to (1.2}, full lines ~ theoretical curves acc. (1.3).
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F1c. 6. Creep €33 curves of lignostone for @ = 45°; points — experimental data,
dashed lines — theoretical curves acc. to (1.2), full lines — theoretical curves acc. (1.3).
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F1a. 7. Creep e}, curves of lignostone for & = 60°; points — experimental data,
dashed lines - theoretical curves acc. to (1.2), full lines — theoretical curves acc. {1.3}.
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Tiq. 8. Creep e}, curves of lignostone for o = 30°; points — experimental data,
dashed lines — theoretical curves acc. to (1.2), full lines — theoretical curves acc, (1.3).
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Fie. 9. Creep e}y curves of lignostone for o = 45°; points — experiméntal data,
dashed lines - theoretical curves acc. to (1.2), full lines - theoretical curves acc. (1.3).
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Fia. 10, Creep €11 curves of lignostone for o = 60°; dots represent experimental data,
broken lines — theoretical curves acc. (1.2), full lines - theoretical curves acc. to (1.3).

On the assumption of similarity of the creep curves, the creep strain is
presented in the form:

(4.3) ei5(t, 02) = fi;(022)9'(1).

Constant ratios £/5(0%;)/el(0h; = oi5**) for different times have statis-

tically proved the above assumption.
The function f;(03,) is assumed to have the form

(4.4) fii(og,) = Eszz(ﬁéz/R) + Efja22020(055/ R)

and the function
1

(4.5) J() = j K'(t—7)dr,
0

where
K'(t—7) = (308t - 7)P' e O =)0

4.6 -

(4.6) B = B'C'D', ty=1h

Substituting (4.6) into (4.5) and integrating we obtain
(4.7) Jt) = B [1 - e~c<t/to)”’} .

The function (4.7) is the so-called Kohlrausch function, and it can be
also obtained from the modified standard model [4, 5].
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The constants used in the formulae (4.2), (4.4) and (4.7) are determined
by the least square method (LSM).

The constants appearing in the formulae {(4.2) and (4.4) are transformed
as follows:

’
ikl = QimQinOkoQlpGmnop »
(4.8)

!

Qikinmop — QirQjs Okt Oy Ome Onay Cog Opy Crstuvozy

where ¢, 7,...,y = 1,2,3.
Coeflicients «;; which are cosines of angles between the axes of the new
coordinate system and the previous ones are equal (from Fig. 1) to

a;p = 1, (39 = (33 = COS ¢,
(4.9) a3 = sina, ogy = —sin a,
Q2 = 3 = g1 = az = 0.
The constants in the formula (4.7) are calculated for five angles. For

other angles these constants can be calculated using a square interpolation
(interpolation polynomial of Lagrange).

4.1. Description of &), creep strain in longitudinal direction (load direc-
tioni=j=2)

The values ¢ = j = 2 are substituted into the formulae (4.1) to (4.4). The
constants in the formulae (4.2}, (4.4) and (4.7) are determined according to
the LMS method.

Assuming the lignostone to be an orthotropic material and using the
equations (4.8) and (4.9), some of the coefficients of Eq.(4.2) are found to
have the form:

Abgge = acos? a + beos® asin?a + csint e,

(4.10)  Abgngngn = Acos® @+ Beos® asin®a + C cos asin o
+Dsin® acos® o + Esin® o ,

where

a = Ayaz,  b=2A33+ 44223, c= A3zzzsz,
A = Ajy00092, B = 4432999933 + 24 Aga322303,

C = 6A29293333 + 48423230233 + 16433939323,
D = 4Ass333320 + 24 A33339323, E = As3333333.

(4.11)



406 M. CZECH

The coefficients appearing in the formula {4.4) will have a similar form.
Constants a,b, ¢, A, ..., E are determined by the LSM method.

The constants appearing in the formula (4.2) depend on the angle a
according to formula (4.10), similarly to the constants in the formula (4.4).
Their values for angles are given in the Table 1. The description of creep by
the formulae (4.1) to (4.4) and (4.7) with the constants taken from Table 1
is illustrated in the Figs. 2 to 4 by the dashed lines.

4.2. Description of e creep in transverse direction (i = j = 3)

The values 3 = § = 3 are substituted into the formulae (4.1) to {(4.4). The
constants in the formulae (4.2), (4.4) and (4.7) are determined by the LM
method.

Assuming the lignostone to be an orthotropic body and using the equa-
tions (4.8) and (4.9), some of the coefficients of formula (4.2) are found.

' s 2
A3322 =4 + bSlIl 2 s
(4.12) Albgogags = Acos® a-+ B cos® asin® @ + Ccos? asin® o

+Dcos? asin® e + E sin® o ,
where

1
a = Agzzaa, b= Z(Azzzz — 4 Ag393 — 2A033 + Asass),

A = Aazzaaz,
B = 3Ag2203333 + Aoezaazas — 12432029323 + 12420332303,
(4.13)  C = 3Az220033 — 2422332323 + 3As3333322 + 12433332323
+12A22222323 — 16 A23232323
D = 3A32023333 — 12433332323 + 12423332323 + A33333333

E = Az2333333 -

The coefficients appearing in the formula (4.4) will have a similar form.

The constants a,b, A,..., E are determined by the LSM method. The
constants in formulae (4.2) and (4.4) were determined using Fgs. (4.12).

Their values are given in Table 1. The process of creep according to the
formulae (4.1) to (4.4) and (4.7) with the constants taken from Table 1 is
presented in the Figs.5 to 7 (dashed lines).
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Table 1. Constants in the Egs. (4.2), (4.4) and (4.7).

407

o [°]

&ij Factors ¢ 30 45 60 90
Aboss + 10° 17.942 45.184 66,273 81.208 89.991
Abponnans -+ 10° 14.122 91.131 53.490 44,147 10.194
Flana = 10° 0.075 0,163 352 0.643 1.035
ghy ESonanans » 10° 3.832 6.770 6.515 4.246 0.137
' B 31.722 76.19 42,73 94.03 52,391
! 0.242 0.645 0.591 0.186 0.697
D' 0.370 0,209 0.336 0.193 0.262
—Alas - 107 3.334 5,484 £6.200 5.484 3.334
— Ahazzaa0n - 107 1.220 55.543 63.040 18.037 4.702
—Ffnn - 10° 0.665 0.393 0.302 0.393 0.665
Eha — Ef 3000000 + 107 1.855 7.473 5,700 6.119 0.706
B’ 3.741 121.83 15.99 9.220 8.991
c’ 0.113 0.102 0.216 0.312 0,179
D 0.311 0.322 0.181 0.181 0.203
—Alyaq - 10° 1.135 2.121 3.107 2.756 2.405
—Alya02200 + 107 1.043 1.947 2.100 1.523 0.238
— B}z - 10° 0.384 0.260 0.136 0.281 0.426
&l — Ei19a99s + 10° 3.968 6.332 8.158 7.106 0.838
B 1.314 4.009 2.250 3.362 6.340
c’ 0.189 0.238 0,269 0.269 0.184
D! 0.279 0.217 0.214 0.105 0.151

4.3. Description of £, creep in transverse direction (i = j = 1)

Values ¢ = § = 1 are substituted into the formulae (4.1) to (4.4). The
constants in the formulae (4.2), (4.4) and (4.7) are determined applying the
LSM method.

Using the formula. (4.8) for the lignostone treated as an orthotropic body,
some coefficients of the formula (4.2) are found in the form

(4.14)

where

(4.15)

Alygs = a+bsin’a,

Al 399992 = A cos® a+ B cos® asin? a - C cos? asin* a + Dsin «,

a = Ay,

A = Aji220202,

b= A1z — Angg,

B = 3411200033 + 12411922323,
C = 3A11223333 + 12A11332303,

D = Ayy333333-
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The coefficients appearing in the formula (4.4) will have a similar form.
Constants a,b, 4, ..., D are determined by the LM method. The constants
appearing in (4.2), (4.4) are expressed as functions of angle & by means of
Eqs. (4.14), and some of them are listed in Table 1. The process of creep
given by Egs. (4.1) to (4.4) and (4.7), with constants taken from Table 1, is’
illustrated by Tigs. 8, 9 10 (dashed lines).

5. DESCRIPTION OF CREEP BY MEANS OF THE MODIFIED TENSOR
POLYNOMIAL

The global strain erm;; is the sum of the instantanecus strain and the
creep strain,

(5'1) - 52;?(% 052) = EZT (0: ‘752) + sg'm(t: 0'52)'

Formula {4.2) yields the instantaneous strain £}:(0, 09,) Tesulting from
Eq.(1.3). The creep strain is presented in the form similar to (4.3),

(5.2) el (t,0%2) = i (032)9'(1)-

Function f/7*(c},) is assumed as follows:

. 7/3
(5-3) fe’}n(aéz) = Efﬁz(agz/R) + Efjmzzzz ((Géz/Rf) )

and function ¢’(f) is given by Eq. (4.7).

The constants appearing in formulae (4.2), (5.3) and (4.7) are determined
by the LSM method. Constants appearing in formulae (4.2) and (5.3) depend
on the angle o according to the Eqs. (4.8) and (4.9).

5.1. Description of ¢§§ creep in longitudinal direction (load direction
i=j=2)

Formulae (5.1)-(5.3), (4.2) and (4.7) are used with i = j = 2. The
constants appearing in Egs. (4.2), (5.3) and (4.7) are found by means of the
LSM method. Equations (4.9), (4.10) are now used to express the constants
appearing in the formulae (4.2) and (5.3) as functions of angle o, similarly to
the procedure used in Sec.4.1. They were evaluated for several angles « and
are given in Table 2. The process of creep as described by Igs. (5.1)-(5.3),
(4.2) and (4.7), with constants taken from Tables 1, 2, are drawn (in solid
lines) in Figs.2-4.
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Table 2. Constants in Eq. (5.3).

a [°]
.y Factors 0 30 45 60 90 _
‘ Emo . 10° 0.422 0.614 0.792 0.953 | 1.100 .
€22 sy » 10° 25.181 95.003 | 87.566 | 46.922 | 0.800
‘ — B, 10° 0.901 0.861 0.848 0.861 0.901
| Bl - 10° | 9558 | 101657 | 59.900 | 65767 | 3.698
‘ —Erm. .« 10° 0.955 0.878 0.800 0.800 0.800
T Bl 107 3.540 5.698 7.007 6.113 | 1.666

5.2. Description of if creep in transverse direction (i = j = 3)

Formulae (5.1)-(5.3), (4.2), (4.7) are used with the substitution i = § =
3. Constants appearing in (4.2}, (5.3) and (4.7) are determined by the LM
method. Formulae (4.12), (4.13) are used to express the constants appearing
in (4.2), (5.3) as functions of the angle & (similarly to Sec. 4.2}; the constants
are given (at several values of o) in Table 2. The creep curves described by
formulae (5.1)—(5.3), (4.2) and (4.7) with constants taken from Tables 1, 2
are shown in Figs. 57 (solid lines).

5.3.  Description of {7 creep in transverse direction (i = j = 1)

The values ¢ = j = 1 are substituted in Eqs.(5.1)-(5.3), (4.2) and
(4.7). The constants appearing in Eqs (4.2), (5.3), (4.7} are determined by
the LSM method. Constants in Egs. (4.2), (5.3) depend on the angles ac-
cording to (4.14), (4.15) (similarly to Sec.4.3), and their values determined
for several angles e are given in Table 2. The creep curves following from
Egs. (5.1)~(5.3), (4.2), (4.7), with constants taken from Tables 1, 2 are pre-
sented in Figs.8, 9, 10 (in solid lines). '

6. STATISTICAL VERIFICATION OF THE MATHEMATICAL MODELS

To verify the accuracy of the description, let us calculate the mean ab-
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solute and relative square errors are from the formulae
- 1/2
ry = { ZZ(@%”%M ] /"m} )

[ ) 1/2
= { S5 (w5 - o) 135) } /nm} :

=1 5=1

(6.1)

where n —number of stress levels, m — number of instants at which the strain
readings were made, 3 — mean experimental strain at the i-th stress level
and j-th strain reading, yfj — theoretical strain. :

The errors evaluated of by the formula (6.1) were compared with the
absolute and relative deviations calculated by the formulae:

1/2
Alxta,u{l ZZ(yfjk_gfj)]/U} ?
i=1 §=1 k=1

noom 9 1/2
A7 = Loy {1 _}:_zzp; (v - 75) /3) ” ,

where {,, — the critical value of {-Student’s distribution for & — significance
level and v = nmp — nm — degree of freedom, yf;;, — experimental strains for
k-th repetition on i-th level of stress at j-th reading of strain.

Before these deviations vere calculated, the Cochran test was used to
check the variance homogeneity. The results are compiled in Table 3.

(6.2)

7. CONCLUSIONS

1. The creep strains are nonlinear and the creep curves are similar.
The accuracy of the applied mathematical models in the form of a ten-
sor polynomial (TP) and a modified tensor polynomial (MTP) can be seen
in Figs.2-10 and Table 3.

2. Analysis of the results given in Table 3 leads to a conclusion that
application of the MTP improves the accuracy of the approach.

3. The plot of the isochronous curves on the basis of Figs.2—10 allows
to conclude that, in the range of stresses o5, < 0.3R22, the instantaneous
strains and the creep strains are linear, hence they can be described by the
linear theory of viscoelasticity in that range of stresses.




DESCRIPTION OF CREEP STRAIN ANISOTROPY OF THE LIGNOSTONE 411

Table 3. Values for verification of the mathematical model.

Mathematical Statistical o [%]
€ij ' model values 0 30 43 60 90
T.P. 1 [% ool 0.955 | 4.247 | 3.396 | 2.527 | 2.491
ry 0073 | 0.133 | 0.095 | 0.066 | 0.037
ehn M.T.P. 1 [%f o0l 0.395 | 2.643 | 2.625 | 2.895 | 3.000
5 0.026 | 0.076 | 0.072 | 0.065 | 0.033
A1 [ oo] 2,367 § 8119 | 4.380 | 5.706 | 7.886
AL 0.180 §{ 0250 | 0131 | 0.148 | 0.113
T.P. 1 [ oo} 0.128 | 3.636 | 0433 | 0.304 | 0.397
75 0.085 | 0.458 | 0.197 | 0.09%7 | 0.105
eha M.T.P. 1 [*/ac) 0.131 | 3.409 | 0.402 | 0.266 | 0.416
5 0091 | 0.455 | 0.077 | 0.071 | 0.133
Ar [ o] 0.385 | 4.011 | 0.776 | 0.568 | 0.575
Af 0.278 | 0.499% | 0213 | 0.158 | 0.174
T.P. r1 [ ool 0314 | 0.285 | 0.143 | 0.151 | 0.175
T} 0.23¢ | 0176 | 0.099 | 0.094 | 0.109
e M.T.P. 1 [%fee] | 0.118 | 0311 | 0138 | 0.217 | 0.224
ry 0274 | 0161 | 0.089 | 0112 | 0.172
A1 % 0a] 0.200 | 0.354 | 0.378 | 0.362 | 0.355
AL 0.448 | 0.256 | 0.300 | 0.250 | 0.192
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