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INFLUENCE OF LOCAL POST-BUCKLING BEHAVIOUR
ON BENDING OF THIN-WALLED ELASTIC BEAMS
WITH CENTRAL INTERMEDIATE STIFFENERS

7. KOLAKOWSKI (EODZ) and A. TETER (LUBLIN)

The influence of the local posi-buckling behaviour on bending of thin-walled beams is
studied. A “lower bound” approach by Korrer and PIGNATARO [1] enables to determine
the overall flexural stiffness of a beam after its local buckling. The results obtained are
compared with data reported by other authors.

1. INTRODUCTION

Thin-walled structures, especially columns and beams, are able to work
after local buckling; the determination of their load carrying capacity re-
quires considering the interaction of buckling modes and imperfections in
the nonlinear analysis of stability. Since pre-buckling stresses in the cross-
section vary linearly, the linear problem of beam bending is more complex
than that of the thin-walled columns under compression, as far as local
buckling is considered. The nonlinear problem of bending is more simple as
only the effect of local buckling on the global bending has to be taken into
account. “Reduced” flexural rigidity is fixed along the beam length.

Practically exact solutions of the local buckling problem for closed cross-
section beams were obtained in papers [2, 3]. Later the same problem was
solved in papers [4— 6] in the case of simultaneous compression and bending,.

The solutions obtained are very complex. At the same time, as GRAVES-
Smitn [7] remarked, they do not enable the determination of load carrying
capacity which is exhausted ‘with the appearance of “crinkle modes”, not
considered in papers [7—9]. :

Intermediate stiffeners are widely used in many types of metal structures.
These stiffeners carry a portion of the loads and divide the plate element into
smaller sub-elements, thus increasing considerably the load-carrying capac-
ity. The size and shape of intermediate stiffeners in thin-walled structures
exerts a strong influence on the stability and post-buckling behaviour of the
thin-walled structures. '
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The importance of the minimum rigidity of the intermediate stiffeners
required to restrict buckling to the plate elements was studied, for example,
in papers [10—14]. The test specimens, experimental works and comparisons
made with design rules of plates and open cross-section structures were
discussed in detail e.g. in [15, 16].

Before passing to the solution in the elasto-plastic range, one should
determine the nonlinear solution in the elastic range which involves consi-
dering the transformation of local mode with the increase of load; this was
done e.g. in [17~19].

A more comprehensive review of literature has been done e.g. in {19, 20].

In the present paper, the analysis of the interactive buckling of thin-
walled beam-columns with intermediate stiffeners [13] is used, though re-
garding only the uncoupled buckling.

A semi-analytical method of solution of the bending problem for a thin-
walled beam after local buckling is proposed and the beam flexural rigidity,
without using the hypotheses on effective width of plates subject to bending,
is determined based on the linear analysis of the local mode. The results
obtained here are compared with the analytical and the experimental results
obtained by other authors [15, 19]. This analysis, however, does not take into
account the lateral buckling of beams.

2. STRUCTURAL PROBLEM

The thin-walled prismatic beam of length {, composed of plane, rectangu-
lar plate segments interconnected along the longitudinal edges, simply sup-
ported at both ends and loaded by bending moment is considered (Fig. 1).
A plate model is adopted for the beam (for a more detailed analysis see
Appendix and [13]).

M M

F1g. 1. Thin-walled beam.

The nonlinear problem is solved by asymptotic KoIrER’s method [21].
Displacement U and force N fields are expanded into power series in the Jocal
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buckling mode amplitude, £ (divided by the thickness of the first component
plate):

T =0" 40042004

1
@ N = NO 4 N0 4 o280 4,
where TJ_EO), ﬁgo) are the pre-buckling fields; _Ijgl), ﬁgl) ~ the buckling mode;
ﬁgg), Ni(-z) the post-buckling fields.
The corresponding expression for the total potential energy for the local
buckling mode of the perfect structure has the following form [19, 21, 22]:

(2) II = —aoA?/2+ a18%(1 = A Ae) /2 + 11182 /3 + annn€? /4,

where ) - load parameter, Ay — critical value of A, g = agA?/2 = M*l/(2ET)
—energy of pre-buckling bending, M — bending moment applied to the beam,
I — the second moment of area of beam’s cross-section. The coefficients a4,
@111, ¢1111 are calculated by known formulas [21, 22].

The ratios of A/ Aer and M /M., (where M., is the critical value of bending
moment for the local buckling mode) are used as equivalent parameters of
loading. If A/Aee = 1 (iie. M/My = 1) then ag = MZI/(ET).

By substituting the expansion (1) into equations of equilibrium (A.2),
junction conditions and boundary conditions, as well as boundary value
problems of the zero, first and second order are obtained. The zero approx-
imation describes the global pre-buckling beam bending. The first approx-
imation, which is the linear problem of stability, is reduced to a system of
homogeneous differential equations of equilibrium ({13]). This solution of the
first order enables us to determine the local buckling mode and the critical
value of bending moment, M. (performing a minimization with respect to
the number of half-waves, m).

3. OVERALL BENDING AFTER THE LOCAL BUCKLING

Global flexural stiffness is determined by the angle of beam edge rotation
which equals 9 = 381 /dM ([19]). Equation (2) gives

(3) D= —agM/MZ2 — a 62 /(2M.).
The angle of rotation up to the local buckling is

(4) 9o = —aoM/ME .
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The ratio J9/9 of the angles of rotation defines the coefficient of the
reduced flexural rigidity, n = I./I, where I, is the second effective moment
of area of the cross-section:

As in the papers [7, 19], the state of deformation is defined by the cur-
vature ratio, xo = (1/R)/(1/R.), where R is the radius of curvature for
M = M, which can be expressed as follows:

(6) Xo = (M/L)/(Ma/T) = M{Mu(1/7).

A “lower bound” approach has been used by KOITER and PiaNATARO (1]
(see also [23]) to obtain a post-buckling stiffness coefficient 5 for a general
local buckling mode described by

-1

(7) wi(l)(a:, y) = Wi(l)(y) sin ? ,
where m is the number of axial half-waves of the local buckling mode and

the transverse wave profiles are defined by the functions m(l)(y) for the 7-th
wall of the beam. The “lower bound” value of 5 is given by

(8) n=1- (W) /W*,

where W and W are the average values of [W(I)(y)] and [W; (1 )(y)] respect-
ively, over the cross-section,

b;
LEEDY bl,/ W) dw,
(9) Sl
W= Z;—f [Wi(l)(y)rdyi-
it

The functions defining the first order displacement are determined by the
method of transition matrices in the same way as in [13].

In paper [1] KoITER and PIGNATARO have shown that for uniform com-
pressed panels, the value of  obtained from Eq. (8) is a “lower bound” with
respect to the exact value. In this case a constant value of  is obtained. It is
not difficalt to find out from {6) that in the adopted system of coordinates,
M /M — Xo, the post-buckling elastic path of equilibrium is a straight line.
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Just such a path was obtained in [19] by taking into account the change of
n as a function of the load parameter A.

A “lower bound” approach by Koiter and Pignataro is applied here for
structures subjected to eccentric compression and bending,

Figure 2 presents the dependences of the post-buckling stlﬁ'ness coeﬂi—
cients on the load parameter, A/, defined by Eqgs.(5) (as it was done in
[19]) and (8) for a square box-beam (analyzed in [19]) subject to bending,
having the following dimensions:

b = 100 [mm], t = 1.25 [mm], 1 =700 [rom)].
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Fic. 2. Post-buckling stiffness coefficient, 7, as a function of load parameter, AfAcr
defined by equations (5) and (8) for bending of the square box-beam. Curves:
I - uniform compression, £ — eccentric compression, 3 — bending.

This figure shows also the above relationships obtained on the basis of
papers [17-19] and of the equation {8) (like in [13, 14]) for the uniform
compression and for the triangular distribution of external load along the
webs. Papers {17 - 19] take into consideration the influence of transformation
of the local buckling mode upon the values of 7.
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For A/As > 1, the coefficient 5 decreases abruptly from 5 = 1 to a value
given by (5) and in a step-like manner for (8).

In the case of eccentric compression and bending, the lines representing
relationships (5) and (8) intersect each other. In these cases the post-buck-
ling stiffness coefficients 5 given by (8) cannot be always called the “lower
bound” value of the 7, as it was done in [1, 23] (compare also curves 2 and
5 in [17], Fig.4).

Average dimensions of the beam specimens analyzed in [15] are given in
Table 1. The geometry of cross-sections is shown in Fig. 3.

Table 1. Dimensions of channel beams (in mm).

Spec.no. I w b, bsp by b, b t wft
LCO 1060  76.95 0.0 0.0 0.0 785 1540  1.570 49.0
A0 1060 76.60 0.0 0.0 0.0 77.1 151  0.410  186.8
Al 1060 71.50 5.2  11.2 4.2 76.4 17,3 0.405  176.8
A2 1060  73.10 6.5 8.1 555 774 175 0410  178.2
A3 1060  73.55 6.6 7.1 9.0 76.8  16.6 0.410  179.4
Ad 1060  73.65 6.8 7.2 11.8 76.9 180 0415 1774
A5 1060 73.35 6.6 8.0 18.2 769 17.1 0405 181.2
B1 1060  70.55 4.7 13.2 6.0 769 17.6 0682  101.5
B2 1060 7270 6.5 8.8 5.6 767 174 0.691 1052
B3 1060 73.10 6.5 7.8 7.7 77.1 185  0.698  104.7
B4 1060 73.20 6.7 8.0 10.7 7.0 189  0.695  105.3
co 1060 76.90 0.0 0.0 0.0 774 153  0.818 94.0
¢ 1060 70.75 45 127 565 77.0 17.2 0,818 86.4
c2 1060 72.65 5.7 9.5 545 767 177 0.821 B8.5
3 1060 73.85 6.9 7.3 8.7 774 171 0.814 90.7
4 1060 73.60 7.0 7.4 1.7 770 185  0.815 90.3
C5 1060  73.35 6.9 7.6 18.2 15 182 0.810 90.6
D1 1060 TL25 5.5 9.5 455 765 162  0.750 93.9
D2 1060 7250 6.5 8.0 895 764 255  0.761 95.2
D3 1060 7215 6.2 8.2 11.35 762 168  0.762 94.6
D4 1060 7240 6.2 8.2 15.1 76.9 9.0  0.763 94.8
E1l 1060 7165 7.0 11.0 485 763 170 1.213 59.1
E2 1060 7230 T.0 0 10.0 5.1 77.8  17.0  1.207 59.9
E3 1060 7355 7.0 7.0 8.2 79.0 180  1.207 60.9
E4 1060 7320 7.0 8.1 9.0 77.2 145 1.200 61.0
E5 1060  73.80 7.7 7.7 12.0 76.7  17.0  1.209 61.0
Es 1060  73.80 7.5 7.5 18.8 787 175 1.202 61.2
F1 1060 7025 5.2 13.0 5.1 76.0 177 1.519 46.2
F2 1060 7090 5.5  12.0 6.0 755 178 1.528 46.4
F3 1060 7175 6.2 100 9.7 763 17.0  1.528 46.9
F4 1060 7150 6.5  10.5 12.55  76.3 155  1.514 47.2
Fs 1060 7165 7.0 975 1825 716 185  1.525 47.0
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F1a. 3. The cross-section of the beam specimens.

The value of Young’s modulus of elasticity and Poisson’s ratio are as-
sumed, respectively, £ = 205 GPa and v = 0.3.

The average values of the yield strength o, for each material thickness
are given in Table 2.

Table 2. Average yield strengths.

Test series | oy [MPa]

275.0
374.0
285.0
147.4
176.5
214.5

Mo Qe

In Table 3 the lowest values of critical bending moments, M, are listed,
referring to the local buckling; the table contains also the number of half-
waves, m, experimental values of critical moments ([15]), Mo, abbreviated
designations of local buckling mode as well as the collapse data.

In [15] the experimentally obtained values of critical loads are given only
for 13 out of the 32 cases studied.

The beam reinforced with intermediate stiffeners show a different local
buckling mode. In the papers [14, 16] local buckling modes presented in
Fig. 4 are denoted as follows: local distortional mode — LDM (Fig. 4a), lo-
cal symmetric mode — LSM (Fig.4b) and local antisymmetric mode — LAM
(Fig. 4¢). The values of the critical stress corresponding to the local symmet-
ric mode and the local antisymmetric one differ insignificantly or are nearly
identical (for a more detailed analysis see [13, 14]).



Table 3. Collapse data of channel beams.

Spec. no. Mo m Mo K 7 M, Mg (M, — HE)/M. bm:::g:s
LCo 1985 9 0.6617 0.8597 2257.0 3223.1 —0.428 LSM
AD 350 9 0.6415 0.8605 575.1 339.0 0.696 LSM
Al 161.2 19 120.1 0.0965 0.5514 486.0 350.8 0.278 LAM
A2 170.2 19 0.6085 0.8608 612.5 375.7 0.386 LAM
A3 167.8 19 149.6 0.5963 0.8606 591.4 349.6 0.409 LAM
Ad 175.9 19 0.5008 0.8602 619.6 318.9 0.485 LAM
Ab 161.5 19 164.4 0.5782 0.8589 587.6 3064 0.478 LSM
Bi 6994 4 605.2 0.5819 0.8488 1126.9 1177.8 —0(.045 LDM
B2 801.9 19 634.8 0.3255 0.7214 1286.8 1250.0 0.028 LAM
B3 837.8 19 605.2 0.6008 0.8598 1443.0 12914 0.105 LAM
B4 831.8 19 581.0 0.5928 0.8595 1444.9 1273.3 0.118 LAM
Co 277.8 226.6 0.6624 0.8699 1202.8 12327 —(.024 LDM
C1 931.8 4 818.2 0.0866 0.53493 1021.8 1395.0 —0.365 LDM
c2 1229.7 3 1125.8 1.0 1.0 1229.7 1489.6 —0.295 LDM
C3 1308.5 19 1220.4 1.0 1.0 1308.5 1463.0 —0.173 LAM
C4 1328.9 19 1037.0 1.0 1.0 1328.9 1380.2 —-0.679 LAM
5 1311.3 19 1149.5 1.0 1.0 1311.3 1377.2 —0.088 LAM
m 840.8 4 1.0 1.0 840.8 889.2 —0.057 LDM
D2 1127.6 19 1.0 1.0 1044.7 1023.4 (.020 LAM
D3 1084.3 19 1.0 1.0 913.5 924.2 —0.011 LAM
D4 1027.3 19 1.0 1.0 810.8 8773 —0.082 LAM
El 2580.2 1.0 1.0 1755.6 1909.0 0,087 LDM
E2 2800.9 1.0 1.0 1802.9 1904.9 —0.056 LDM
E3 4352.2 18 1.0 1.0 1877.5 2045.1 —0.089 LAM
E4 4113.0 19 1.0 1.0 1698.3 1930.8 —0.136 LAM
E5 4245.2 18 1.0 1.0 1765.7 1980.8 —0.121 LAM
Fé 4314.8 19 1.0 1.0 1836.7 1980.8 —0.078 LAM
1 3446.8 6 1.0 1.0 2673.4 2717.1 —0.016 LDM
F2 4581.2 & 1.0 1.0 2671.6 2918.3 —0.092 LDM
F3 8238.2 3 1.0 1.0 2679.7 2924.2 —0.091 LDM
F4 84204 19 1.0 1.0 2585.2 2687.6 —0.039 LAM
F5 8956.5 19 1.0 1.0 2797.8 2829.5 —0.011 LAM

[390]
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Fig. 4. Local buckling modes for the beam with intermediate stiffeners.

In the analyzed cases, experimental values of critical bending moments
are lower than the theoretical ones; this can be explained by a coupled
buckling of local buckling modes from the very start of the loading process
(13, 14]).

4. DETERMINATION OF LOAD CARRYING CAPACITY

For a post-buckling analysis in the elastic range, it is only possible to
obtain an approximate estimation of load carrying capacity on the basis of
a simplified threshold criterion.

In this paper, the following criterion is adopted for the load carrying
capacity, M,:
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Fi1G. 5. Effective cross-section of lransverse beam and stress distributions for the adopted
criterion of the load carrying capacity.

e in a plate under tension, the yield stress is attained at a limit-load
value higher than the critical moment, M., that is at '?;r < 1(Fig.5). In a
compressed plate, elastic strains are present;

e in a compressed plate, the yield stress is attained at a limit-load value
lower than the critical moment, M., (Fig.3). In this case we are dealing with
pre-buckling bending, hence it is assumed that n = 1;

¢ limit-moment value is equal to the critical moment, M, when the value
of stresses in a stretched plate referring to M., determined for pre-buckling
stiffness (i.e. 5 = 1), is lower than the yield stress, and the value of stresses in
the same plate, referring to M, and determined for reduced flexural stiffness
(i.e. » < 1} is higher than the yield stress.

Such a criterion takes into account the post-buckling of plates under
compression, or a lack of this buckling in the pre-buckling state of the perfect
structures; it considers also a relevant mechanism of failure by yielding of
the plate being compressed. _

However, in order to determine maximum stresses in the plate after local
buckling of the beam, one must find not only the reduced flexural stiffness,
but also the position of effective stiffness center of the cross-section.

As a calculation examples, the above thin-walled beams are considered.
Generally speaking, one has to find the effective width of a plate under
compression and of webs subject to bending. In this paper only the width of
a compressed flange is reduced (Fig. 5) to obtain the real decrease in flexural
stiffness of the cross-section after local buckling.

Quantity & = w'/w > 0, where w’ is the effective width of the compressed
plate, is derived from the condition that the second moment of area of eflec-
tive cross-section, I, should corresponds to the expression for the coefficient
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of reduced flexural stiffness, 77 (8) (that is I, = n[). Expressing the deviation
of the centroid of the effective cross-section via k and determining the sec-
ond moment of area of the effective cross-section with respect to the neutral
axis displaced by e the relationship between k and 7 is obtained (analogous
with in [19}).

It is obvious that the applied method of reducing the cross-section gives
somewhat too high values of e and of stresses. Therefore this approach pro-
vides a lower bound of the load carrying capacity.

With reference to the beams discussed above, Table 3 contains also the
coefficients x and %, the theoretical and the experimental limit load values
(M, and Mg, respectively) and their relative differences. The values of M g
are taken from [15].

In all the analyzed cases, when w/t < 105, a good agreement is found
between the presented lower estimate of the load carrying capacity and the
experimental results (cases B,C, D, E, F). Only in B3 and B4 the theoreti-
cal values of the limit load, M, are by about 10% higher than M g obtained
experimentally.

In cases belonging to series A (that is w/t = 180), the calculated Tmit
load values are significantly higher than those obtained experimentally.

In [24] the following values of local imperfections, fo, were adopted on
the basis of experimental data:

fo/t = 0.00004(b/1) for b/t < 150,
fo/t = —0.9+0.012(b/t)  for b/t > 150.

In series A the magnitude of the local imperfections is fo/t = 1.26 (for
w/t = 180), while in B — fo/t = 0.441 (w/t = 105). In [19] a very signilicant
influence is shown of local imperfections upon the post-buckling limit load
of beams subjected to bending.

Large discrepancies between the theoretical and experimental results in
series A can, therefore, be explained by such factors as the influence of
imperfections, low flexural rigidity, residual stresses, and the fact that the
determined value of 5 coefficient is not its lower estimate (see notes to Fig. 2).
In this case the assumption of lower estimate of the load carrying capacity
is not fulfilled.

The analysis presented here provides a correct evaluation of the load
carrying capacity for b/t < 120 and for moderate imperfections.

I, as it was done in [19], it was considered that local imperfections had
an effect upon 7, and, consequently, upon the load carrying capacity, the
latter could be properly evaluated also in case of b/t > 120 and of greater
local imperfections (see Fig. 2 in [19]).
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5. CONCLUSIONS

The present paper deals with a “lower bound” approach by Koiter and
Pignataro which is applied for determining the post-buckling flexural stiff-
ness of the elastic beam with a stiffener. The overall bending of the beam is
also included in the analysis. Plate elements are adopted for modelling the
beam structure. An approximate evaluation of the load carrying capacity is
presented. : '

APPENDIX

The thin-walled beam with central intermediate stiffeners simply sup-
ported at the ends and loaded by a bending moment is considered. For each
plate component accurate geometrical relationships are assumed to take into
account both out-of-plane and in-plane bending ({13]):

Ciz = Uiz + 0.5(1&?’3 + '01'2',; + w?,z)a
(A.1) Eiy = Viy + 0.5(uf, + vf,y + wi,),

2855y = Viwy = Uiy t Vig b Uigliy T VigViy + Wiowiy,

Kig = =Wy, By = —Wiyy» Kigy = ~Wi zy .

where ¢ is the plate number, (..) , = 8(..)/0z, (..) 4 = 8(..)/5y.

The differential equilibrium equations resulting from the virtual work
principle and corresponding to the expressions (A.1) for the i-th wall can be
written as follows:

Nigg + Nigyy + (Nigtiz) 2 + (Nigtiny) g
F(Nigytiz)y + (Nigytiy) e = 0,
(A.2) Niyy + Niwyz + (Niz¥ig) o + (Nigiy) - ‘ :
H(NizyViz)y + (Nigyviy) x = 0,
DiVVw; — (Nigwiz) e — (Niywiy) g
~(NizyWiz) y — (Nizywiyy),e = 0.
The solution of these equations for each plate should satisfy the kinematic

and static conditions at the junctions of adjacent plates and the boundary
conditions at the ends x = 0 and z = (.
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