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ON THE CONSISTENCY COEFFICIENT OF A POWER-LAW FLOW
OF BLOOD THROUGH THE NARROW VESSEL

HP. MAZUMDAR, U N HABISHYASI, S. GHORAI
and B.C. ROY (CALCUTTA)

In this paper, we study the behaviour of the relative conmsistency coefficient of an
assumed power-law flow of blood through the narrow vessel. The flow field comprises two
layers, e.g. a marginal plasma layer near the wall and a core layer which is suspension of
red cells in plasma. The relative consistency coefficient is determined by equating the sum
of volume rates of flow in the two layers to the volume rate of flow in case the two fluids
are replaced by a single power-law fluid with an appropriate consistency coefficient. The
results are displayed graphically and discussed.

1. INTRODUCTION

A plausible assumption is made that the rheological properties of blood
do not influence very much its flow in large vessels and the blood may be
treated as a Newtonian fluid (cf. QueEMADA [1], RoDKIEWICZ [2]). Some
exception may however, result at low flow rates, near quasi-steady condi-
tions and in the vicinity of changes of the cross-section area of the vessel.
As the diameter of the vessel is reduced, blood rheological properties appear
more and more important from shear thinning, finally complicated by phase
separation in narrow vessels. Experiments on steady blood flow in narrow
vessels exhibit some anomalous features, e.g. the blunting of velocity profile,
the formation of plasma layer and the Fahraeus-Lindqvist effect (SUTERA
[3]). The blunting of the velocity profile occurs near the axis of the vessel.
Blood is actually a complex fluid with formed elements (red cells, white
cells and platelets) suspended in plasma. The red-blood cells (erythrocytes)
outnumber the other cells and play an important role in carrying oxygen
to all parts of the body. The percent volume concentration of red blood
cells in the whole blood is called the hematocrit. The hematocrit value has
a definite effect on the apparent viscosity of blood. When blood flows in a
narrow vessel, two important inter-related phenomena occur. One of these is
the tendency of erythrocytes to migrate toward the center of the flow-vessel
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leaving a relatively cell-free, slower moving layer of plasma. The other is
the reduction of apparent viscosity, as caused essentially by the cell-free
layer (PAHRRAEUS and LINDQVIST [4]). BLocH’s [5] photographic records of
blood flow in narrow vessels of animals supported the existence of a marginal
(plasma) layer near the wall, leading to consider the flow as a two-phase
one, with a particle-rich axial core surrounded by a particle-depleted wall
layer. Many authors, e.g., HAYNES and BurTON [6], WHITMORE [7], CHAT-
urANI and SAMY [8], SUKLA et al. [9], MAJEI and Usna [10], TANDON and
KusawaHA [11] have studied the Fahraeus- Lindqvist phenomena related
problems theoretically treating blood either as Newtonian or non-Newtonian
fluid. BUGLIARELLO ef al. [12] carried out measurements in vitro in glass
capillaries with diameters in the range of 40 to 83y for a possible estima-
tion of plasma layer thickness. Normal human whole blood samples with
acid-citrate-dextrose and varying hematocrits were used for this purpose.
The shear stresses corresponding to their measurements were in the range
of 10 to 100 dynes/cm?. They measured the plasma layer thickness from
frames of high speed motion pictures. And the thickness of the plasma layer
was defined by averaging individual measurements of the distance from the
capillary wall to the point of closest approach of a red cell. At a hematocrit
of 40%, the plasma layer thickness was found to decrease with the decrease
of shear stress in the 40y capillary, The ratio of the plasma layer thickness
to the radius of the vessel were found of about 0.05 — 0.1 at normal hemat-
ocrit. We propose a two-layer model for blood flow through narrow arterial
tube in which both the layers consist of power-law fluids having the same
power-law index, but different consistency coefficients. On the basis of a pre-
scribed relation between these coefficients, the total volumetric flow rate is
to be calculated. Final aim will be to find the relative consistency coefficient
in reference to a single power-law fluid flowing through the same tube.

2. MATHEMATICAL FORMULATION

We consider the flow of an inelastic time-independent non-Newtonian
fluid through a tube. The tube is sufficiently narrow and of constant diam-
eter. The flow consists of two layers, namely the peripheral cell-free plasma
layer and the core layer which is suspension of red cells in plasma (Fig. 1).

In case of a power-law fluid, the relationship between the shear stress
and shear rate (or velocity gradient) is expressed generally as

dv,\"
2.1) r=-K ( dr) ,
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F1G. 1. Two-layer flow.

where K is the consistency coefficient and n the power-law index. v, is the
axial velocity component. K has the dimensions M L~ T2, Equation (2.1)
can be rewritten in the form

dv, \" du,
(22) T—'—“I((d?ﬂ) —"}Lﬂ,(dr)i

where ;
dv, \""
fy = K ( Tr ) .

pig is the apparent viscosity. It is to be mentioned that if n = 1, then
Eq.(2.1) reduces to the Newtonian form. When n < 1, (2.1) describes
the pseudo-plastic or shear thinning fluid, and when n > 1, it is of the
form of dilatant fluid. Pseudo-plastic behaviour is characteristic of many
polymers, polymer solutions and suspensions (cf. ANDERSSON and IRGENS
[13]). We shall deal in the present case with a value of n which is less
than 1. The choice n < 1 will be evident from the following discussions.
WELL et al. [14] have shown that the apparent viscosity of human blood
varies with the shear rate. The apparent viscosity increases with decreasing
shear rate. The whole blood thus can be considered as non-Newtonian and
shear-thinning. They also demonstrated that red cell suspension in saline
solution is non-Newtonian and its absolute value of viscosity is lower than
that of whole blood. On the other hand, plasma exhibited nearly New-
tonian viscosity in their measurements. Some authors, however, consider
plasma as non-Newtonian, emphasizing the influence of {ibrinogen on its be-
haviour (OKA, [15]). Plasma, is also known to exhibit a unique relaxation
phenomenon. Let us now consider a typical blood flow curve (Fig. 2} after
RAHN et al. [16]. Figure 2 presents shear stress vs. shear rate for the blood
sample which had a physiologically normal hematocrit of 46 and contained
an anticoagulant acid-citrate-dextrose. This “shear stress-shear rate” curve
appears to correspond to such a curve for a commonly observed behaviour
often exhibited by solutions of high polymers (MIDDLEMAN [17]). If the
data of Fig.2 are teplotted as 71/2 vs. 4 1/2, 4 being the shear rate, it can
be shown by expanding the low shear rate scale that blood has a finite yield
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Ie. 2. A typical flow curve for blood (Ref. 16).

stress. But the magnitude of the yield stress (about 0.05dyne/cm? in this
sample) is actually quite small. And, we consider the power law fluid with
n < 1, alternative to casson fluid as representative of blood.

3. VOLUMETRIC FLOW RATE, RELATIVE CONSISTENCY COEFFICIENT

Assuming that peripheral plasina layer is of thickness § and the radius
of the tube R (Fig. 1), we can write the equations governing the motion in
the peripheral and core layers, respectively, as

d . dvp\" _ patt
(3.1) p K, (__ p ) ] = R"T Py,
1-6§/R<p<1
and
d dv,. \"
2 — K. (-—=) | = R*'P
(32) 5 [ (<) | = moviem

057731-‘5/3-,

where § = r/R, P = —(dp/dz) the pressure gradient, K, and K, are the
consistency coeflicients, respectively in the peripheral and core layers. v,
and v, are the axial velocity components. Without loss of generality, we
may assume that K, is constant and K is expressible in the form

(3.3) I(C:%, h(n)=hm{1—(:7fW—R)nl},
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where  is a constant having the value 2.5, ny is the shape parameter and
hp, is the maximum hematocrit at the centre of the tube. The boundary
conditions are given by

i) Vap = 0 at =1,
i) %‘i‘i‘ﬁ =0 at =0,
(3.4) "
iii) Vgp = Uze at n=1-§6/R,
d ZC
iv) K Yo K dv at n=1-§/R.

P dn Sy
The last relation {iv) is due to equality of shear stress at the interphase of
the two layers. To ease the analysis, we assume the value of the power-law

index n = 1/2. Solution of Eq.(3.1) with n = 1/2 is given by

R3p? 3 g (1 RPA
(3.5) Vzp = m(l -17)+ A ("’ - 1) %, (1 -1,

where A is constant of integration. In obtaining (3.5), the condition (i) of
(3.4) has been utilized. It remains to determine A.
Solution of Eq.(3.2) for the case n = 1/2 is given by

R3P2 3 7 L2a2” 2n-4-3 2™ n-+3
—W[‘%U“‘L)%r T+ 2 L1~ L)|+D,
P

(3.6) v = 2n+ 3 n+3

where L = Bhm, @ = (1 — §/R)™! and D is constant of integration. In
obtaining (3.6), the condition (ii) of (3.4) and the relation (3.3) have been
used.

Utilizing the condition (iv) of (3.4), i.e.

at n=1-6/R

in Eqgs. (3.5) and (3.6), we obtain A = 0. Thus the solution (3.5) reduces to

R32

(3'7) . ’Uzp - 12;\:; (1 "7 )'

The constant D in (3.6) is determined by applying the condition (iii) of
(3.4), v;p = v, at p=1—6/R to Eqs. (3.6} and (3.7), as

. R3p? 6L(1— L) 312
i D= 1—8/RP*{ L2 —2L 1.
(3.8) 12K2 [( /%) { + ny+ 3 +2n1+3 +
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Thus (3.6) and (3.8) constitute the solution for v,.. Let us denote the vol-
umetric flow rate in the peripheral plasma layer and the core layer, respec-
tively, by @, and .. We calcnlate @, to obtain

R 1 R3p2
(3.9) @p = ] Vo2 dr = 2T R? / U dy = ] by el (1-n%mdy
R-§ 1-§/R 1~6/R P
_2mR°PP[3  (1-6/R)° (1-8/R)’
~12K% |10 5 2 ’
Q. can be calculated as
R—6 1-6/R
(3.10) Q.= f Vp2mr dr = 2T R? - j Vye A7
0 0
1-4/R R3P2 n3 2a
= 2 _ 1~ Iy? a . 1y 43
2rk / { 4K2 [3(1 St st

0

a?™ 2, 9043
tom s "m+]n+D"}dn

R3P? (1-L)? 2L(1 - L)

L2 } N D(1 — 6/R)2] .

=2t R? [—

o 3@ 1 5) 2

We denote by @} the total flux as

(3.11) : Q = Qp + Qc .

From (3.9) and (3.10), we obtain

: 2m B3 PE sl (1~ L)
(3.12) Q—.W [(1—6/1?,) {g-— 5
__BL(1- L 3r? 4 L*-2L
(n1 +3)(n1 4+ 5)  (2n1 + 3)(2m + 5) 2

3L(1 - L) 3L2 3
nit3 2em+3)| |

+

If the tube were filled completely by a single power-law fluid having the
consistency coefficient K, (effective consistency coefficient of the two fluids),
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the volumetric flow rate would then be given by

x R® P?

Assuming that the fluxes Q and Qo are the same, we calculate the relative
consistency coefficient

K, = K./K, from (3.12)and (3.13) as

(3-14) K, = {3/105}'2,

where

_ s[3L(L-2) 3L(1—-I) _ 3L 3
Sw(l—G/R){ 10 (ny +5) (4n1+10)}+ﬁ'

Variations of K, with 6/ R for the cases ny = 2, 4 and 6 are shown, respec-
tively, in Figs.3—5. All these cases have been illustrated for h,, values 0,
0.2, 0.3 and 0.46.
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Fia. 3. Variations of relative consistency coefficient for different hematocrit
values (n = 2).
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F1G. 4. Variations of relative

consistency coefficient for
different hematocrit
values (n = 4).

F1G. 5. Variations of relative
consistency coefficient for
different hematocrit
values (n = 6).
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4, DIscussion

Examining Figs. 35, we arrive at the following conclusions, :

In the absence of hematocrit, the relative consistency coefficient takes
the constant value 1 in all the cases. For a fixed value of §/R and fixed ny,
the relative consistency coefficient increases with the increase of hematocrit.

At any 6/R and fixed hematocrit, the relative consistency coeflicient
increases with the increase of n;.

For any ny, the relative consistency coefficient decreases with the increase
of 6/ R. The rate of decrease becomes faster as the hematocrit increases.

While the exact non-Newtonian behaviour of blood is not known, the
simple phenomenological model presented in this paper seems to be useful
for better understanding of the blood flow through narrow vessels and in
clinical applications.
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