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ANISOTROPY OF RANDOM FIELDS IN STOCHASTIC FEM

W. KNABE and G ROZYNSKI (GDANSK)

The anisotropy of a random variable consisting of rectangular local averages of a
Gaussian, isotropic and homogeneous random field is presented. The analysis deals with
fields having exponential correlation functions. It is shown that such local averages, formed
by a mesh of finite elements, generate the anisotropy even if the mesh consists of identical
squares,

1. INTRODUCTION

The finite element method is a common tool in many different engineer-
ing calculations and is very useful to determine, for example, such values as
displacements in solid mechanics or potentials in flow problems. Before mod-
ern computers were developed, the FEM calculations had to be deterministic
because of low performance of most computers available then. However, real
media, especially soils [1], exhibit randomness and so do the loads. Thus, de-
terministic calculations, though usually sufficient for engineers, do not fully
describe the reality.

Nowadays, due to fast and high capacity computers, it was possible to
develop several variants of the stochastic finite element analysis. The oldest
approach known as the perturbation method [4] is still used in cases of small
randomness. It is also suitable for the analysis of simple systems, for exam-
ple a stochastic free-end beam. More sophisticated techniques such as the
Neumann series expansion [5], the weighted integral method [6] or the or-
thogonal series expansion [7] often yield excellent results, but the experience
proves that they are not universal. By contrast, the Monte Carlo method is
universal and can be applied to any problem. In many cases it is the only
method that can give satisfactory results, provided that the modelling of a
specific system is accurate. Therefore the paper deals with some aspects of
MC simulations in the stochastic FIEM. Tt should however be realized that
primitive formalism of the Monte Carlo simulations often results in unac-
ceptably long computer runs, and other techniques are usually preferred to
MC simulations, treated as the last resort.
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The first step in each stochastic FEM application that must be done is
to discretize the parameter space of random fields of material properties
and, if necessary, the loads. In other words, the initial random fields are
transformed into equivalent finite random variables. Some aspects of such a
transformation are still not sufficiently known. One of them is anisotropy of
the equivalent random variable. Our analysis is concentrated on one of the
most comtnon models — a Gaussian, homogeneous, isotropic random field
with an exponential correlation function.

2. POINT DISCRETIZATION OF RANDOM FIELD

Two-dimensional media are usually discretized by a mesh consisting of
triangular and quadrilateral elements. The net is then refined until the re-
sults in two consecutive iterations differ little enough. This is typical of
deterministic FEM and it is assumed here that the mesh which is determin-
istically optimum is also stochastically pertinent.

The simplest discretization method of the parameter space of random
field is when the shape and size of elements are neglected. Since the field
is homogeneous, its mean value does not change. Furthermore, the variance
o2 of the random field averaged over the element is equal to the field point
variance 0'3. Consequently, the covariance ¢, between each pair of elements
(local averages) is equal to the covariance ¢, between the centroids of both
elements. To summarize, we can say that such a discretization retains the
isotropy but completely disregards the variability of correlation across the
elements. This conclusion immediately indicates the main shortcoming of
the method: it can be applied to cases in which the correlation properties
change very little inside the elements. If these changes are higher, then the
mesh must be refined to such an extent that the computer runs become
unacceptably long. '

3. LoCAL AVERAGES OF RANDOM FIELDS

Theoretical bases of local averages of random fields can be found in [2, 3]
and [6]. However, only raw formulas were derived there and few remarks
made on the behaviour of the resulting finite random variable, That is
why we briefly describe the principles of local averages, focusing on the
anisotropy.
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Let us take the Gaussmn homogeneous, isotropic random field flz,y).
Its parameters are as follows:
7 (mean),
o2 (variance),
ep = o2e~P? (covariance function),
where d — distance between two points 1 — (21,71) and 2 — (24,,) of the
parameter space of the random field:

d= \/(232 —21)? 4+ (2 — )2,

B — correlation decay coeflicient.

Local averages are rectangular, each has the length / and height ¢. Ac-
cording to [6], the local average is a random variable that can be expressed
in terms of the stochastic integral:

jjf(m,y) dzdy .

The isotropy of the initial random field guarantees that the mean remains
unchanged

(3.1)

@--cIH
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It
//E [f(z, y)ldzdy = f.
00 _
The derivation of the local average variance is more tedious but not difficult:

(3.2) Var [ = o2 = 2 (/"] - (7).
When (3.1) is inserted into (3.2), then

‘712; 12t2 {jjf(l‘ ) d;cdy] - (?)2
00

It can be proved that

¢ - 2
j/f(a:,y)_d:cdy]
00

(33) E

e
0000 ‘

and

(34) Bf(2,9)f(z,u)} = cov[f(s,1), f(z,0)] + (7).
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Let us now choose two points P(z,y) and Q(« + u,y 4 z), pertaining to the
element, such that u,2 > 0. Their correlation can be expressed as

g(u,z) — e—,@v‘u2+22'
By inserting (3.4) into (3.3) and using (3.2), we obtain the following expres-
sion to calculate the local average variance:

z Y r t—y

g 1t
09 = gh [ ([ o [ [oins
’ 00 \0o o o 0
l—z ¥ -z t—y
—{—f/gdudz—l—//gdudz) dzx dy,
0 0

0 0

hence

L
0.2

(3.6) ol = ﬁ / f (I(z,y) + Loz, y) + Iz(x, y)+ Lz, y)) dz dy.
g 0

The sum in the integral in (3.6) expresses the correlation of two random vari-
ables — first at a point P(z,y) and the second one — averaged over the whole
finite element. Formulas (3.5) and (3.6) can be presented in the closed form
provided that the function g(w,z) is analytically integrable. Unfortunately
this is not the case here and only numerical integration is possible.

The derivation of formulas for covariances is quite similar. If the elements
(local averages in terms of random fields) do not partly overlap each other,
two cases can be distinguished (¥ig. 1):

a. Projections of both elements on one axis of the global coordinate sys-
tem fully coincide; if the distance of their centroids is equal to &, we may
write (3.5) as

. 2 [ y EH-=
(3.7) covl[I,II]:cﬁ:g;’—zf/ ] / gdudz
00 \0 ¢z
ty &tz
+/ / gdudz | da dy.
¢ f-z

Hence (3.6) transforms into

1 ¢
0.2
(38) co= s [ [(Ba9)+ Blev) dzdy.
00
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I1G. 1, Rectangular local averages I, IT and III.

b. Projections do not coincide at all, so there are two components of the
distance between the centroids — horizontal ¢ and vertical #; the correspond-
ing expressions take forms of (3.9) and (3.10), respectively:

o2 1 t {H—zndi-y
3.9 cov[,III] = ¢, = -5 g dudzdz dy,
1242 _
0 0 f—x 0y
2 1t
el
(3.10) e, = T;f/fl(a:,y) dz dy.
00

In case the elements partly overlap each other (¢ < [ and 5 < t), the formula
can be derived in a similar manner:

, Lt
(3.11) cov |1 III] = g /fZIi(m,y) dz dy.
o o =1

In case { <land n=10 the formula (3.11) takes the form

I q

(3.12) cov [I, 1] =

]

It
00

=4

e,
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where
iz pti—y Lo n+t—y l—x pti—y

L = f / gdudz, I 2/ / gdudz, I3= / / gdudz,
E—x Ny 0 n-y 0 n-y
-z y EHi—zt—-y T Y

IL = jgdudz, Iy = / /gdudz, //gdudz,
£z 0 h]

z —z t—y

{—=
¥ t -y
I; = //gdudz, Ig:/fgdudz, j/gdudz.
0o 0 0 0

The value I; in (3.10) and the sum f; + I3 in (3.8) and the sums ZL- in

%
(3.11) and (3.12) represent the correlation of the field at a point P(z,y)
pertaining to element T and the local average II or III. Like in case of the
local average variance, only numerical integration is possible.

4. NUMERICAL RESULTS

To examine the anisotropy, local averages must be arranged in such a
manner that the distances of their centroids are constant (Fig. 2). Thus the

following holds true:
2z =/&2 + 1% = const.

For a given z we can express the anisotropy as a function of the angle ¢
only. The values of z are the multiplies of the element’s diagonal (1d, 2d, 3d)

d= V2412,

The angle ¢ is such that
1
fangp = —.
A
It equals 0°, 15°, 30°, 45°, 60°, 75° and 90°. All rectangles have the same
height ¢ = 1 and their lengths are equal to 1, 1.25, 1.5, 1.75, 2 and 2.5. The
analysis covers a wide range of correlation parameters such that the product
Bl equals 0.1, 0.5, 1.0, 2.0 and 5.0. For all calculations the constant value of
= 1 was assumed. _
In Fig.3 (Table 1) the variances ¢2 and in Figs. 4a to 4f the ratios ¢, /¢,

are drawn. Since o2 = 1, the results for o2 can also be treated as ratios of
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FiG. 2. Local averages in anisotropy investigation. I =1, 1.25, 1.5, 1.75, 2 and 2.5;
t =1 for all cases; ¢ = 0°, 15°, 30°, 45°, 60°, 75°, 90°.
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olfc? o,- The values of ¢, do not depend on direction, so the Flgs 4a to 4Af are
a good illustration of angular anisotropy.
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Table 1.

ypt] 1 0.5 1.0 2.0 3.5 5.0 7.5 10 20

1.0 | 0.9483 [ 0.7717 | 0.6049 | 0.3885 | 0.2209 | 0.1384 ] 0.0747 | 0.0462 | 0.0136
1.25 {0.9531 {0.7909 | 0.6339 | 0.4226 | ¢.2500 | 0.1609 | 0.0889 | 0.0537 | 0.0165
1.50 |0.9562 | 0.8035 | 0.6534 | 0.4471 | 0.2729 1 0.1796 | 0.1015 | 0.0645 | 0.0194
1.75 | 0.9583 | 0.8122 | 0.6675.{ 0.4655 [ 0,2910 | 0.1951 | 0.1127 | 0.0725 | 0.0222
2.0 |0.9598 |0.8186 [ 0.6777 | 0.4796 | 0.3056 | 0.2081 | 0.1225 | 0.0798 | 0.02407
2.5 ]0.9618 | 0.8269 ] 0.6918 | 0.4995 | 0.3274 | 0.2285 1 0.1389 | 0.0936 | 0.0300
5.0 }0.9650 | 0.8414 1 0.7168 | 0.5376 | 0.3735 | 0.2758 § 0.1824 | 0.1301 | 0.0500

In Tables 2, 3 and 4 more thorough results are presented. They exhibit
the greatest relative differences between covariances of local averages for the
same distance z:

_ max(¢,) — min{c,)

€p =

max(cy)

100% .

In Table 2 the results for neighbouring elements (z = d) are presented, in
Table 3 for medium-distant ones (z = 2d), and in Table 4 for the most
remote one (z = 3d).

Table 2.
YABL] 1 |05 | 10 | 20 5.0
1.0 0% | 0% | 0.5% | 2.6% |25% v.s.n,
125 | 0% |1.8% | 5.0% | 21% | 46% v.s.n.
1.50 | 0% {2.8% | 7.6% | 21% | 64% v.s.n.
1.75 | 0.5% §3.5% | 9.4% | 25% | 72% v.s.n.
2.00 |0.6% [4.1% [ 10.5% | 28% | 77% v.s.n.
250 | 0.7% | 4.6% | 12.0% | 32% | 81% v.s.n.
Table 3.
YNBIf 1 05 | 10 | 20 5.0
1.0 0% | 0% | 1.6% | 2.1% | 19% v.s.n.
1.25 | 0% |1.4% | 4.3% | 21% | not computed
1.50 | 0% |2.2% 1 6.4% | 19% | 64% v.s.n.
1.75 | 0.5% [ 2.7% [ 8.0% | 24% | 64% v.s.n.
2.00 |0.6% |3.0% | 9.0% i 26% | 76% v.s.n.
2,50 {0.7%]3.0% | 10.0% | 26% | 90% v.s.n.
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Table 4.
yi\pt| 1|05 | 10 2.0 5.0
1.0 0% | 0% |0.6% | not computed — v.s.n.|not computed — v.s.n.
1.25 (0% {1.2% |4.0% 14% v.s.n. 47% v.s.n.
1.50 [0% |1.8% | 5.8% 20% v.s.n. not computed — v.s.n.
1.7 10% |2.3% | 7.0% 21% v.s.n. not computed — v.s.n.
2.0 0% |2.6%]8.2% 23% v.s.n. not computed — v.s.n.
2.5 |0%]2.9% ]9.0% 27% v.s.n. not computed — v.s.n.

v.s.n. — very small numbers

5. CONCLUSIONS

Discretization of the parameter space of any isotropic random field with
finite elements always causes the anisotropy of the equivalent finite random
variable of local averages. This is also true for squares, but their anisotropy
is practically negligible (the curves in Fig. 4a do not bifurcate for I < 2).

Slightly flattened rectangles (I/t = 1.25) should satisfy a stronger con-
straint to minimize the resulting anisotropy such that 8/ < 1 (see Fig.4b).

Flattened rectangles should obey a tougher limitation 8! < 0.5 (Figs. 4c
to f).

The values of covariances decay with the increase of the distance z be-
tween the centroids of the elements. The ratio for the extreme ones may be
great, but the anisotropy for large z is meaningless since both covariances
are then close to zero. This conclusion is important for non-homogeneous
meshes often used in practice. The anisotropy matters only in the vicinity
of loads and only there it should be minimized.

These constraints should be taken into account in engineering practice
with additional guidelines:

o the stochastic mesh should exactly match the deterministically opti-
mum mesh in the vicinity of loaded nodes to obtain accurate simulation
results;

o the elements close to loaded nodes should be square to gnarantee mini-
mum anisotropy; more remote elements practically do not affect the results
due to very small covariances;

o small covariances of distant elements indicate that deterministic elem-
ents distant from loaded nodes can be combined into larger local averages to
simplify the simulation, without adverse effects on the accuracy of results;
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e it appears to be not difficult to adapt the existing deterministic cddés to 35

MC simulations in which the deterministic mesh is equal to the stochastic
one; a routine containing the calculation of o?u, cov{l, 1I] and cov ]I, III]
should be added together with random field generation and statistical analy-
sis;

¢ it seems to be difficult to adapt the existing deterministic codes to
simulations In which deterministic mesh is not equal to the stochastic one,
because the stochastic mesh must be generated depending on both the load
distribution and the deterministically optimum mesh in a given application.

Variances 2 can be expressed in terms of two dimensionless parameters
Bl and 1/t ,

Similarly, the covariances ¢, can be expressed in terms of four dimen-
sionless parameters 3!, Gt, f¢ and By or GBI, I/, B¢ and fy.
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