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SOME NEW DEVELOPMENTS IN CONTACT PRESSURE
OPTIMIZATION (*)

. PACZELT (MISKOLC)

Relatively few works have dealt with the optimization problems of badies in contact.
The present work is intended as a contribution to the determination of contact pressure
distribution in the frame of linear elasticity. Solution of frictionless contact problems are
investigated not only on the basis of minimum complementary energy principle, but also
on the basis of minimum total potentional energy by the use of an angmented Lagrangian
technique, The goal is to optimize the pressure distribution along the contact region.
The minimum of maximal pressure is looked for by controlling the pressure distribution,
The optimization problem can be handled by a so-called restricted linear programming
problem. Effectiveness of the augmented Lagrangian technique has been proved by axi-
symmetric and plane stress type numerical examples, i.e., the pressure can be calculated
directly, solution of the contact problem can be obtained by means of a relatively small
penalty parameter, solution of the optimization problem can be found in a relatively easy
way.

1. INTRODUCTION

Generally, the classical methods of elasticity cannot be used effectively
for solution of the contact problems. Using computers, we can apply various
numerical methods for the determination of the contact region and pressure.
A detailed review of the variational principles to be used is given by TELEGA
[1]. In the early finite clement applications to the contact problems, the La-
grange multiplier approach [2—4] and the penalty formulation [5] were used.
In the latter case the accuracy of the correct choice of the penalty parameter
is the essence of the algorithm. Recently, a mixture of the methods — the
so-called augmented Lagrangian technique — has been applied successfully
to linear and nonlinear contact problems [6].

" A design engineer always makes an effort to avoid singularities in the
contact regions in order to reduce the stresses and decrease abrasion and
energy':dissipa,tion of friction. '

(") Paper presented at 30th Polish Solid Mechanics Conlerence, Zakopane, September
5-9, 1994.
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In those cases when joints of bodies are realized by unilateral contact,
certain mechanical quantities can be optimized by shaping the contact re-
gions. For example, it might be a contact problem of finding the minimum of
the contact pressure maximum value or, in addition, a second requirement
that the zero contact pressure should be assured at the boundary of the
contact region {7]. Some new results are presented in Sec. 3. :

2. FORMULATION OF THE CONTACT PROBLEM

In the present work it is assumed that the displacements and deforma-
tions are small, and the adhesion, friction and dynamic effect between the
contacting elements can be disregarded; such contact problems are referred
to as normal. :

TFor the sake of simplicity, let us assume that the elastic system consists
of two bodies. The a body surfaces will be separated mto three domains:

Sy, 55 part of the body surface bearing a given surface load
and given displacement, ‘

$2 = 2 = { proposed zone of contact. .

For the examination of the contact/separation conditions, in the zone of
contact we shall consider the projection of the displacements in a prescribed
direction only (e.g. normal to the surface). At any point of the region 12;
there is a prescribed direction which, in our case, is the normal n' to surface:

of the first body, if

2 1 .
(2.1) d_wuN—uN—i—h—G, p>0, z € 12,

what means contact.
Separation {gap) occurs, if

(2.2) d:ui,—u}v—i—h?_(), p=0, z € f29,

where z denotes a point of 2 with the coordinates (z1, %2, x3). p is conta
pressure, h initial separation (gap) along the normal n!, uf = u® - 0y
e = 1,2 the displacement in the prescribed direction. d will be termed
the relative displacement, that is the distance after deformation, or in other:
words the gap. The zones {2 and (2, are not known beforehand, 2 = f25+12

From the Eqgs.(2.1), (2.2) it follows, that :

(2.3) p>0, d»0, pd=0, zEL.



SOME NEW DEVELOPMENTS IN CONTACT PRESSURE OPTIMIZATION 299

If one of the bodies — let us suppose it to be the first one — can move as a
rigid body, the equilibrium equations must be satisfied

F = Fo-fpnld-szo,

(2.4) ?

M:Mg—fonlpdSzo,

where Fg, Mg are the resultant force and moment at the origin of the co-
ordinate system, and R is the posntmn vector, X is the symbol of a vector
product.

2.1. Construction of the equatwn/mequa;lzty system by using Green’s .
- functions

The deflections along the indicated dlrectlon are defined by the followmg
equations

ul (@) = = [ H(@,2p(a") dS" + 1(s) + 1(a),
2! oo : .

(2.5)
ul(z) = /Hg(a:,m')_p(m’) ds’ + f(=),
nl
where H(z,2") (i = 1,2) is Green’s function, fi(z) (i = 1,2) is the dis-
placement due to the given loads, r(z) is the displacement due to rigid body
type of motion:

(2.6) r(2) = s+ Xye X R(2)] - 01(2),
where X, = [Ms Apgs Apal Aar = [Masss Aypas Auga] are the rigid-body ap-
proach vectors, components of which are translations (A, ) along the refer-

ence axis, and rotations (nz) also about the reference axis. The gap after
deformatlon (2.5)is

(2.7) - 'dﬂf(HI(a:,a:')-i-Hz(m,m'))p(m')dS'

+£(2) + fl() + h(z) — r(z) > 0.
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The variational principle is applied o determine the contact between the
two elastic bodies [1]. In this case the modified complementary energy is [15]

(28)  L=L(o(@) M hue) = 3 [ [ 1) (' (@04 (@, 2))p(a")ds ds
a0 : '

+/p(f2—f1+h)ds_xF'F_>\M 'M»I
A :

and the variational equations and inequalities are &xp 5, L = 0 (equilibrium
equations for a body, with rigid body-like displacement (2.4)); §,L < 0,
p > 0,z € 2, which gives the contact and separation conditions: (2.1)—(2.3).

In the functional (2.8) X, X, are rigid body approach vectors, F = 0,
M = 0 are the equilibrium equations (2.4), points z, ' belong to the pro-
posed zone of contact £2, 2.

For a more accurate determination of the state of stress, the approxima-:
tion of the contact pressure in the form of C° class function is recommended

(2.9) p=px)=Plp =[P, Py ..., Belp, @€,

where p is the column matrix of contact pressure at the nodes, and F; =
P(z) (i = 1,..., k) are the coordinate (global basis) functions. By substitu-
tion of (2.9) into (2.4) we have the equilibrium equation :

(2.10) q-GEp =0,

where q is the known main vector of the external load qT = {Fg‘, Mg] , and

_ -onl(z)Pi(z)- -
(2.11) Gp = ! [ R(z) x n'(z)Pi(x) - ] dS

is the geometrical matrix.
The discretized modified complementary energy which is the Lagrangian
function, is the following:

1
(2.12) L= I(p,\) = 3p"Hp —p"t =N (Grp - a),

where

(2.13), H= f/P(a:)(Hl(:r,m') + Hz(sc,w'))PT(:c') ds'ds = H' + H? |
¢ o
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is the influence matrix (positive definite), and

(2.13), t = /P(fl + f4)dS — fPhdS: f—h
7 7

is the known displacement vector resuiting from the external load and initial
gap of the bodies, A= E,)\ﬂ} is the vector for characterization of the
rigid body-like displacement.

The gquadratic programming problem is

. |1
(2.14) min {EpTI-Ip —plt I p>0, Gip—q= O}

from which, in sense of the Kuhn - Tucker condition, the equations-inequal-
ities
: oL
p>0, d=--—=Hp-Gph—-1t2>0,

J
(2.15) oL p
pTd=0, 5\-:—-G£p+q:0,

can be constructed. Here d is the vector of the gap after deformation. We
can see that, instead of the conditions (2.3), we get the discretized conditions
p > 0,d > 0, pTd = 0, that is, the constraints of the contact/separation
appear in the final form as the product integral of d(x) by the coordinate
function Pi(z) (i = 1,...,k) for nodal contact pressure, which is positive or
zero, depending on the i-th nodal contact pressure being zero or posttive.

The quadratic programming problem can be solved by the standard Wolf
and Beale method or other modified simplex-type algorithms [8} or special
iteration methods [9].

2.2. Procedure on the basis of the Minimum of the Total Potential Energy
with augmented Lagrangian technique

To solve the contact problem, the minimum of the total potential energy
of the system I is sought for by using the geometrical inequality conditions,
i.e.

(2.16) min {H|d=)>0zes.],
where

2

@11 ) =3 %f&(u)--D-- e(u)dV—ffB-udV—fﬁ-udS ,
. Va SS’

o=1 V(]
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e(u), D are the strain and elasticity constants tensors, fB, P, u are the body
force vector, the stress vector given on surface S and the displacement field,
respectively. Double dot -- denotes the double scalar product. '
Solution of (2.16) can be obtained effectively by means of the augmented
Lagrangian technique [6]. In-this case the functional is

(2.18) Lo = () — f pd(u)dS + % ] ¢ (d(n))’ ds,
Q2 S

where ¢ > 0 is the penalty parameter. For the process of minimization of
L., the value of p = p(#) is fixed during the k-th augmented iterational Step;
Knowing the solution of equation 6uls = 0, the new value of p should be
calculated by the formulae ' '

(2.19) pHD = () — ed B (w)),
where
(2.20) . (a) = %[a + Iai],

and k is the number of the augmented iterational step.
After discretisation, using the substructural finite element system, the
function L, has the form:

2
(221) L=, %uaTK“u‘* —u®*’p”

a=1

1 47 ([ C —C][v -C / ~L7 \

o~ 2 h-2

HETN o o ||we] T c Jl pds

for which we can get the following system of equations:

( ) (KI-I—C)u.l——Cu2 =b'+Ch+1,

2.22 :
_Cu' 4+ (K?+ C)u® = b’ - Ch -1,

where
uf(z) = L{z)u®, h = L(z)h,

C:/LTchS, fp:——jLTpdS, c> 0,
2, n

K¢ is the stiffness matrix, b® the loading vector, L(z) is the shape function
for approximation in normal direction, u” is the nodal point displacement
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vector of the body . Practically the displacements u® in the region §.
are divided into components parallel and orthogonal to n'. In this case C
is the matrix of “springs” having normal directions. Solution of (2.22) can
be done by the iterational KALKER procedure [9} with the control of the
sign of p. The checking points are the three Gauss integrational peints of
the contact elements. The reason is, that quadratic elements are used for
approximation of the displacement field [16]. In these points we can interpret
the vector of contact pressure p. Knowing p(*+1) | the (k-1-1)-th displacements
are obtained from the solution of (2.22). For the fulfillment of the conditions
of non-negative pressure distribution and that of the non-penetration of the
contact bodies into each other, the matrix C should be changed iterp and
iterd times during the Kalker iteration process [15].

3. OPTIMIZATION OF THE CONTACT PRESSURE DISTRIBUTION

Only a few studies can be found in the literature for the contact pressure
optimization.

Shape of rigid punch was defined by CoNrY and SEIREG [10]. The shape
of an axisymmetric punch was approximated by quadratic polynomials.
They achieved to get a special shape by which they could approximate the
constant value of pg = F/S, where F is the load and S means the area of the
cross-section of the rigid punch. PAczeLT and HERPAI [11] determined the
initial gap between cylindrical shells from the condition of constant pressure.
Have and Kwak [12] applied the finite element method during an itera-
tion algorithm to find the minimum of contact pressure maximum and the
variation of the boundary of the contacting bodies. Kikucar and TAYLOR
[13] have determined the value of min(pyay) by taking the integral of the
gap function as the isoparametric constraint into consideration. The thor-
ough mathematical investigation of the subject can be found in the book of
HASLINGER and NEITTAANMAKI [14]. Now we shall investigate the contact
optimization problem, where the pressure distribution will be controlled.

3.1. Controlling of i‘he contact pressure

The contact pressure between bodies without optimization may vary sig-
nificantly ‘within the contact region. In addition to minimizing the maximum
contact pressure it is our aim to control the contact pressure {7, 15, 17]. The
region 2op¢ may differ from the actual region {2, or from the original region
2. Assignment of 2., depends on the operation of the whole structure.
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If it is required that the pressure at any point of region {24 should
be less than v(2)pmax, the control condition will be defined by the following

inequality:
(31) X(:E) = U(m)pmax - p(ﬂ’?) >0, S -Qopt,
where the controller function v(z)} satisfies the condition 0 < v(z) <1, and =
Proax & max p(2). It is evident that p(z) < Pmax. In the paper [7, 15 three -
different forms of the controller functions were considered: constant, of a -
trapezoid shape and function of class C°. 1

In the case of single variable # = z1, if in all the region € f25pt, v(z) =1,
then the controller function yields constant pressure, if

v(z) = 1, 0<a< 1y,
La x

v(z) = 7 AR P Ly <z < L.
Then we speak about the trapezoidal ¢ontrol; and if we use the controller :
function v(z) given in Tables 1, 3, then the controller function of the class'
G is defined. In this case dv/dz =0 at ¢ = Ly and = L.
In the two-dimensional case for optimization of the shape of the bearmg'f
roller {15], the controller function has the form v(wy,22) = v(z1) - v(zg);
where v(z;) = 1 and v(2) = v(z) of Tables 1, 3. -

3.2. Formulalion of the optimization problem to define the contact
pressure and the initial gap

During optimization the inequality (2.7) can be replaced by the following
condition

(32)  d(z)= f H(z,2")p(s") dS"+ £3(w)— f (2)+h(x) + Ah(e)—r(z) > 0
20

where h — initial gap, Ah — change of the initial gap due to variation of the'“:
shape of contact body.
In the case of one-dimensional region {2, controlling x > 0 is possﬂ)le
without problems if condition d(z) = 0 is satisfied. In two-dimensional cas
it is not always possible. For example, at the bearing rollers the geometrica,
condition d(z) = 0 can be prescribed only in the subregion {2, of f25p, whil
in the complementary part £2,, = 2ope — {2 only inequality d{z) > 0 can b
prescribed in advance. It is supposed that the change of gap in region .Qn'
is expressed by the function of Ah of region 2,

(3.3) Ay, = [(Ah).
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It follows from the character of the problem that
X = 2(2)Pmax — p(2) =0, 2z € 12, while x>0 at =z € 2,,.
The optimization problem can be written briefly in the form

F=0 M=0, p(z})>20, x(z)>0, d(z)>0,
p2)d(z) =0, = € Nopt;
Ah = Alz), © € 2y, Ahuy = f(AR), € urzm,};

(3.4) min {pmax

The discretised optimization problem (3.4) corresponds to the following lin-
ear programming problem.

(3-5) mm&hmkﬁb—q:ﬂ,p20,x=vmm—pzm
' d=Hp—-Grr~t+QAh >0, Ah>0, pTd=0,
X=Xt -\, A\ 2 0)
In order to solve (3.5), three algorithms have been developed and numerical
results presented in the case of shape optimization of the bearing roller {15].

If the solution of the given contact problem is derived by means of the
equation (2.22), then the optimization problem is

p=0, x>0,

(3.6) min{pmax
d=u} - uf +ho+Qah >0, pTd=0},

where d belongs to the integration points, and hg - vector of the initial gap.

The problem (3.6) can be solved by a modified version of the iteration
procedure shown in [15]. In this case, one of the bodies has prescribed rigid
body-like displacement (translation or rotation). The iterational process is
working if all the points of region (2, are in contact. Some results concerning
“theory for the control” cam-be found in [17].

STEPS:
1. k = 1, hg — initial gap vector.
2. Ah(-1) = 0.

3. Solution (2.22) by substitution of h = hg 4 QAh*-1),

4. Determination of p(k_l) on the basis of (2.19), (2.20) = pmax-

5. Caléulation of new pressure in the region of » € {2,, X, = VPmax —
p =0 = plF) = p®),

6. Determination of the residual in §2,,, m*) = u? (p(k)) —up (p(k)) +h.
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Using the condition that the gap does not change at point N of the
region £2,, the value of the residual is calculated at this point. Let this value

be a, i.e. o7 = [0,0...,a,...,0]. Thus the effect of the gap change is
QAL® = — (m(k) _ mg;)),
7. Checking of the convergence condition
B 1)

2 7
0= ——,
m;

if ©; < then stop (7 — given value);
if @ >4, k=k+1, back tostep 3.

" 4, NUMERICAL EXAMPLES

An axisymmetric contact problem is shown in Fig. 1. Materials of both
bodies are the same, with Young moduli E = 2 - 10°MPa and Poisson

z
R=50

Ya

100

Fig. 1. Contact problem of axisymmetric bodies.

ratio v = (.3. The upper surface of body 2 is loaded by a constant intensity
pressure, p = 100 MPa. By using the finite element mesh shown in Tig. 2,
with the penalty contact elements (penalty parameter ¢ = E - 10*) (Fig. 3)
but without optimization, the peak stress value ppax = 272.53 MPa at the
edge of the punch was obtaiuned. After choosing different controlling func-
tions v(z}, we have got different maximum pressure and initial gap functions.
The gap changes could be approximated by the form of Ah = L(z)4h. From
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X

Fia. 2. Finite element mesh of axisymmetric bodies. We used quadratic isoparametric
ring element for approximation of displacement fields.

F4

Fia. 3. Penalty contact element with penalty parameter ¢ in the vertical direction.

the rigid-like movement of the body 2 it follows that the resultant of the
’ R
optimized contact pressure Fy = ppay f 2rzv(z) dx is equal to the resultant
0

of the known external loading Fy = R*rp. Once the value of pyay is known,
the loading p = pmaxv(2) is applied as an extra load, independently to both
solids which are now separated (C = 0), i.e. the gap can be determined from
the equation

(4.1) d(z) = w%(z,5,p) — u}v(a:,p) + Ah(z)

after discretisation. .

The results can be seen in the Table 1 and Fig. 4.

The structure was investigated for the loading case of prescribed axial
displacement w = —0.05 mm of the upper surface of the body 2.

In this case, the restricted linear programming problem (3.6) was solved
using the iterational technique. The problem has been solved by different
control functions. Table 2 summarizes the values of Ly, Puax, Abmax, the
sums of squares of the gap variations

_ . KONT ) (k12
(1.2) TOLH = Y (Ahj — AR ) ,

i=1



Table 1.

u(x) I" ] e ! IL!! T 1 [T .. ! ([Tt (TR
1
L2
Ly = R = 50rmm
Ly [mm) 0 20 30 40 50
Pmax [PMa] 333.2 196.9 154.3 123.2 100
Ahmas [pm] 93.67 64.72 48.71 32.27 10.87
v(zr) =1, 0<zs< Iy
P(z) = v(z)Pmax ) s
»(z) = 1-3[(z— L1) /(L2 — L) +2[(s - L1}/ (L2 — L), L1 <z < Lo

. /
Z /1,
, o |/
, [
1T 1 A1/

S A
=

Ak fuml

P

________-—-../

g 10 20 30 40 50
x Imml

F1c. 4. The change of the gap functions in the case of a given load p = 100 MPa.
The curve psy belongs to Ly = zy.

308)
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and the iterational steps Iterp, Iterd which were needed for the KALKER
algorithm [15)] belonging to the solution of (3.6) at the k-th iterational step.
The iteration was performed at the convergence criterion TOLHI < 0.5 -
107%. The gap functions can be seen in Fig. 5.

Table 2.
Given displacement w = —0.05 mm
L1 [mm]iTter () |Pmax [MPa]| Abmax [pm]} TOLH  |Tterpi{lterd
1 338.9 36.82  0.9209.1072| 1 1
2 167.2 18.15  10.2367-107%| 6 3
50 3 113.5 12.33  10.2301-1073| 2 1
4 111.7 12.14  |0.2584-107%] 1 1
1 338.9 85.57 10.5830.107%| 1 1
2 186.2 47.00  {0.1184.1071 10 | 3
40 3 119.0 30.03 0.2292-1072| 9 3
4 114.6 28.94  {0.9594.107%| 7 3
5 114.4 28.89  {0.1540-1077] 2 1
1 338.9 161.9 0.1179 1 1
2 146.1 43.96 0.3813-107'} 10 | 3
30 3 132.4 39.83  10.1936-107%} 7 2
4 121.0 36.40 0.1335-1073} 4 1
5 119.8 36.04 0.1454-10_—5 7 3
6 119.7 36.01 0.1079-1077{ 2 1
1 338.9 105.8 0.1634 1 1
2 164.4 51.34  0.4332-10"Y] B 2
20 3 134.6 42,03 [0.1267-10%] 8 2
4 129.2 40.35  10.4119-107%{ 4 1
5 128.3 40.07  [0.1110-10"%] 4 1
6 128.2 40,03 {0.2525-1077| 3 1
1 338.9 90.84 0.1635 1 1
2 221.5 59.38 0.1960-107| 8 1
3 183.7 49.24  (0.2039-1072%| 9 4
0 4 170.3 45.64  |0.2565-107%| 20 | 3
5 165.5 44.35 0.3277-107%| 6 2
6 163.8 43.90 0.3989-107%| 5 2
7 163.2 43.75  (0.4636.107%} 9 3

’

The same problem was investigated for plane stress
thickness of & = 10 mm. The results are shown in the Table 3 and Fig. 6. It
can be seen from the above examples that some very small changes of the
gaps can cause large differences in the pressure distribution.

as well, with the
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Fi6. 5. The change of the gap functions in the case of given vertical displacement
w = —0.05 mm on the upper surface of body 2. The curve pzy belongs to I, = zy.

Table 3.
o(z) 1[I 1 0 1 (T, * (T, - I
1
L L
Ly = R =50mm
Ly fmm] ‘ ] 20 30 40 50
Pmax [PMa] 283.3 142.9 125.0 111.1 100
Ahmax [p,m] 88.35 65.86 52.02 36.02 12.69
»(z) =1, 0<z <y
p(z) = v(2)Pmax ) N
v(z) = 1=3{(x— L)/ (Lz— L) +2(z— L1}/ (L2 = L1}))", Ln S5 < Lo

[310]
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F16. 6. The change of the gap functions in the case of an elastic system for plane
stresses. The curve pzy belongs to L) = zy,
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