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TRANSPORT EQUATION FOR SHOCK STRENGTH
IN HYPERELASTIC RODS (*)

S. KOSTNSKI (EODZ)

The singular surface theory and perturbation method of solution are used to exam-
ine a 1—D shock wave propagation problem in a semi-infinite rod of slowly varying
cross-sectional area. The isentropic approximation is used. The weak nonlinear shock
propagates into a regton, which is homogeneously deformed and at rest. A numerical anal-
ysis for decreasing and increasing cross-sectional areas, and for a special type of nonlinear
elastic material is conducted.

1. INTRODUCTION

The problem of evolution laws for the shock amplitude in a one-dimen-
sional thin rod was examined, among others, by ScorT and Fu in two
papers:

[1] (fod with constant cross-sectional area).

Using the singular surface theory and a perturbation method with the
parameter £ characterising the initial shock strength. Application of the
shock fitting method to construct solutions known from the simple wave
theory.

[2] (Rod with a slowly varying cross-sectional area).

Applying the shock fitting method to the modulated simple wave solu-
tions. -

Contrary to the singular surface theory, which can deal only with the
local evolutionary behaviour, the shock fitting method gives the possibility
to include the whole hiétory of the loading programme. It is very important
and useful for finding the solution of the problem. Both the methods yield
the same asymptotic laws within their common range of validity [1].

The aim of the paper is to find the solution of the problem of a one-di-
mensional rod with slowly varying cross-sectional area by using the singular

{*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
5-9, 1994,
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surface theory, and to compare the results with those obtained in [2]. We use
exactly the notation applied in [1] and [2] and extend the results obtained
in [1]. For this reason, the notation additional term(s) in expressions and
formulas means that the formula without it is ezactly the same as in (1] (for
the constant cross-sectional area), and the terms represent the a.ddltlonal
effects of the slowly varying cross-sectional area.

2. BASIC EQUATIONS

A semi-infinite thin rod with slowly varying cross-sectional area A(X )
occupies the material region X > 0. We assume the elementary approximate
theory of “longitudinal” shock waves in the rod. A one-dimensional motion
is considered

(2.1) z =X +u(X,1), €= uy, v =,

where 2 is the position, and u, e, v are respectively the displacement, the
strain and the velocity. 7

It is assumed that only one component of the displacement vector parailel
to the X -axis is different from zero and it is a function of one variable X
(position of the particle in the reference configuration) only. In the simplest
approximate theory we assume that the nominal stress over a cross-section
is uniform and purely azial, i.e. plane cross-sections remain undistorted by
the motion (2.1). Such situation predicts the propagation of plane waves
only. All the above assumptions make impossible an exact description of
wave propagation in the rod, because they do not allow for the motions in
the directions perpendicular to the X-axis, which must occur at the same
time as the dilatational {main) motion due to the Poisson’s ratio coupling
(in the linear theory) and by means of many other elastic constants in the
nonlinear theory.

The nominal stress tensor corresponding to the motion (2.1) is ev1dently
given by (f. (4.2), (4.3))

Thw=T= ZpR(l + e)(o1 + 202 + 03),
Ty2 = Ta3 = 2p, (01 + 02 + (1 + €)*(02 + 03)),

and the shear stresses are equal zero.

We assume in this paper (following Fu and ScoTT in [1, 2]), that the
rod is thin so that the motion is essentially one-dimensional and we can
neglect the accompanying normal stresses Ty = T33. If only Ty; # 0 and
A(X) = const, the traction boundary conditions on the lateral surface of
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‘the tod are satisfied identically. In an analogous situation and for slowly
varying A(X), one component of the stress vector parallel to the X-axis,
iy = { = T11N1 = Tsina, does not vanish; Ny = sina denotes here the
component of the unit vector N perpendicular to the lateral surface (Fig. 1).
‘Assuming that A(X) varies slowly, then sin @ = 0 and the traction boundary
conditions on the lateral surface are also approzimately satisfied.

N=(sinu, cosa)

e(0n

FiG. 1.

The equation expressing the balance of momentum in the integral form
for the region {2 is
X2

(22 & [ oarddx = (A5 x,~TD)lxox,

Xy

where T and p, are, respectively, the nominal stress Tyy = T and the density

in the reference configuration. In the isentropic approximation considered

here the nominal stress is then a function of the strain e only, and the local

form of Eq.(2.2) is

T A)

ax

- additional term

Differentiating this equatlon with respect to X we obtain

. d
(2.3) prAv= = Fexy = pth T———In(A(X))

d? d
(2.4) Ee,y + Ee pR’UtX T ln(A(X)) E—ln(A(X)),
.‘ additional terms
_~— 2 ’
where E.= 6T(e)’ E= 2 ;; (e ), and both these equations without addi-

tional term(s) are exactly the equations obtained for A(X) = const (Ref. [1]).
The region ahead of the shock wave is homogeneously deformed and
at rest, that means e} =0, vt =0, T(e) = const = Et=FE+=0.
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Considering the jumps of {2.3) and (2.4) we arrive at the following equa;

tions )
d(ln A(X

(25)  [Bed = pylod - p, U L0

g
additional term

(2:6)  [BetlBet] = palow] (Bl 5D - p 101 20 a(x)

additional terms

The kinematical condition of compatibility [4], [1] for any quantity f(X,t)
in one-dimensional shock wave propagation is

d : d d

(2'7) -&,'_t[f]_ [f]“i*UN[fx]a E“UNK;

where the displacement derivative d/dt is related to the space derivative

d/dX following the wave front by the second relation,

Replacing f(X,¢) in (2.7) in turn by u, v, u,, we can obtain, by repeated

use of (2.7), all jumps (fv], [v;], [v,x]} which we need in (2.5), (2.6) to have

two coupled equations for the shock amplitude [e] and amplitudes of the

accompanying higher-order discontinuities [e;] and [e,],

’

(28) 2003 5 4 potinle] T

dX

_ d

#(E = poR ] + PRl g 1o ACK) =

addimcmal term
, d[e] . dUy WH
(2.9) 2,00UNH+E lex]” + poUnlel—
amq] -
-polUn ?fﬁ+(E ~ poUk Mexx]

d &

B lea g A+ ol gy n ACK) =

a.dditional terms

3. APPROXIMATE SOLUTION

Expanding [e], [e,] and [e, ] into the power series of a small dimension-
less parameter ¢, we obtain {Ref. [1])
‘ [e] = ¥y + &Y + ...,
(3.1 lex] = Zo+eZy +...,
[exx] = Wo+eWi ...
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On substituting (3.1) into (2.8) and {2.9) and then equating the coefficients
of the same powers of ¢, we obtain a hicrarchy of differential equations (£, ¢)

dZy 1 d
E—f+ 1ZU+2Z0dXInA(X2—{),
i addltlonal term
(3.2)
dY] 1 1 d
;;+qﬁ%+}ﬁ In A(X) = 0,

addltlona.l term

‘where ¢; = E*/E*, and

=h,

33) lelly s

ﬂhﬂ:k = Zo(0)=k, e¥1(0)=nh

‘The differential equations governing the amplitude of the higher order dis-
continuity {e, ] accompanying the shock [e] is the well-known Bernoulli equa-
tion for the function Zp{ X),

ng

(3.4) ~ T F(X)Z8 +9(X)Z0 = 0,

with solution

ak [A(X) / A(D)
. Zo(X) =k d?
(3:) o) { W i
In the second equation of the system (3.2) the variables are separable

4y,
dx

and the function e¢¥{(X) is

(3.6)

1
Zo(X
+[c1d)+2d

Xmmxﬂm_o

r r —

A(O) . C1k
—_— ¢ —_——
A(X) P (-

401 qklwm/ Ade
A(0) A(X)

In the case A(X) = A(0) both the above solutions are ezactly the same as

in [1]. We have obtained the solution (3.7) instead of the solution given by

Fu and ScoTT ([2]), by using the modulated simple wave solutions and the
shock fitting methods.

X
(37) YlE =h

P
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4. APPLICATION TO MURNAGHAN MATERIAL

Analysis of the problem is restricted to a special kind of second orde
elastic material, called the Murnaghan material

1+2m A4 2+ 4m
8

—*4“(11 ~3)(Iz - 3) -

(I —3P+ 8’“’”’

4,u-i—n

(I - 3)* + LR -3

(41)  ppo=

(12—3)+ (Ia-—l

where I} = By, I = (BiiBj; — Bi; Bi;)/2, Is = det(B,:J-) are the invariant
of the left Cauchy - Green strain tensor B, A and p are Lamé coefficient
and I, m, n are the elastic constants of second order.

Numerical analysis shows that only shocks of a relatively small (of orde
up to 1073) intensity can propagate in this material [5].
The deformation gradient for the one-dimensional motion (2.1) is give

by
1+e 0 0
(4.2) Fo=| 0 10
0 01
8 _oby

The components of the tensors oy} , o7, ', which we need here are (cf. [5])

(13) o}t = 200 + 402 + 203 + 411 (1 + €)? + 16012(1 + €)?,
' ol = 8oy (1 + €)® + 12011 (1 + €) + 480121 + €),

da o — o S o

or;’ = aroI,’ = ALonoI’

the elastic constants we have

ail = (A4 2u)[(1 + 3e) + 2ne],

where o; = and after substituiion

(44)
oii = (A+2m)[2n(1+ 6e) +3(1 +e)],
where
1+ 2m E JH} 29(1+ 6e) + 3(1 + e)
(4.5) = ) =7 1
At 2u E o} (14 3€e) +2ne

5. COMPARISON OF THE RESULTS WITH SOLUTIONS OBTAINED IN [2

Equation (3.7) can be integrated numerically for the assumed form of th
cross-sectional area A{X). It is easy to obtain the solution in a closed for



TRANSPORT EQUATION FOR SHOCK STRENGTH IN HYPERELASTIC RODS 211

or the case
: ~ A(0 ~ X
51) AR = A0 %=

(l-i-ﬁf(\')w Xo

where X is the dimensionless length and Xy = 1 m, and 3 is the real number
which describes the rate of decrease of the cross-sectional area. Substituting
5.1) into (3.7) and integrating twice we obtain the solution

148X
5.2) [e] = Yie = h (1+6%)
\/ (ﬂ+c1kX0)X+gc1kX0X2
27 2
ﬂqf p/2
v (P+Q:1)
BaX ’
14 —22
(p+q+1)

: 1k Xy
(25

\/ﬂ2 Clk‘XU \/ﬁz Clk‘Xo)

he second term in (5.2) with power p/2 follows directly from the integral

X

f dX

S 4+ (48 + 21k Xo)X + BerkXoX?'
5.4)

A =b—dac = 168% + (2c1kX)? > 0.

here exists only one solution, because A > 0 (cf. [7]).

We follow now a procedure proposed by ScoTr and Fu [2]. For a trian-
ular initial wave profile, the solution for (5.1) is

. 146X
5.5) el = h s
1+ CIZXOJ? +C‘ZX° B g

———

shock fitting method

It is edsy to notice that both the last results are equivalent only for small
istances of travel (singular surface method can deal only with local evolu-
onary behaviour) and arbitrary value of 8, or for long distances and g < 1



212 ' 5. KOSINSKI

(cf. Fig. 6a). For constant cross-sectional area, on the contrary, the pertur
bation method and the shock fitting method (for triangular profile) yiel
the same evolution laws for the shock amplitude.

h

(5.6) = —7x=
J1+ 12 %

Let us now consider a different situation, when the cross-sectional area
contrary to {5.1), decreases according to {5.7)

(5.7) A(X) = A(0)(1 + pX)1.

Applying directly the formula (3.7) to (5.7) we obtain

—~

X ~
h exp C1k‘ / dX
T B EX, P
(1+8X)? + 1+°12 %1+ X)X

(5.8) Y1£ =

Taking 8 = 0 in (5.8) we can obtain the result (5.6), but after integration
the limits are different. Additionally we pay the attention to the fact tha
e1kXo/2 is positive (cf. Sec. 5). The discriminant A can change its sign and -
three situations are possible (cf. [7]):

kXo\? kX )
(5.9) (i) A=b -dac= (6170) g™ o g 5 p= ?EQZYO
with the solution
h 1 -
(1+8X)2 28X +1
kX
G () A>0 = T0>4

and the solution

- v
(5.12) - h (\l 28X + 14 ¢ 1—¢)

T asX) \N28X 11w 149

with
44

= [T = g
¢ C]kXO/Q
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The last case is connected with

kX,
(513) (i) A<0 = 51—2—°< 48,

‘and we obtain the solution in the following form:

X+1
arctan ———— — arctan

h i 1
e @XP | —— —— |-
(1+4X) ( v—¢( vy v—¢))
According to ScoTT and Fu ([2]), for a triangular initial wave profile, there
exists only one solution for (5.7), i.e.

(5.14) Y=

h
akXy X

2 (1+4X)
and it is valid for all the three above cases.

(5.15) [e] =

(1+ﬂ)’€)2d 1+

6. NUMERICAL RESULTS AND CALCULATIONS FOR STEEL ([3])

The evolution solutions for the shock amplitude discussed in Sec. 5, are
examined numerically for a certain kind of steel and for one value of the
incident shock strength A = 0.0017. The elasticity constants of the first and
second order were taken from [5]. The additional constans which we need
here are (cf. (4.5))

(6.1) n=-63<0 and ¢ ¥-9.6<0.

The entropy condition must be satisfied; for this reason the only possible
direction of the amplitude vector is H = [e] = h{—1,0,0) (cf. [5]). The initial
amplitude of the strain derivative [e, ] can be calculated for the amplitude
vector [e] = (—h, 0,0} (cf. [2]) as

-hXe  —21.107
UNT T

(6.2) .k' = [sec],

_ +
where h = —0.0125, Uy =/ — = 5852m€€ is the acoustic wave speed in

the unstrained region behind the shock (Fig.1), and 7is the time of the
pulse duration. For the Murnaghan material the value of the coefficient (6.3)
below is always positive,

erkXo  1.05.107°

._(6-3) 7 = T [sec].
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The modulated simple wave solutions have been obtained under the assump-
tion that the pulse on the boundary varies much faster than the cross—sec_i
tional area. This means that the cross-sectional area varies very slowly, and
over one wavelength the change is almost negligible. Denoting by L the
length scale for the area variation, we assume

T [E+ T [E+
6.4 —\—=O0(h) = La~yf—,
(64) LY pa *) hY pn

and according to (5.1)

A(L) 1
6.5 = .
(6:5) A(0) gL Ev\?
hXoV pr
| kX
Assume for example for steel T' = 1077 sec, CITD = 1.05, L = 0.3442m,

B =2 )= UynT = 0.0585m, and that the cross-section varies rapidly in

the range (0, L) and A(L) 2 2.05 - 107%, The cross-sectional area varla,tlon

A(0)

in the range of one wavelength remains, however, small:

AX+A) 1 AO+ )
(6.6) AR l P )2 , and —ap) © 0.81.
( * 148X

If 8 decreases, the cross-section area approaches a constants value. We will
compare the results for values of the parameter 8 € (0%,2). We also notice
that the limit strengths, when X — oo for cross-section (5.1), are

. V2B

lim [6’](5.5)2 X >
17840
(5)

: V2B (pt+g+ 1\
lim [e](s55) = (clng (p-l— q— 1) ;
)

Solutions obtained for values of the parameter § ¢ {0F,2) and for the
pulse duration 7' = 107° sec are shown in Figs. 2, 3, 4 and 5. For the ratio

A -0

(6.7)

X0
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FIG. 3. Seciions of the contour lines from Fig. 2, for # = 0.2 (up)
and # =1 (down), (5.2) -+, (5.5} —

ClkXO
28
solutions (5.5) and (5.2) differ very little in the whole range of propagatio
The pulse decreases in this case. For certain value of Bp ~ 0.5 the amplitude
of (5.5) is constant. For increasing pulse, and for values greater than o there

> 10, (cf. Fig.6a), both the limits (6.7) are practically equal and

ek X
are differences in both the methods, but they depend also on —1———0 We

. 28
c1kXo .
can see that for = 1.05 and for 3 = 2, the values obtained from (5.3}

are two times greater than those obtained from (5.2).

The contour lines in Fig.2 and Fig. 4 are practically parallel and hor
zontal. This means that the value of the amplitude quickly approaches lts
limiting value. ;
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F16. 5. Sections of the contour planes from Fig. 4, for § = 0.2 (up) and
A =1 (down), (5.2) ---, (5.5) —,

Figure 5 shows the diagram of the ratio & of the two limits (6.7)

Xhinoo[el(s.s)

(6.8) . = Am lels2) (p +q+ 1)’”/2
' B pt+e-1/ °

Figure 6 illustrates the comparison of the two methods. The ratio [e](5.2)/
[e)(5.5) as a function of the parameter § and the distance X is plotted in -
Fig. 6a. The ratio x of the two limits (6.8) as a function of the parameter
is displayed in Fig. 6b.

We return now to the case of increasing cross-sectional area (5.7). There
are three cases possible. We observe a good agreement of both methods for
the case (i) (Fig. 7).
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The contour lines are no longer horizontal or parallel and we observe that
he pulse rapidly vanishes in all three cases. The general character of all three
olutions obtained here for the increasing cross-sectional area (5.10), (5.12)
nd (5.14) is qualitatively different from that of the previous solutions for a
ecreasing cross-sectional area, since

-~

6.9) lim Lexp mﬂ/ X
' A=0 1 (1+ BX)? 400 ClkXO(l + X)X
X
h 1k 1 -
# ———=—exp —/ 56 dX
(1+BX)? 4y 4 & L1+ X)X

he right-hand side of the above equality and the solution of Eq. (5.15) have
he same limit:

h h
(610)  Iim =

—0 N = bXa ~ )
(1+8X)2 01+ akXe X \/1+ aitex
2 (1+8X) 2

he left-hand side of (6.9) has a different limit equal h in all three cases.
he equality below which is satisfied for solutions obtained by ScorT and
v ([2]) in the cases presented here, and for the perturbation solution in the
-case of (5.1), is not satisfied for increasing cross-sectional area (5.7).

X X
(6:11) %i_r%ojf()?,ﬂ)df - O/é%f(f,ﬁ) ix.
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