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A COMPARATIVE STUDY OF VIBRATIONS
OF ELASTO-VISCOPLASTIC SHELLS AND PLATES (*)

P. KRLOSOWSKI (GDANSK)

K. WOZNICA and D. WEICHERT (LILLE)

A method of solution of the problem of nonlinear vibrations of elasto-viscoplastic
Iates and shells is presented, based on the first order shear deformation-mederate rotation
heory of the laminated shells. Viscoplastic material behaviour is taken into account by the
odels developed by Perzyna, Chaboche and Bodner - Partom, respectively. The equations
‘of motion are integrated by the central difference method, while the constitutive equations
‘are integrated by the trapezoidal rule in an iterative process. In both cases the same time
tep is nsed. Numerical examples and comparison with experimenial results are presented.

1. INTRODUCTION

The modelling of vibrations of inelastic structures may lead to incor-
“rect results if visco-plastic eflects are ignored. These effects are particularly
" important when metal alloys under high temperature conditions are con-
“sidered. Theoretical analyses and experimental studies of the dynamics of
nelastic structures have been the subject of a large number of studies. A
eview of the relevant literature can be found in [1]. Here we recall only those
ontributions which take into account the phenomenon of viscoplasticity in
he response to impulsively loaded plates [2-10] and shells {2, 11-17]. Ex-
act solutions have been obtained only for the simplest cases of symmetric
_structures (infinite [4] and circular [6] plates or spheres [11, 14, 16]) for small
- deflections. In [12], the Fourier series have been used to analyse the dynamic
“behaviour of cylindrical shells. To integrate directly the nonlinear differential
“equations of motion, the Runge-Kutta method has been applied in [16] for
spherical shells. The eigenvalue method is the basis of calculations of rectan-
“gular [5] and circular [3, 6] impulsively loaded plates. Various approximation
“techniques were introduced to solve specific boundary value problems in the

(*)} Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
59,1994,
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range of large deflections. We cite here the methods of finite differences [2
9], of perturbations [14, 15], and instantaneous modes [7, 8]. Simple analyti-
cal expressions for dynamic deflections of thin viscoplastic shells have been
given in [13, 17]. A simplified solution of the large deflection problem of thin
circular plates can be found in [10].

The majority of this paper concerns the solution based on the linear
[3-6, 9-13, 17] or nonlinear [7-10, 14-16] constitutive laws of viscoplastic-
ity by Perzyna. The elasto-viscoplastic material behaviour has been taken
into account in two [2, 16] papers only and the hardening effects have been
neglected everywhere, with exception of [2]. Results of experimental stud-
ies are given, among others, in [2, 3, 6, 18, 19] concerning the response of
circular plates and hemispherical shells [2, 13, 17, 20].

In this paper the problem of the nonlinear v1b1 ations of elasto-viscoplas-
tic plates and shells in the context of the first order shear deformation
theory at moderate rotations and small strains is studied. The problem
is discretized by finite elements. To analyse the dynamic response of struc-
tures, three different constitutive laws are used, which are the models de-
veloped by Perzyna, Chaboche and Bodner - Partom. The Chaboche and
Bodner - Partom’s formulations allow to introduce kinematic and isotropic
hardening. The proposed method is illustrated by the simulation of the vi-
bration of plates and shells under impulsive loading.

2. ELEMENTS OF THE APPLIED THEORY OF LAMINATED STRUCTURES

For the present study, the first order shear deformation theory valid for
large displacements and restricted to moderate rotations and small strains
was chosen. In this chapter, only some basic features of this theory are:
exposed, details can be found e.g. in [21-23]. v

In this theory, all field quantities defined in the shell volume V' are referred
to the middle surface M of the shell in its initial (reference) configuration:
On this surface, a set of curvilinear coordinates %, o = 1,2 with base vectors
a, and coordinate # in direction of the unit normal vector n of M is chosen:
Then, the displacement vector V of a characteristic particle of the shell is
expressed by g

V = v,a® + an,
where v, and vy are the scalar-valued vector components. In the first order
shear deformation theory, the displacement field through the shell thlckness

is approximated by the linear functions

0 0
Vo =V, +8 vo,, vy = Vs,
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nd the components of the Green strain tensor can be expressed by
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Here, (-}« and (*)ja stand for partial and covariant differentiation on M,
respectively, and bag, b} denote the covariant and mixed components of the
'f:urva,ture tensor on M.
- As usual, to transform the differential element of volume dV and the

surface element dA to values on the middle surface, the shifter tensor ¢ is
introduced with

B =66—60, dV=cdddM, dA=cdM, c=det(ch).

The field equations for the shell problem are derived with the help of the
principle of virtual work, given in its general form by

(2.2) f [S96B5(V) — p(F' ~ I)6V;} v - / *5 6V dA = 0,
v A

where s are the components of the second Piola- Kirchhoff stress tensor,
p denotes the material density in the undeformed configuration, F?, I, *st
are the components of body forces, inertia forces and external surface forces,
respectively.
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If, in contrast to methods of global estimations of the behaviour of inelas--
tic structures, e.g. in limit analysis or shakedown analysis, the evolution as a
function of time has to be simulated, it seems to be more appropriate to use:
layered models that allow to follow the evolution of the material properties
in each layer separately. For this the volume of the structure is divided into
I, layers parallel to M. Then, the principle of virtual work (2.2) reduces to
the well known form for laminated shells theory

(2.3) /Z {Z LaﬂtsEaﬁ +2 Z 186 Eqs + Lk 5E33

M k=0 \n=0 n=0
1 n n n 0 0
-3 [(Fg~ I8+ ?J“) 6:/0,] + (F%— I+ pS) 633} dM
n=0
0
-/ lZ ( Lishy +* Li&%)] dL=0
r k=1 La=0
with
ZE41
T = [ keksiignap,
z
n, 1 +n % r e
(2.4) S OR= TR k= [ Rekera,
g=1 e
k41

= /pckfieﬂda

where £ fi (i = 1,2, 3) are the body force components of layer k measared:
per unit volume of the undeformed body. 2, 2z are the coordinates of

lower and upper surface of the k-th layer in #-direction, Pi = [epiom] "
%

are the components of the surface loads, and * E}c are the components of
the stress tensor defined on the boundary curve L of the middle surface M ;
calculated in a similar way as the couples L P _

After discretization by finite elements (details of this transformation can;
be found in [1]), we obtain a system of nonlinear equations of motion

(2.5) M§+Q =R,

where M is the mass matrix, Q are the balanced forees in the actual configur--
ation containing all nonlinear effects and R, q are the external loads and:
the nodal accelerations, respectively.
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3. CONSTITUTIVE RELATIONS

2.1. General assumptions

It is assumed, that strains are small enough so that the additive decom-
- position of their rates E into a purely elastic part E¥ and an inelastic part
E! is justified:

E=EFf+EL
“Then, the rates of the second Piola- Kirchhoff stress tensor can be expresed
by _

(3.1) s=D:EF =D: (£ -E)),

“where D is the generalised tensor of elastic coeflicients, assumed to be con-

_stant. :
In the case of layered models, the representatives of stresses and dis-

‘tributed forces referred to the midsurface M of the shell are obtained by
ntegration over the shell thickness. Let QT be the vector of these represen-

'.ta,tives, defined by
QT= {N M P 61 62}1
“where the components of this generalised vector are given by

N7 = {l?zn ?322 1%12}

b

[

— 1 1
(3.2) MT:{RH p2 pl

0 0 — 1 1
(33) Qf‘:{st R13}’ QT={R23 ng}
with ,
' L R 7 21 L4
R™ = R:J = Z es™ o™ df = E cs™ [(Zk4_1)n+1 — (Zk)n+l] .
k=1 k=1 P
Zk

- Thus, the local evolution of the material properties can be layerwise approxi-
‘mated without loosing the advantage a two-dimensional formulation of the

problem by means of the shell theory,
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3.2. FElasto-vicoplastic constitutive equations

To evaluate the stress rates using formula (3.1), the inelastic strain rates

E! must be determined. A large class of constitutive models can be repre-
sented by the following mathematical form

B! = f(s,X,T),
X = g(EI,X,T),

where the inelastic strain rates E ! are defined as a function of the stress
s, temperature T, and a set of internal variables X. In this paper, three
different constitutive models are applied, which are the models of PERZYNA
[24], CuaBocHE {25] and BODNER—PARTOM [26]. A detailed discussion

of these models can be found in [27]. Here, the most important relations
* characterising these models are given in Table 1. It should be noted that, in
contrast to the formulations by Perzyna and Chaboche, the Bodner - Partom
constitutive law does not introduce the notion of yield surface. As it can
be easily observed, the models of Chaboche and of Perzyna coincide if we
assume K = k and if hardening is neglected. It is important to note that
the Perzyna and Bodner - Partom models can be used for a large range o
strain rates. On the other hand, the Chaboche model was formulated only
for low strain rates, what is confirmed by the comparison of the numerical
results.

4. THE FINITE ELEMENT FORMULAT[ON
4.1. Element descriplion

The finite element method was chosen for the discretization of the prob-
lem and to prepare its numerical solution. The nine-node isoparametric finite
elements shown in Fig. 1 were used to discretise the whole structure. Ten-
sorial and vectorial quantities of Eqs.(2.4) and {2.5) are integrated over
the thickness of the finite element using the Gauss scheme. By the usual
aggregation process the system of equations for the entire discretized struc-
ture is obtained, The present matrix form is valid for plates, cylindrical and
spherical shells.

4.2. Integration of constitutive equalions

The elasto-viscoplastic model of constitutive equations has a differential
form. Generally, a numerical method for their integration has to be used.
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F1a. 1. Finite element and idea of stress approximation.

Here, an explicit procedure of the trapezoidal rule is chosen in order to build:
an iterative algorithm of integration. This algorithm may be expressed by
the following equations

At

At 1o R
AE! = > [f(st—at, Xi—ae, Ri—ar) + f(s4, Xy, Ry)] = 5 {E I+ Ef'_l] .

At At N
AX = = [g(se—at, Xe—ar, Bi-ad) + 9(s6, Xy, By)] = 2 {Xtmm +- X?l] ;

At At h
AR = - (h(st—at, Xe—at, Ri-ae) + h(s:, Xy, By)] = 5 [Rt_m n R;‘l],

Ef = Ef = E{_,, + AE/,
Xy = Xi=Xy_a + AX,
-Rt = R; = Rt—At+AR'

Here the index ¢ denotes the number of iteration. The iteration process i
carried out until for the each component of inelastic strain EZ, the error is
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53 tha:Il the assumed error range 1,
E{i_ Egt—l

Efi <n.

4.3. Integration of equations of motion

To integrate the nonlinear equations of motion (2.5), the central dif-
rences method is applied. This method links the displacement vectors of
three succeeding instants of time q:— Az, G, Qi44¢ With the velocity and the
_'é,ccelera.tion vectors at time ¢

. 1
q; = Z—t—g(Qt—At — 2qi + Qg aL),
1) L

q; = 2At(~qt—4t + Qi ar),

where one and two superposed dots denote, respectively, the first and second -
derivative with respect of time of the considered quantity. Then at time t the
uations of motion according to Eq. (2.5), together with Eqs. (4.1), define
the displacement vector at time t + At
1 -1 1
qQiy At = (EM) [Rt - Q- FM(CH—M —2q)| -

st like all explicit methods of integration for the equations of motion, this
ethod needs a starting procedure:

. 1..
g1 =qpqg At + 3 o At?.

The main advantage of the central difference method is that the time-con-
suming calculation of the stiffness matrix can be avoided. All nonlinear ef-
fects are included in the vector of balanced forces Q. This is very helpful in
mplicated algorithms such as the presented one. The major drawback of
this method, however, is the necessity to use a small time step At because
the stability limits of the ftumerical scheme. In the linear case, the critical
time step Al can be calculated from the highest natural frequency of the
discrete structure wmax.

Atcr = Q/Lb’max'

It turned out that also in the nonlinear calculations presented in this paper
this condition is strong enough to assure the stability of integration. Addi-
tionally it was noticed that in most cases the time step calculated by this
method is also small enough to assure the stability of the integration of the
constitutive equations by the trapezoidal rule,
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5. EXAMPLES

The method developed is applied to the simulation of the dynamic re-
sponse of rectangular plates and cylindrical shells under impulsive loads.
Here, the results obtained by means of the three aforementioned constitu-

tive models are presented.

5.1. Rectangular plate under suddenly applied uniformly distributed

loading
9 121.9 cm
v=w=0,=0
— S O O
O o ] E
)
g %’ ¢ o S S
ff’s )
Ii OO0 O o]
N z 0,
I} 1l o
o} 3 I
o)
1l
=z
x h=0.635cm 1l
3
v=w=0,=0
| a=243.8cm
|

Fi1g. 2. The geometry and finite element mesh of the simply supported plate.

The behaviour of an INCO 718 alloy plate (F'ig. 2) was simulated using
the Chaboche and Bodner - Partom model. The following values of material
properties were used: '

Chaboche model at T = 800° C [27]:
E=1403GPA, y=1s"', =w=4, k=211.0MPa,
K =2171.0MPa, ¢=500.0, a=170.0GPa, R;= —203.7MPa,
b=60.0, v=03  p=79-103MNs/m",
Aty = 1.5024 - 1078 s, At = 1.50 - 107%s;
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Chaboche model at T' = 650° C [28]:

E = 159.0GPa, y=1s"1, n=4, k=514.21 MPa,
K =1025.51 MPa, ¢=>500.0, a=170.0GPa, R;= —194.39 MPa,
b = 60.0, v=03, p=7.9-10MNs?/m?,
Al = 1.44 . 1075, At =11.40- 10785,

Bodner - Partom model at T = 650° C [29]:

E =169.0 GPa, n = 1.17, Ry = 3130.0 MPa,
Ry = 4140.0 MPa, R, =2760.0 MPa,  m; = 0.024 MPa™!,
A=A =mg =D =0, Do = 10151, ny = 2.86,
v =0.3, p=17.9.10°MNs?/m?,
Ater = 1.399 - 10785, At =135-10"°

First, the accuracy of the distribution of stresses through the thickness of
‘the plate was checked. To cause vibrations of the plate in the elastic range
only, a suddenly applied load ¢ = 0.0001 MPa was chosen and the calculation
‘was performed for the Chaboche model at T = 800° C. The comparison with
the results for displacements, velocities and accelerations obtained for the
purely elastic model, where the exact integration of stresses over the plates
‘thickness is performed, shows (Ilig. 3) that at least four layers are necessary
to get a good correlation between the exact and the approximate calculation
‘method.

-~ The same plate at the same temperature was then suddenly subjected
to the uniformly distributed load ¢ = 1.0 MPa causing elasto-viscoplastic
‘vibrations. An eight-layer model was applied. The difference between the
purely elastic vibration and elasto-viscoplastic vibrations obtained using the
‘Chaboche model is expressed in Fig.4 for a short time vibration. One ob-
"_serves that the values of the lowest limit for the displacement grows, a phe-
nomenon that becomes even more visible for the longer time simulations,
shown in Fig. 5. N

. In Fig. 6 the same plate is examined at temperature 650° C. In this case,
;the amplitude of vibrations obtained using the Chaboche model (Fig. 6a) is
quite different from vibrations at 800° C. The values of the maximum dis-
placement did not change but the amplitudes of vibrations are smaller at
650° C. The Bodner - Partom model solution compared with the Chaboche
solution (Fig. 6b) gives larger values of the displacements at smaller ampli-
ﬁudes. This may be explained by the difference of the ranges of the strain
'_1_!a,tes for which the constitutive parameters were determined. The elastic
solutions (Fig. 6¢) of course coincide.
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F1G. 3. INCO 718 (T = 800° C) plate, middle point vibrations, ¢ = 0.0001 MPa;
a) displacements, b) velocities, ¢) accelerations.

In plates subjected to the load ¢ = 1.0 MPa, on the hinged edges of
the plate, the rotations exceed, for the extreme positions of the plate, the
condition of moderate rotations. However, this local effect appearing for
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Fig. 4. INCO 718 (T = 800° C) plate, middle point vibrations, g = 1.0 MPa;
a} displacements, b) velocities, ¢} accelerations (short time),

very short times has, in the authors’ opinion, no great influence on the total
solution.
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5.2. Cylindrical shell under distributed loading
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F16. 7. The geometry and finite element mesh of clamped cylindrical shell.

A cylindrical four-layers shell (Fig. 7) was subjected to a suddenly applied:
uniformly distributed loading p = 3 MPa. This example was examined using_
all three constitutive models. Material coeflicients of the INCO 718 at 650° C:
were the same as in the plate example. For the Bodner - Partom and Perzyna;
models the material parameters were adjusted so that the same yield stress:
at the same initial strain rate as in the Chaboche model is obtained: '

Bodner-Partom model:
E = 159.0 GPa, n =117, Ry = 3130.0 MPa, Ry = 4140.0 MPa
my = 0.024 MPa™t, Ay =Ay=mg=D, =0, Dy = 5451,

v =10.3, p=17.910> MNs?*/m1i, At = 1.4 .10 5s;

Perzyna model:
k=514.21Mpa, n=4, v=0.0632s"",

This choice leads to a good agreement between the results for the three’
models, especially displacement in the beginning of the process (Fig. 8). For.
longer times, differences appear due to the different modelling of hardening.
in each constitutive model. Perzyna neglects hardening, Bodner - Partom:
consider isotropic hardening only and Chaboche takes isotropic hardening’
(softening in the case of the INCO 718 at 650° C) and kinematic hardening
into account, :
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FiG. 8. Middle point vibrations.

5.8. Cylindrical panel under explosive loading

. A cylindrical panel {19, 30-32] as shown in Fig.9, made of a 6061-T6
‘aluminium alloy is subjected to an explosive type of loading on the indicated
area. The explosion is simulated by initial velocities 5 = 143.51 m/s of the
shell surface normal to M. One half of the symmetric structure was divided
into 4 x 16 nine-node finite elements and into four layers, In Fig. 10 the

explosion area

“h=0.3175cm s
L'
o\

pod

R=746125cm all edges clamped

E_F_IG. 9. The geometry of cylindrical panel with all edges clamped under explosive Ioading,
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F1G. 10. a) Vibrations of point A (X = 15.9512cm), b} vibrations of point
B (X = 23.9268cm),

vibrations of points A and B are compared with the experimental data'
from [19] and with the results of perfect plastic calculations from [30]. The
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presented Chaboche model calculations were performed with the following
physical parameters

E=730MPa, v=10s", n=1, k=230348MPa, K =1.0MPa,
a=b=c=Ri =0, v=03, p=2.67MNs?/m!
Aty =5.84.1077s, At =10"%s.
The parameters for the Bodner - Partom model were taken from [33]
E =173.9GPa, n = 5.0, Ry = 450 MPa, Ry = 550 MPa,
m=0.12MPa~!', A =Ay=my=D;=Ry=n, =0, Dp=10%s"1,
v =0.3, p = 2671072 MNs*/m*, At = 10785,

It was found that the Chaboche model gives a solution which is in a very
good agreement with both the experimental and [19] numerical results. Two
configurations of the shell in a deformed state are presented in Fig. 11.

t=0.0001s £=0.00098s
Fig. 11. Configurations of deformed panel.

6. CONCLUSIONS

The proposed method of simulation of the dynamic behaviour of elasto-
viscoplastic plates and shells was verified and illustrated by several examples.
Three constitutive models have been examined. The major difficulty for the
validation of the model was to find sets of material data for the same material
available for different models of the constitutive equations. In the material
data accessible in the literature even for the same material, at the same
temperature and for the same constitutive law, significant differences of the
parameters can be found. A major problem in the validation procedure of
the simulation procedure of the program is the lack of a broader data base
for material parameters, and of a sufficient number of experimental results.
However, the authors are aware of the difficulties encountered in this type of
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experimental investigations. The examples presented in Figs. 6 and 10 show
that the results of numerical investigations of vibrations are very sensitive
to the variation of material parameters.

For the cylindrical shell (Fig.8), a good agreement of results obtaine
with the different constitutive models was observed. In the Chaboche model
both kinds of the hardening were introduced; because of lack of data, in th
Bodner - Partom model only isotropic hardening was taken into acconnt. In-
the Perzyna model both kinds of the hardening were not considered.

Nonlinear dynamic calculations, even in the purely elastic case, are ver -
time-consuming. This situation gets worse if additionally the constitutive
equations have to be integrated due to their incremental nature. The cal
culations of the balanced forces through layers and especially the iteratio
process need a large size of the computer memory, necessary to store the
information on the material history of two last time steps.

The central differences method used for the integration of the equation
of motion requires small time steps. Generally, their values are small enoug
to integrate also the constitutive equations. In very rapid processes only, lik
explosions, smaller time steps for the integration of the constitutive equa
tions are required. More sophisticated methods of integration of the equa
tions of motion would allow for bigger time steps, but then it could happen
that different time steps for the integration of the equations of motion an '
the constitutive relations would be needed.

In the proposed algorithm, the calculations of the stiffness matrix are no
required. The muitiplications of rather small matrices are needed only o
the level of single elements. Also it is not necessary {o solve the full system
of equations, as it is usually the case in explicit methods.

The inclusion of the viscoplastic effects into dynamics calculations cause
a Tast decrease of the amplitude of vibrations which is a kind of dampin
effect. The difference to elastic damping is that both the upper and lowe
amplitudes decrease; in viscoplasticity, to the contrary, only the lower am
plitude decreases.
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