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SHAPE OPTIMIZATION OF 2D ELASTIC STRUCTURES
USING ADAPTIVE GRIDS (¥)

W. GUTKOWSXTI and J. ZAWIDZKA (WARSZAWA)

The paper deals with an effective adaptive method for 2D shape optimization of linear
elastic structures. The design objective is to find the shape of the kinematically uncon-
strained boundary assuring minimum volume of the structural material with constraints
imposed on equivalent stresses. The geometrical shape parameters are the design vari-
ables, The method is based on a special kind of finite element auntomatically adaptive
grids. The coriginal iterative algorithm for solving the nonlinear system of equations and
inequalities arising from the Kuhn-Tucker conditions is presented. The proposed approach
is successfully tested on two classical examples.

1. INTRODUCTION

Shape optimization is an important topic in structural design research.
Due to the iterative nature of shape optimization, the efficiency of the
method is very essential in order to decrease the number of iteration steps
[2]. The paper deals with further development of the adaptive method for
2D shape optimization of linear elastic structure, presented in the earlier
authors’ paper {1]. In our study we propose an automatic adaptability: the
change of positions of finite element nodes is a consequence of the iterative
change of the geometrical shape parameters which are the design variables.
This is possible by introduction of a special kind of grids.

In the present paper we are dealing with two different types of grids. The
main feature of these grids is that they consist of two families of layers. The
numbers of layers are constant in the iteration process. In the paper the
polar-type grid is introduced in which the circumferential layers have differ-
ent sizes in order to prevent the degeneration of finite elements (Fig. 1) what
is important [6]. We reduce the number of design variables by introducing
the other geometric shape parameter vector a instead of h.

(") Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
5-9, 1994,
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F1G. 1. Polar-type grid.

The grid remeshing should be suitably controlled to assure desirable ac-
curacy of the method [3]. In the paper the grid remeshing is controlled by the
Kuhn - Tucker necessary conditions. We calculate analytically the derivatives
of the stiffness matrix and those of stresses with respect to design variables,
what considerably improves the accuracy of the method. _

The efficiency and accuracy of the method are illustrated by two clas-
sical numerical examples. The first one (Subsec.7.1) is calculated using a
rectangular type of grid, the second one {Subsec. 7.2) — a polar-type grid.

2. STATEMENT OF THE PROBLEM

The design objective is to find the shape of the kinematically uncon-
strained boundary of 2D linear elastic structure subjected to static forces,
assuring minimum volume under constraint imposed on equivalent stresses.

The manner of division of the structure domain by the rectangular type of
grid of triangular finite elerments is presented in [1]. The structure is divided

into pg “horizontal” layers and 7y vertical layers, the latter having constant
sizes.
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In the paper we introduce the polar-type grid (Fig. 1) having py circum-
ferential layers and rq radial layers. In order to avoid the degeneration of
triangles, the sizes of circumferential layers decrease, approaching the pole,
by a proper multiplier m, of the base h, (Fig.2), prescribed for each radius
r, respectively. However, all radial layers have the same angle size #; (Fig. 2).
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Fi1G. 2. Fonr typical triangles of the polar-type grid.

Such a problem of shape optimization is formulated mathematically as
follows:

Find the shape of the unconstrained boundary I'(a) of a structure assur-
ing minimum volume f as the objective function

N
(21) f(@) =1 Aia),

i=1

where ¢ — thickness (t = constant), A; — area of the i-th finite element, and
N — number of finite elementis.

The objective function is subjected to the equality constraint in the form
of the equilibrium equation

(2.2)  K(a)ju-P =0,

where K — global stiffness matrix, u — displacement vector of I'E nodes,
P - vector of external forces, and to the inequality constraints in the form
of the Huber — Mises yield condition for equivalent stress in each of the FI

(2.3) o’ — a2 <0,
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with
2 2 2 2
0% = Ogp + Oy — OcgOyy + 37y
where ¢4, 0y, are normal stresses along the z and y directions, respectively,

and 7gy is the shear stress. .
a = (@1,...,07) is the design vector that contains the geometrical par-

ameters which control the shape of the structure, and h = (h3,..., hy,,)
presented in Fig.2 is the function of a. '
Lagrangian of the problem has the form

(2.4) L=f+ )\ET[K(a)u —P]+ )\“T(0'2 - o2),

where X°” is the vector of Lagrange multipliers associated with the equilib-
rium equation, e’ lS the vector of Lagrange multipliers associated with the =
stress constraints, o2 is the square of equivalent stresses in all finite elements
of the body.

3. SYSTEM OF GOVERNING EQUATIONS

According to the Kuhn - Tucker theorem, the necessary conditions for the
problem have the following form:

(3.1) | K(a)u—P =0,
(32) K@\ + Va(\' o) =0,
a ot AL oh, .
(3.3) Z T e = 0, i=1,...,1,
where 5
oL  Af r OK 7 0a?
Gr=gn =an TN TN o

(3.4) N (a2 —a2)=0, N >0.

The above conditions constitute a system of nonlinear equations and
inequalities, in which the number of unknowns a, u, X*, X° is equal to the
number of equations. The solution of this system gives us the solution of
our optimum problem from the point of view of necessary conditions (i.e.,
at least the local minimum), whereas the question of sufficient conditions -
remains open.
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4. DERIVATIVES OF THE STIFFNESS MATRIX AND OF THE SQUARE
OF EQUIVALENT STRESSES WITH RESPECT TO VARIABLE h,

Our system of equations requires derivatives of the stiffness matrix and
of the square of equivalent stresses, with respect to the variable h, (3.3).
In order ‘to avoid the errors connected with the numerical calculation of
these derivatives we determine them analytically, The demonstration be-
low is made for one of four typical triangles e in our polar-type triangular
discretization (Fig. 2).

The stiffness matrix of one element has the known form

(4.1) K® = tA°B* DB
we may write
Be — 1 €
24
then
e __ e 1 el 1 e i Sel e
(4.2) K°=1tA 2AEB DQAEB _4AeB DB?,
Ke ¢t[ @ i ~ ~e
(4.3) ‘;h = [W (ue) 4(A%)?B* DB* + P DB® + B DP ] ,
where N
., OB°
Pr= oh,’
Ke ¢ gA® ~ ~e
(4.4) %h— = [—2 o B° DB* + P DB + B DP ] .
T v
In our case A° is the area of the triangle e
1
(4.5) A® = S[2iy; — ¥m) + 2i(m — ) + Tm(yi — 33)),
where "

& = (dr — (ps — Dhe) cos oy,
4 = (dr — (s — D) sin or,
z; = (deg1 ~ Pshrg1) cos iy,
Yi = (dry1 — pshria) sinegra,
Tm = (dr — pshr)cos gy,
Ym = (dr = phr) sin gy
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d, is the distance from a fixed boundary point of the structure on radius r
to the pole, p, is a multiplier of the base A, for j and m apex of triangle e,
taking in account the sizes of all circumferential layers, @, = 7 - 85, where
8y — base angle.

8A® 1 . .
(4.6) o 5[(1 — ps) cO8 @ (Yj — Ym) + TiPs SiD @ — T 5In o,
_Ps(yi - 'yj) cos iy + mm(l - 'Ps) sin {Pr]v
b; 0b; 0 b, O
(4.7 P =(0c0¢ 0 en|,
¢ bic; b; Cm bm
where
b; = Ps sin Pr
€ = —PsCOS Py,
b; = —sing,,
e; = — o8Py,
b = (1 — ps)sing,,

= (ps — 1)cos,.

For the square of equivalent stresses o we may write for one element

Ja? 00y Brmy
(48) 3’1,. (20'1-3; O'yy) Bh +(20'yy Ua::r:) 6h + 67, Ty 6h

where _
e __ (= -4
(O ey Oyys Teyl” = DB 0®,

d ( 1 94

'a—m[aa:m, Tyys Ta:y]e = —DB*® +

A Bh, 24t

DP)

5. DERIVATIVES OF EQUIVALENT STRESSES WITH RESPECT TO
DISPLACEMENTS OF THE NODES

The adjoined equation {3.2) contains the derivatives of squares of the
equivalent stresses with respect to the components of the displacement vec-
tor. We find the analytical expressions for these derivatives. In order to do
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it, at first we express the square of the equivalent stress in a single element
applying the summation convention

2
(51) 0% = (DuBjuf)’ + (DaxByuf)® — (D1 Bfus)(Da; B ul

+3(Dsi Biyup )?

with 7,1=1,2,...,6, :,k=1,2,3.
The derivative of ¢¢° with respect to u; takes, with above notations, the
form

3(06)2

(5.2) oo

= QJ;leszt- + 20;_1;1)2!9823' - C’ngZszi

MleBE.iG;y + 6T£y.D3ka,a-.

6.. OUTLINE OF SOLUTION ALGORITHM

In order to solve the system of nonlinear algebraic equations (3.1)—(3.4),
an optimizing Fortran program was written according to our iterative algo-
rithm presented below. To solve the equilibrium equations (3.1) and (3.2) in
the steps 2(A) and 6(A) — “A” steps defined as belonging to an “Analyser”
— we use the standard professional FEM program presented in [5]. By “O”
we define steps belonging to an “Optimizer”, where adjustable coefficients
3 and o are used.

StEp 1. (0)
Take n := 0 (n is iteration counter).
Assume the starting values of a(0) and find h(0) = h(a(0)}).

STEP 2. (A)

Find from (3.1} the displacement vector u(n)

K[h(n)]u(n) =P, !

calculate the square of equivalent stresses o?(n) for all elements and
calculate the volume f(n).

SteP 3. (0)

If D) 2
o7 (n) —o§

2

s < K

7

max [

where p is a given small number and 7 indicates the elements of the
boundary I', then STOP.
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STEP 4. (0) ;.
Find derivatives of K and of o with respect to h, from (4.4) and

(4.8), and of o with respect to u; from (5.2).

STEP 5. (0)
Assume initial value of X*(0). In this case, using additional relation 20

from [4], we take

X3(0) = fi’;) for all j;
2 ‘

for n # 0 we take

s ] 0'32("’) - 0-3 )
A(n)=A(n—1){1+8 5 |
A ( B (o3(n) - o]

where m is the number of elements of the boundary I'.

STEP 6. (A)
Find X%(n) from (3.2)

K[h(n)]\*(n) + V(X" (n)a?(n)) = 0.

STEP 7. (0)
Find G,(n) from the optimality conditions (3.3).
_ 0f(n) T, OK(n) o, 0a%(n)
Gr(m) = iy N Mg e TN My
STEP 8. (0)

Find derivatives of h with respect to a; for the optimized structure.
Calculate design variables a; for the next iteration

ro+1
ai(n -+ 1) = ai(n) - a(i) Z Gr(n)Fr(n),
where F(n) = ?92((2)) . i=1,...,0, find h(n+1)=h(a(n+1))

and I'(n+1)= I'(h{a(n + 1))).

Step 9. (0)
n:=n+1, goto Step 2.
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7. NUMERICAL EXAMPLES

7.1. Shape design of the minimum volume cantilever beam

We consider a cantilever beam of length L loaded by a concentrated
load P at the free end. The beam is of a rectangular cross-sections with a
variable depth H and the constant width ¢. Our aim is to find the shape
of the minimum volume beam with the constraints imposed on equivalent
stress which should not exceed oy. According to the classical beam theory,
the distribution of the depth H of such a beam is:

6P(L — z)
tG’U

(7.1) H(2) = , 0<z<I,

where 2 denotes the distance of the section from the clamped edge.

The solution of our numerical problem will be referred to the above
theoretical distribution of H. In order to verify the method, we assume
a parabolic shape function as in the theoretical solution for a beam of a
given length I, but with an unknown coeflicient ay in the transformed for-
mula (7.1):

(7.2) | 2(H)=a H* + L.

The domain of the beam is divided by the rectangular type of grid [1] hav-
ing pp = 12 “horizontal” layers and »o = 48 vertical layers. It means that
the beam is divided into 1152 triangles with 637 nodes that leads to 1274
components of the displacement vector u. Following values of the problem
parameters were assigned: Young’s modulus E: 0.21 X 10° kN /cm?, Pois-
son’s ratio: 0.25, og = 21 kN/em?, ¢ = 1.42cm, L = 170 cm, Hpax = 17 cm,
P = 6kN/cm. Numerical calculations are performed using the following di-
mensionless quantities: £ = E/og = 1000, 5y = op/og = 1,1 = t/he = 1,
L = L/hy = 120, P = P/(0oho) = 0.2, where by = Humax/po = 1.42cm.

In order to check the efficiency of the method we start with the initial
value a; which considerably differs (by about 50%) from the theoretical
one. The theoretical shape and the shapes obtained from six comsecutive
iterations are presented-in Fig. 3a. Maximum equivalent stresses at several
sections of the beam and material volume vs. the number of iterations are
presented in Figs. 3b and 3¢, respectively.

7.2. Shape design of the hole in the minimum volume square plate

Let us find parameters of an elliptic hole in a square plate under biaxial
tension (Fig. 4a). The plate has to be of minimum volume and the equivalent
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stress in all FE should be smaller than a given value gg. Due to the double_____
symmetry we are considering one quarter of the plate with polar-type FE
grid presented in Fig. 1. The shape of the hole is given parametrically:

T

i

@ty COS @,

i = agsin a.

The semi-axes a; and a; are our design variables.
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According to the Fig.1, we have po = 21 circumferential layers and
ro = 24 radial layers. It means that we have 1008 triangles with 550 nodes
that leads.to 1100 components of the displacement vector u. Following val-
ues of the problem parameters were assigned Young s modulus E: 0.21 x
105 kN/cm?, Poisson’s ratio: 0.25, oo = 21kN/cm?, thickness ¢ = 4cm,
W = 156 cm, ¢ = 6.3kN/cm? Numerical calcula,tlons are performed using
the following dimensionless quantities: E = E/gq = 1000, 7 = 0o/00 = 1,
T=tlhg=1, W =W/hy = 39,5 = 0/op = 0.3, where ho = W/py =2 dcm,
where py = 36 is the base number of circumferential layers.

In order to check the efficiency of the method, we start with the initial
values of parameters a; and e, the ratio of which is quite different from the
theoretical solution, i.e. we take a;/as = 2. We assume ay /W = 0.2.

In Fig. 4b eight iterations of the hole shape are shown, reaching finally the
proper ratio of a1/az = 0.5. In Fig. 4c we see the changes of the equivalent
stresses in consecutive iterations in all elements of the boundary. Finally, in
Fig. 4d the decrease of material volume with increasing number of iterations
is presented.

8. CONCLUDING REMARKS

The efficiency of the presented method results from its automatic adapt-
ability; the change of dimensions of finite elements due to the change of
positions of their nodes is a consequence of the iterative change of the de-
sign variable a. It is essential that the design variable a is representing the
natural shape-determining parameter. The FE remeshing and the change
of design variables during successive iterations are controlled by optimality
conditions arising from the Kuhn - Tucker necessary conditions. At the same
time the method allows us to avoid undesirable geometrical distortions of
FE. In addition to that, the analytical expressions of all derivatives with re-
spect to independent variables improve the accuracy of the method. Finally,
what is important, the standard FEM code is imbedded in the computa-
tional algorithm.
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