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INTERNAL AND COMBINATION RESONANCES
IN A KINEMATICALLY EXCITED SYSTEM
OF NON-PRISMATIC RODS (*)

A. FORYS and A.S. FORYS (KRAKOW)

Internal and periodic combination resonances in a system of three coupled non-pris-
matic rods with articulated joints are analyzed. The resonances are of a parametric nature.
The transverse vibrating system is placed on the vertically moving support. In the equa-
tion of motion two kinds of nonlinearities of geometrical nature appear. The considered
problems may have a practical significance for the paraseismic phenomena when the weak
excitation may cause great effects because of the autoparametric resonances.

1. INTRODUCTION

Vibrating nonlinear coupled systems are rich in many kinds of resonances
(e.g. internal or combination resonances) [1]. Examples of the kinemati-
cally forced mechanical systems in which parametric or autoparametric res-
onances occur are given in the papers [2—~7]. Appearance of autoparametric
resonance is due to the coupling of elements of the system.

Usually the resonance phenomena in mechanical systems are undesir-
able. Hence, our aim is to avoid the resonance states or to minimize their
disadvantageous effects. One of the methods is the optimal structural de-
sign which can maximize the frequency range without resonances. However,
if such procedure does not eliminate the resonance phenomena, their effects
should be minimized by minimization of some objective functions (measures
of the phenomenon), more often the amplitudes of vibration in a steady
state of resonance.

In this paper a parametric optimization of a plane system of non-pris-
matic, viscoelastic rods subjected to conditions of internal or combination
resonance is considered. Transverse harmonic load acts on the horizontal rod
and the system is placed on a vertically moving support. Such a system is

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
5-9, 1994,
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an essential element of buildings and structures, e.g. the engine rooms. Be-
cause of couplings of the rods through periodically changing internal forces
which are transverse forces at the ends of the neighbouring rods, the res-
onances have an autoparametric nature. The analysis of these problems in
kinematically excited systems is important. Kinematic excitation of build-
ings and structures occurs in connection with seismic or paraseismic excita-
tions. Sources of paraseismic vibration can be: motion of vehicles, running of
machines, shootings in quarries. Vibrations of supports of buildings or struc-
tures produce a kinematic excitation. The response depends on the dynamic
properties and character of the structure.

2. EQUATION OF MOTION

Equations of motion for the system of three non-prismatic, visco-elastic
(Kelvin - Voigt model) rods connected with articulated joints with concen-
trated masses M (Fig.1) are derived in [7, 9]. Transverse harmonic load
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Fi1G. 1. The model of vibrating system.

g(t) = -y, sinwi acts on the horizontal element and the system is placed on a
vertically moving support, its motion being represented by z(t) = -y sin wt.
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Symmetric steady vibration of this system in the state of internal or combi-
nation resonance is considered. The internal coupling forces are longitudinal
forces of the neighbouring rods. The equations of motion are obtained by
means of the Lagrange equations of the second kind:

L L
(2.1) %(;‘E) fg—T;=Qi+Qs.~+QAS,-+QD,., i=1,2,
where I is a Lagrangian of the system, Q; are generalized forces connected
with external loadings and kinematic excitation, Qg are generalized forces
connected with internal coupling forces 5;(¢) (Fig. 1), Qas; are generalized
forces connected with nonlinear damping and nonlinear inertia which are
taken into consideration in our description, @ p, are generalized forces con-
nected with internal dissipation forces. If we assume that the transverse
displacements of rods are

(2:2) wi(zit) =Yi(z) (), (i=1,2),
we obtain on the basis of [7, 8, 9] the system of differential equations in the
form
Ty +(B/AYT, = (C/AYTT: — (DJA) Ty ~(EJA) Ty TE
L((F + Fa) ATy T2 + T2 F1) — (G/A) 3 +(I3/A) sineot,

2.3
(23) Ty +(B/A)Ty = —(C/AYNT, — (DJA) Ty ~(EJA) Ty T3
~((F+Fu)) BT TE+ Ty Ty) — (GJA) 3 T
where '
Iy Iz
A= fm1($1)Y12(x1)dm1, Kﬁ ]mg(ﬂlg)Y22($2) d:ﬂg,
0 0
11 !2
B = Elffl($1)[}q'($1)]2 d:l’?], . F: Eg/Iz((vg)[Y;,(ﬂlg)]z d:’l!g,
0 - 0
L : I
(24) D= ’?lffl(?i)}’luz(ml) day, D= 7?2]12(372)5’2”2("02) dzs,
0 : 0

| .
7] , ! :
€ = 5o (Baha(@¥] (w0)],, 0, [ V() o,
0

Ty

>

— a '

¢C=3 {Elfl(afl)ylﬂ(fﬁ)]xl:o]Y22($2) dzg,
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(2.4) I . .
[cont.} E=k {O/[Yl(ml)] dml} ’ =k {][} ( 2) d 2} s

11 /2 2

I
F:/ml(ml) [Y{%g)dg day,
0 .

1 . 2 2
F= ijz(mz) 0/1’2’2(5)451 dzg,
2

I 2
Fy=M [ Y{z(:cl)dmll , Fy=M
(3]

Iz
]Y;Z(mg) dmgl N
]

h
G= fml(a:)Yl(:c) dz,

*L TRy
=0/m2($)d230f{¥} dg,
1
[

Gy

M — = =
lYl(a:l)d:cl, G = 21.448— G-——Gl-]-Gg.
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Here the following notations have been adopted (i = 1,2): [; are the lengths
of the rods, m; are the linear mass densities, E; are the Young’s moduli, I;
are the cross-sectional moments of inertia, 7; are the coefficients of internal
damping, k is the coefficient of noulinear damping. The coefficients GG and
G are connected with forces generated by harmonic vertical displacement of
the support. '

The coefficients (2.4) are functions of the shape parameters. The rods
are of square cross-sections. In this paper we assume that the transverse
dimension a; of element I varies as a quadratic function of 2, (Fig. 2):

z? =z
a1(z1) = a1dr(z1, 1), di(e1,m) = 4 (?21 B hl) th
1

25) =0 L) = al) =,
ay

ai(li/2)=p, KL €(-o0, 1]

We also assume that the transverse dimension a; of element II varies as a
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linear function of z; (Fig.2):

ax(ze) = a2a(72,62),  dafzz,K2) = 1— ,{2%’
(2.6) N
Ky = Tay ax(0) = az, az(ls)= B2, Ko €(—o0, 1]

Because of the assumptions that the coupling has a small influence on the
modes of transverse vibrations, these modes are obtained as solutions of
partial differential equations describing the transverse vibrations of separate
rods. Solving the proper boundary value problems, one gets

Yi(zy) = sin(z21/h),
(2.7  Ya(zg) = cos Al{sin()\l:cz/lg) — sh{Aza/l2)
— tg Mfeos(Mza/lz) — ch(Mawa/la)]}-



118 A.FORYS and A.S. FORYS
Therefore in virtue of (2.4), (2.5), (2.6) and (2.7), we obtain
Alen, k1) = plllaffA(ﬁl), A= 9232031‘2(%2),
Brof —  Eyal
Bla,m1) = = lfB(fil), B = 2 2f*( 2);

D(al,ﬂl) = malfB(Krl), D= mazfg(@)

Eyal = _ Eiof
Clag) = 22 fe,  C="f,
1112 by
.k
(2.8) E = jﬁfa, E = gfﬁa Iy =2mb/m,
po et 2 P (0.04534 — 0.02324k4 + 0.004652x2),

4l

_ 272
F = %"’——4(0.11089 — 0.17116k3 + 0.070627x3),
2

Zy = M cos® Ay, |
Far = 24.3523M /12, Far = 33.087TM/13,
o
G = llpp{l!%fG 3 ' Gl PZl? 2ff;"7

where p; (1 = 1,2) are the mass densities and

fa(k1) = 0.3917 — 0.896x1 + 0.500,
(k1) = 2.701k% — 11.6457 + 19.01x3 — 14125, + 4.058,
1
fr(k2) = 0.1747x3 — 0.5680% + 0.4999,
(2.9)  fgwe) = 1.253x5 — 7.153x3 + 15.94x3 — 17.06x, + 9.890,
fo = fs, fe=2435,  fo=0.445k7 — 1.032k; + 0.636,
= fe, fmr=233.09,  fm= L115x2 — 2.930k, + 2.144,
7= I E G 2
fo =242, fa=-144.
The next two parts of the paper concern the parametric optimization of
P
the system represented by the model of two degrees of freedom in states of

internal resonance, i.e.

m .
w%ng, w01:-];—w02, ]21,2, m,k:1,2,3...

or in periodic combination resonance

Muwo, + Nw m
g—mq’:ﬂ_ﬁ, wOII—k-—tz, N,A{Iil,:‘:Q,...,

where wp; (¢ = 1,2) are the natural frequencies of the rods.
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The method of solution depends on the kind of resonance and is adopted
from the general theory of quasi-harmonic systems with many degrees of
freedom, cf. [1, 8, 10].

3. INTERNAL RESONANCE

We will analyse the special case of internal resonance; we assume that in
steady state of internal resonance the following relations hold:

w 2wy, wo1 = 2woz -

The mathematical analysis of Egs. (2.3} was accomplished by using the mod-
ified harmonic balance method, cf. [9].
The amplitude Ry = 24/X; of the vibration of element 1 is given by the

equation
(3.1) aX; + X7 +eX +d=0,

where

SpCRLS b FM)z(wol —3w)*+ (%)2 ,

A?
F
b= 2DE - 4F+ M(w —wm)(wm - 3&»‘),
A? A
(3.2) o2
c = 4(0)01 —U.J)2 -§- (Z) ’
1
d=-1r (Gw y+1)’.

Element 1I of the vibrating system is parametrically excited by the internal
coupling force S;. In the approximate balance method the coupling force 53
is neglected. The amplitude Ry = 24/ X; is given by the following equation

(3.3) ~ aXZ4bXate=0,

where

— 2
_E P, s (E)

(3.4) o -
b= ”TM(UJQQ w/2)(woz2 — 3w/2) + 2—- AE ,



120 A. FORYS and A.S. FORYS

—\ 2 - 2 ey 2
(3.4) _ ( - ‘i)z DY _ 1 1[G » ¢ .
[cont.] ¢=4woz 2 t Z b)gz ZQw t 4—4_ AlAl

( Sty 4]

R DAV L |
Z? woy D 2 FE . 2
o=+ () {1+ 54141)

Amplitudes R; and R; are functions of the shape parameters. In the case
of internal resonance, a pure main resonance occurs in element I, and an
autoparametric resonance in element 11

4, COMBINATION RESONANCE

We analyse the particular steady state of a combination resonance. We
assume that in this special case the following relations hold

w 2 2wor + woz woz = 2woy .

For the analysis, the Tondl method is adopted, cf. [10, 11]. First, the
Egs.(2.3) (M = 0, nonlinear damping only) are transformed to the quasi-
harmonic form

{4.1) T,, +(.‘)38T_9 = ,qu(Tk,Tk) + gs(wt), s=1,2,

where a small parameter p = D2/\/CpI1 Ay (subscript p denotes that the
rod is prismatic), and
Fy = ey(k1, )Ty — di(k1, 1) T +e1(r1,01) T: TL,
Fy = —¢g(ig, aa)T1Ta — da( K2, az) T2 —ez(ka, o2) Ty T3
— golKay az) 2 T,

(4.2)

I

q = (ngfy + —;11—) sinwt, g2 =0,
ClA = per(kr, 1), ClA = pey(rg, az),
DJA = pdy(K1,a1), D/ A = pda(ke, a2),
E/A = pey(r1,a1), ElA = peg(ka, az),
G[A = pga(ka,az). '
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We look for an approximate solution of (4.1) in the form
(4.3) T =Y+ 25, s§=1,2,

where Y; is the solution for g = 0, Z, is the solution of the set of equations

(4.4) Zy 4wi 2y = pF(Z,2,1), s=1,2
So we have

aq I

YRl
(4.5) }[1 = e sinwt, }’2 =1{.

— g2
W w

Next we put

(4.6) Zy=Us+ V5, Zo=iwg(Us; = V3), s=1,2, i=+-1,
and Egs. (4.1) take the form

wn Uy = iwosUs + p(1/2iw0,) Fy[icos(U — V), (U + V), 1),
4.7 _
Vs = —twos Vs — i1/ 24w, ) Fs[twes(U — V), (U 4+ V), 1].

If we introduce the following notations:
wo = (N/njwor + (M/n)woz,  vs = wos/wo,

where woi{K1, 1), woa(ke, @z) are the natural frequencies of non-prismatic
elements and if we introduce dimensionless time 7 = wt and take w = wg+jiq
(g is a constant), Eqs. (4.7) take the form

(45) Ul = iU, -+ p[wi(vs/wg)qu + (1/2iwos00) F] + 12 ]+ . . .,
) V! = —iv,Vy — pl—i(vs fwo)qVs + (1/2iwoswo) L] + p2[. ] + . ..

A superscript ! denotes differentiation with respect to 7. Next, the new
variables are defined

(4.9) Uy = e, Vo= ™7,  s=1,2,

and the equations (4.8) take the following form

o, = pgs(r, 0,8, 1) = pg(r, 0, B) + 12gP (7,0, 8) + ...,

(4.10)
By = phy(r, e, B, p) = ph{ N7, 0, B) + BB (7,0, 8) + ...,
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where
g{l) = —i(11/wo)go + (e"i”lT/inlwg)Fl,
g = —i(vafwo)gen + (77 [2ivpw)
R = i(o Jwo)gBr — (™17 [2iwi) P,
W = i(vy fwo)gBz — (€777 [2ivywd) Fy.
After these transformations we get the following form of functions Fy, F3: __
F = a(k,0)(Ys + e’ + ﬁge—i”z")(Yl + e 4+ ol e_i"‘"')
—di(Ky, 1) [Yl +iwor (e €7 — ﬁle_i"”)]
—e1(K1, 1) [Y1 —i—iwm(a]eh’” - ﬁle"""”’)] :
% [t + (e 4 prem],
(4.12)  Fy = ~ca(kig, @) (Y1 + 1”17+ fre™™ ) (Yo + aze™?7 4 fpe™2T)
—d, [Y2 +iwﬂz(a2€z‘ugf _ ﬁ2e—-1:y21-)] g
—ey [3"2 +iwo(rze™” — ﬁze_i”w)} [Yz + e + ﬁze_i”T}z

—g:(¥2 + ge™?7 - Bye 2T JwiysinT, -

(4.11)

where Y1, Y, are given by (4.5).
The Bogolubov - Krylov transformation is applied to Eqgs. (4.10)

a, = As + ,U'X(gl,g (Ta Ala A?a Bl: BZ))
(4.13) ’
ﬁs = B5+UX,(@3)(7—5A1»A21B11B2): 5:1:21

and the first approximation is
(4.14) Al = uG,(A,B), B.=upHJ(A,B), s=1,2

Since we are interested in a steady state of combination resonance, we get
the following set of equations for the amplitudes of vibration

(4.15)  G,(A% AY B, BOY =0,  H (A}, AY,BY,BY)=0, s=1,2
So, the functions g, and hs; (s = 1,2) take the form

g1 = —i(1/4wo)(q — o) A1 + (27T [,

hy = i(1/4w0)(q — qo)B1 — (2¢' V47 Jiwd) iy,

g2 = —i(1/2w0)(q + qo) Az + (e7 /27 Jiwd) Py,

hy = 1(1/2wo)(q + go) B2 ~ (€i1/2T/iw3)F2:

(4.16)
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where (cf. [11])

8ar
1
Gl = 8—7[_]99)(7'; Ala AQ? BlaB2) dT‘,

Bn
1
G2 = Z}"fggl)(T,Al,Ag,Bl,Bz)dT,

(4.17) )

8
1
o= f W\W(r, Ay, Ag, B, By) dr,
0

B
1
H2 = E/hgl)('r, Al, Ag,Bl,Bz) dT.
]

Inserting (4.16) to (4:17) and calculating the integrals, we get for the coef-

ficients
As(eu, k), Bi(og, ki), Ax(ay, ki), Ba(a, ki),

the following set of algebraic equations

—i(1/8woz)(g — go) A1 + (1/2iwgy){e1 A2 By — idiwor Ag
+ZiWQ1€1A1 ZZ - iwmelA%Bl} = O,

i(1/8wo2)(g — ¢0)B1 — (1/2w;){e1 Ba Ay + idiwor By
—2’4‘:&)0161.8122 + inlelAle} = 0,

(4.18) , P .
- 1(1/4(.0(}2)((} + qG)Ag + (1/4%}02){—82.232 - ?.dgwggAg

—iwozez A By — iga By} = 0,

2(1/4&)02)((1 + (I{])Bg — (1/4iw§2){c2ZA2 + idgwong
-i-inQEgAgB% + 'I:ggAz’T} = 0,

where
G I
NS A
. ‘ = (1/28) Lt |
(419) (12 Ay

After some transformations one gets from (4.18); 3 and (4.18)3 4 the ampli-
tude Ry of element I and amplitude Ry of element 11, respectively, in the
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steady state of periodic combination resonance:

DA [fCN\* 1 w\?
s=a2 5 (5) G-+ (=) =

(Gw?y + I )?

_gd¥ T

20,2 _ 42320 o

(4.20) AMwgy =W
Ry =2v/X>

—_ —, 2 DL

E :2[ cz 4w02'}'G (w )2
\/,; D\J (iwggA T g :
where Z = I1 + Guy

_ The amplitudes (4.20) are functions of the shape parameters. From rela-

tions holding for the combination resonance, one can infer that element II - °
acts parametrically on element 1, and the external loading is subbarmonic '
for element I; hence, in element I two phenomena coexist. External harmonic
and kinematic loadings are parametric for element II. The amplitude Ry as
well as the amplitude R has a parametric character. The longitudinal forces
51, S2 and external loading play the role of parametric excitation.

5. PARAMETRIC OPTIMIZATION

The amplitudes R; and Ry are the objective functions and the parameters
defining the shape of rods are control parameters.

Internal resonance (two kinds of nonlinearities). The constraints are: the
total mass of the system is constant, i.e. 2M + M, +2M; = M = const, and
the system is nearly the internal resonance. We look for such optimization
parameters a;, &; which satisfy the constraints and minimize the objective
function - the amplitude Rs of the parametrically excited element II. Thus,

Raopt = min Rylkg, ag(k2), &1(K2), el
IM + prlia? (k1) -+ 2palzad fo(ky) = const,  wpy = 2wep, W= wor .

 Combination resonance (without the concentrated masses in articulated
joints, nonlinear damping only). The constraints are: the total mass of the
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system of rods is constant, i.e. M| 4 2My = M = const and the system is
nearly the combination resonance. We look for such values of optimization
parameters a;, k; which define the shapes and satisfy the constraints and,
in addition, minimize the objective function Z = {2¢; Ra| + |e2R3]. So

zopt. = lIIliIl Z['i?a 0‘2(52)5 K](Kz), al]a

prliel fi(ky) + 2palacd fo(ky) = const, woy = 2wor, w = dwe.
We carry on our calculations in the following way:

1. We fix x2 € (—2,0,0.8,0.5,1) and oy (parameter connected with in-
ternal coupling).

9. For fixed xg3 we calculate a; on the ground of constraint M = const.

3. The resonance condition wge = 2wy takes the form
ca(k2)k] + ea(r2)B3 + ca(h2)k] + cr(Ra)r1 + €0 = 6,

and from this we calculate ;.

4. Finally we calculate Ry, Ry and Z for frequencies w from the neigh-
bourhood of 4wg;.
After numerical calculations the detailed conclusions will be determined.

6. ANALYSIS OF RESULTS AND CONCLUSIONS

For calculations of amplitudes Ry, R, in internal resonance, the following
numerical values of parameters are used: Iy = 8m, Iy = 14m, FE; =
By = 2.2-10MN/m?, p; = ps = 7.7 10°kg/m3, mq € (1-10°5-1-
108) Ns/m?, k € (1-10° —1-10")kg/s, en = 0.50m, M = 1000kg,
M = 10000 kg. The frequency w is changed in the small region near we;
(see resonance relations). The value of amplitude of kinematic excitation is
~ = 0.0005 m. In the Fig. 3 the amplitudes B; and R; as functions of w and
kg (the parameter of the shape of element IT) are presented. Amplitude of
element IT has explicitly a nonlinear character. For some values of frequencies
three values of the amplitude exist. Not all amplitudes are stable but the
stability is not analyzed in this paper. The resonance curve is deflected
toward the lower frequencies — it is characteristic when nonlinear inertia
dominates. The resonance curve has two maxima (cf. [1] p. 351 and [8]). The
value of Ry (parametrically exciting element) is minimum when the element
II is shaped as a cone (kg = 1).

For calculations of the amplitudes Ry, Ry and Z in combination res-
onance, the following numerical values of parameters are used: [ = 8m,
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Fic. 3. Internal resonance. Amplitudes R1, Rz of non-prismatic elements
versus circular frequency w for different values of parameter «s.

I, = 7.0Tm, E, = E; = 2.2-10"N/m?, py = p2 = 7.7 10°kg/m?,
Mz € (1-108 —1-10%)Ns/m?, &k € (1-10° —1-10")kg/s, a; = 0.50m,
0.45m, M = 10000 kg. The frequency w is changed in the small region near
4wy (see resonance relations), the value of amplitude of kinematic excita-
tion is 7 € (0.05m, 0.25m). On the graphs presented in Figs.4a, 4b, 5, the
amplitudes Ry, Ry and objective function Z are shown versus w and as a
function of the parameter s, defining the shape of element II. Both ampli-
tudes Ry and Ry have a parametric character, Because of nonlinearity we
get non-trivial steady response (the semi-trivial solution is not considered in
this paper) with amplitudes R; for element I and non-trivial response with
amplitude Ry for element II. Both responses are non-zero in a certain infer-
val of w, what is the typical feature for parametrically excited systems (the
curves Ri{w), Re(w) do not reach zero). For both elements the amplitude -
of kinematic excitation 4 and parameter «; influence the value of non-zero

responses and the interval of frequency. One can see from the Figs.4a, 4b - "

that the minimal value of objective function, and also the minimal value
of the frequency interval are taken for k; = —2. In the Fig.5 the minimal
values of objective function and of interval of frequency occur for xy; = 1
(the element II is shaped as a cone).
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F1G. 4a. Combination resonance. Amplitudes and objective fanctions Z versus
frequency w and for different values of parameter k2. v = 0.025m, oy = 0.45m.
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Fi1G. 4. Combination resonance. Amplitudes and objective functions Z versus
frequency w and for different values of parameter k2. ¥ = 0.05m, o3 = 0.45m.
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The paper is a contribution to the study connected with the optimization
of the system of rods at the internal and periodic combination resonance of
autoparametric nature. The influence of the shapes of rods on some objec-
tive functions connected with amplitudes R, R; are analysed. A suitable
selection of the shape parameters of elements may lead to considerable re-
duction of the frequency interval in which the resonance occurs and may
lead to a considerable reduction or total elimination of both or one of the
vibrations. The results presented here are of a rather qualitative character
and reflect the importance of opiimization at autoparametric resonance, es-
pecially in kinematically exciting systems. The obtained results may have a
practical significance. Due tg the coupling of elements, the considered system
of rods serves as a simple model of more realistic systems with autopara-
metric resonance. The beam systems are elements of numerous structures
and machines. The fundamental problem is to choose the appropriate model
of the described ob ject';"(structures, buildings, mechanical devices, mecha-
nisms). The model should include some important propérties of the object
in the particular situation and in particular phenomena. The harmonic load
is due to the action of machines or other devices in engine rooms, and kine-
matic extitation is due to paraseismic phenomena. The coupling forces play a
significant role in the considered auntoparametric resonances. The auntopara-
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metric phenomena can play an essential role in processes of destruction of the
object described because weak excitation (e.g. kinamatic) may cause large
effects due to the autoparametric resonance. For a real system, when there
is an appropriate tuning of frequencies, large values of amplitudes can occur
and become dangerous. The analysis presented in this paper may be helpful
in considerable reduction or total elimination of these dangerous effects.

This paper is partly supported by Grant PB 0269/P4/93/05.
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