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ON THE STRESS DISTRIBUTION IN BENDING OF STRONGLY
ANISOTROPIC BEAMS (*)

A. BLINOWSKI
and J. OSTROWSKA-MACIEJTEWSKA (WARSZAWA)

The displacement function method for the plane problems of linearly clastic orthotropic
bodies has been proposed, The method has been used for the estimation of the rate of
- decay of the end effects in beams and slabs subjected to bending; the results obtained
turned out to be in agreement with the earlier estimates obtained by Choi and Horgan for
the influence of the end effects in the case of laboratory test specimens. Some possibilities
of obtaining the rigorous solutions modeling special cases of bending have been shown.
A set of explicit formulae has been proposed for the approximate soclutions of bending
problems taking into account the end effects, normal stress nonlinear distribution at the
cross-sections and the contribution of the shear deformation to the beam deflection.

1. INTRODUCTION

Rapidly growing application field of laminated and fibre-reinforced com-
posites gives rise to the two entirely different groups of problems which are
actually being solved or have to be solved by continuum and structural me-
chanics. The first class of problems — predicting of the effective parameters
of the composites, considered as simple or non-simple materials, becomes
a subject of research interest of many scientific teams. Particularly, dozens
of researchers and research groups employing homogenization technigues
should be pointed out. Results of such considerations can be, and really are,
very important for material design and manufacturing.

As it has already been mentioned, there exists however a second class of
problems, which have to be solved to meet the needs of engineering structural
design. The mechanical sciences have to point out the most effective ways
of application of the specific mechanical properties of strongly anisotropic
materials. Despite the fact that the fibre-reinforced composites are known

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September
5-9, 1994.
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since at least five decades, still no simple engineering methods exist making
possible the semi-qualitative considerations at the preliminary stages of the
engineering structural design (1). We shall focus our attention here on the
problems of strongly anisotropic uniform composite beams (and — what is -
equivalent — cylindricaly bent plates).

Three main differences (as compared with the classical beam theory)
should be pointed out here:

o Nonlinear normal stress distribution (“stress channeling”).

e Large (within the linear theory) deflections due to shear deformation.

¢ Long range influence of the stress and displacement profiles at the end
cross-sections.

None of these items is new, all of them have a long history in the litera-
ture of last decades. The first two of them were discussed e.g. in [10, 11,
14, 17}. The problem of the contribution of the shear strain to the beam
(plate) deflection has a particularly long history beginning with the works
of TIMOSHENKO and REISSNER [1, 2, 4] (?). Among the numerous papers on
the Saint - Venant’s principle and its re-formulation concerning the strongly
anisotropic structures {cf. [5-9, 15]), the work by I. Choi and C.0O. Horgan,
who were able to estimate effectively the decay rate of the influence of the
end effects in plane problems has to be pointed out especially (3). Until
now, however, no single approach simultaneously taking into account all
these peculiarities has been proposed. In the following sections the authors
will try to fill, at least partially, this gap.

2. FORMULATION OF THE PROBLEM

Let a linearly elastic orthotropic material be given. Let the directions of
the coordinate axes coincide with the axes of orthotropy. We shall consider,
in the framework of the small strain approach, a class of plane strain or
plane stress problems in the {zq,z2} plane. We shall assume that the body
under considerations occupies the rectangle of the length ! and the height
2h (Fig. 1), where | 3> h. For convenience we place the coordinate origin

(!) An ilustrative example of the question which cannot be analyzed on the basis of
“isotropic” intuition is the behavionr of the composite material subjected to compression
along the fibres with the stress of absolute value exceeding the shear modulus [14, 13]; for
any real isotropic material such a question is meaningless,

(*} It has been considered subsequently almost in every paper dealing with bending of

strongly anisotropic beams or plates.
{*) When the present anthors obtained the estimates for the range of influence of the

end loads in plane problems, they were not aware of the results reported in [12].
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in such a way, that for all points of the body we have —h < z4 < h. We
shall confine our interests to the bending mode of loading, i.e. we assume
that the stress components o1 and g3 are odd functions of 22, while 44 is
even with respect to this variable; this imposes certain symmetries on the
load scheme. We shall assume at last that there are no tangent loads at the
longer sides, 012|zy=4n = 0.

Plane elasticity constitutive relations can be expressed as follows:
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€11 = (Uu+ Mo‘zz )

A 2
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(2.1) f22 = T (712722022 SRS Skt 7; Bon),
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where dimensionless constants v1,v2,¥s can be expressed using two-dimen-
sional elastic moduli
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Our present considerations are aimed towards the description of the fibre-
reinforced structures, thus we shall bear in mind all the time that we assume



86 A. BLINOWSKI and J. OSTROWSKA-MACIEJEWSKA

the following inequalities to be fulfilled:

El El
(2.2) p > 1, o) > L
By Ei, Ez, p, n1a and vy (vi2Fy = v31E3) we denote two-dimensional
moduli and Poisson’s coefficients; in the case of plane stress they coincide
with the corresponding three-dimensional values (*).

In the course of forthcoming consideration we shall use, in fact, the
well-known method of the Airy stress function. Since we shall have to deal
not only with the static boundary conditions in terms of tractions, but also
with “kinematic” conditions, expressed by displacements, we shall modify
this technique to some extent. We shall introduce to this aim such a displace-
ment function G(z1,22) that the displacement fields (1, z2), u2(z1, 22)
can be expressed as follows: '

1 24 a2 9v2 1 .
) = ~— |Gz + _11—12“—%0,11 = —(G 99 — v 11) 2,
E1 2 2 El
(2.3) . WIRTEPW: )
_ 2.2 i Rl Y — A —
u2 El (‘Yl’)’z G,ll + 2 ;22) L E2( !11 Vl?G?22)'l’

where comma denotes the partial derivative (®). Using this representation
and the inverted constitutive relations (2.1") one can rewrite the equilibrinm
conditions '

o111+ o122 = 0,
(2.4)

ogy21 + 0222 = 0
in the following form:

[G,zzzz + (’)’12 + 7§)G,11‘22 + ’)’12’Y§G.1111] ) = 0,
(2.5) ’
[G,zzzz + (1 +7)G 22 + 712739,1111] =0

This set of two equations is equivalent to the following single equation:

(2.6) G azza + (Vi 4+ 73)G 122 + 117G = C,

where (' is an arbitrary constant.

(*) For general case, as well as concerning the expression of coefficients v; in terms of
the Kelvin moduli see [16, 19].

(°) Representation {2.3) imposes some differential comstraints on the displacement
fields, These constraints, however, can be independently obtained from Lamé equations,
thus they do not reduce the generality of the representation.
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Omne can prove easily that the following relations hold true:

o1 = G,

(2.7) 022 = G 1om1
C
o2 = —5 — G 1212
2v3

thus, assuming C' = ( one gets ¢ = (15, where & denotes the Airy stress
function; in general case

C
2.8 P =Gi9— —1122.
( ) 12 2’_},% 2

Thus & satisfies the following differential equation (5):

(2.9) P o202 + (1 + T%)Quzz + 71273‘45,1111 = 0.

It is a proper place here to quote an instructive example, It is well
known that for the strongly anisotropic cantilever beam loaded at the free
end one obtains significantly nonlinear normal stress distribution at the
cross-sections (cf. [11]) (7). It is not difficult, however, to point out another
plane solution, fulfilling the same integral load conditions at the ends which
yields linear distibution of normal stress at the cross-sections. Indeed, let us
take

2,22
““Bh Ty

(210)  G(zy,22) = — {l‘?fﬂ%_ 2§ (v +v5)es

8h2| 2 307342 30

2 2
_l_
+Az] + (———71 1 ﬁvzzfi) 23+ B-’B?] :

where A and B are arbitrary constants. For such a function Gz, ;) one
obtains ¢' = 0 l.e. & = G 12, thus

30’931$2

ol = Gy = )

72
(2.11) o2 = Gz =0,

3o
a3 = —G 1122 = —W(‘Eg ~ k).

(°} In fact, expressions (2.3) have been originally obtained by integration of Eq.(2.1),
stress components being expressed using Airy function derivatives.
(") Very similar resulis were obtained by one of the present authors for bending of the

strongly anisotropic plates [18].
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It is not difficult to see that the stress field (2.11) corresponds to the can-
tilever beam loaded at the side &3 = 0 with the tangent force F' = 2ho, i.e
o is the mean tangent stress at the cross-sections. By the proper choice of
the constants A and B:

_ B (712+7§+37§+12)
T 29242 3 XNk
(2.12) N
B = _h_i_ 2442 1092 - ﬂi
- 373722 T T2 7_3 he i

one can set the horizontal displacement of the corners at some cross-section
#1 = | to be zero and the vertical displacement to vanish in ([,0). In this
case, the horizontal displacement profile at z; = [ can be described by the
following expression:

(2.13) wi(l,x2) = (v 4+ 43) + 298] (8? = 23)as,

o
Ah?E,

while vertical displacement at this cross-section can be expressed as
3o
(2.14) us(ly22) = g (72 +99) + 23] 1o}

The horizontal displacements are thus pinned in three points only (2 = 0,
zg = h, zz = —h) instead of vanishing across the whole section. It seems
that this constitutes the main difference with respect to the case considered
in [11]. This example demonstrates evidently, that the mode of the end
support, (even within the same “beam scheme” — in both cases the mean
rotations of the cross-section vanish) can have significant impact on the
stress distribution in all cross-sections.

3. ESTIMATION OF THE REACH OF END EFFECTS

We shall consider a class of the stress fields defined on the elongated
rectangular domain modeling a linearly elastic beatn supported at the ends.
Assuming the following form of the displacement function:

(3.1) Gz, 29) = Ue™ 1 cos(akey),

where U .denoctes a constant multiplier, and choosing zero value for the con-
stant C' in the equation (2.6), we arrive at the following algebraic equation
for a:

(3.2) ot — (v + 93 +yivi =0.
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Taking 71 > 742 > 0 one obtains readily the following (real) ascending se-
quence of roots of Eq. (3.2):
(3.3) - ay=-m, az = —7Yz, a3 = Y2, a4 = V1.
The discussion about the reach of the influence of the differences between
the modes of the stress distribution at the ends is meaningful as long as we
consider the equivalent total loadings which differ from each other only by
the self-equilibrated stress distributions with vanishing resultant force and
total bending moment. Thus, in fact, in virtue of the principle of superpo-
sition it is enough to consider only the reach of the stress fields generated
by such loads. Let us then impose on the stress fields, generated by the dis-
placement functions of the form (3.1), the following conditions at the end,
(e.g. for z; = 0):
h
f o12dzy = 0,
-k
h
(34) /0‘11 dmg = 0,
—h
h
/O’n.’cg d.?[?g = (.
Zh
A simple reasoning concerning the global equilibrinm of each finite rectangle
{~h < 23 < h, a <z < b}, where a and b are arbitrary constants, shows
that in the case of separated variables: G{1, 23) = =(21)¥(z2), where Z(z;)
is a monotonic function of z; and ¥(x2) is an even function of x4, conditions

(3.4) are equivalent to the following boundary conditions at the longer sides
(i.e. for @y = Lh):

U}z(ml,ih) = O,
- 0'22(.'61, :*:h) = 0.

In general, conditions (3.5) can not be fulfilied by the single product such
as in (3.1), thus we have to consider linear combinations of two solutions
having the same exponential term exp(—Fkz; ),

(3.6) G(z1,z2) e gk (acos(yikza) + b cos(y2kaq)).
Taking
(3.7 Gz, xg) = Ae (73 cos(y2kh) cos(yikza)

(3.5)

—1 cos(y1kh) cos('ygka:g)) ,
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one satisfies identically the first condition (3.5);, while the second condition
(3.5), can not be fulfilled for arbitrary value of &; to this end the following
relation should be satisfied: '

(3.8) v cos(yzkh) sin(y1kh) = 11 cos(y1kh) sin(yakh).
Denoting
(3‘9) ﬁ = k72h, 7= ﬁa

72

we can rewrite condition (3.8) as the following transcendental equation for
a dimensionless unknown §:

(3.10) vtg(B3) = tg(vh)-

Equation (3.10) has multiple roots. Figure 2 shows the first and second one
plotted versus 7. Eventually one obtains the following expression for the
normal stress at the cross-sections produced by any mode of self-equilibrated
end load generated by the displacement function (3.7):

x
(3.11) o1 = —Aexp (—%1-) B!

X (71 cos(f) sin (ﬁ’?%) — 7z cos(73) sin (’8%2>> '
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3925 ¥ \
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[
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Fia. 2.

Similarly one can consider odd displacement function giving rise the even
normal stress distribution at the cross-section. To this end it is enough to
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interchange sin and cos symbols in the formulae (3.6) - (3.8). Denoting this
time kyzh by § we obtain, instead of (3.10), another transcendent equation:

(3.12) tg() = 7tg(76).

The first two values of § for different v are shown at Fig. 3. For this case the
normal stress distribution has the following form:

_ 6921 . Tg
(3.13) O11 = 0 €Xp (_'Yzh) (71 sin(d) cos (6';/ . )

—Yg sin(y6) cos (é%)) .

4710 | 2-nd sofution
5 1-st solution \
3825 \ \

K0

2355 \ \\
NN

1570 g
\ —l
0785 E—
S——
o ! 2 3 4 5 6 7 8 9y w
Fis, 3.

Thus, using a different approach and considering a different engineering
problem, we have arrived at the same estimates as the one obtained by Cuol
and HorcAN [12] who were concerned in the decay rate of the influence
of conditions at the clamped ends of laboratory specimens rather than in
the analysis of the stress distribution in engineering structures. We shall
postpone for the time being the detailed discussion of the results (3.11) and
(3.13); we shall mention only that, for ceriain values of elastic constants,
they stay far away from the expectations of the Saint Venant principle in its
usual formulation. We shall return to this question in the concluding part
of the present paper. i

Concluding this section we would like to show one possible way of using
the modified representation of the form (3.1) for direct derivation of the
solutions of some selected problems. Assuming imaginary value of & in (3.1},
taking linear combination of solutions and changing notation, one can obtain
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the following family of solutions describing bending under different modes
of normal loads and different end conditions,

(3.14) Gz, x2) = cosh(akzs) (Ay sin(kz1) + Aj cos(kz1)),

where @ is the same as in (3.1), i.e. the solution of (3.2).
Taking for instance

Pgl4 wEq
(315) G($1,$2) = m Cos (T)

h
72 cosh (Zﬁf_’*) cosh (7_1@) — 42 cosh (’h;r ) cosh (72?;932)
X
h h H
2 cosh (’Lﬁ?ﬁ) sinh (71;1' ) _ , cosh (71: ) cinh (’Yz;rh)

one obtains a scheme of a beam, simply supported at 21 = 0 and =3 = [,
and loaded by a normal load

T

(3.16) | P(e)=Rosin ().

equally distributed between the lower an upper surfaces (zg = h). For the
normal stress distribution at the half-span cross-section we have

3.17)  ou (%mg) _fonm
ThY . TiT L rTirhy . YoM Xy
7 sinh ) cosh ; sinh ==
~3 cosh (72?’1) sinh (’h;rh) — =1 cosh (’l——lfh) sinh (—Fyth)

(72
1 cosh
while at the end cross-sections we obtain the following stress and normal

X

displacement distributions:

o1 =0,
o2 = i__Po’;fh
(3.18)

cosh (7—2%@) cosh (717;3:2) — cosh (@) cosh (WE—T?‘)
X ¥
72 cosh (72:‘]1) sinh (71;1’]1) — 71 cosh (11—?—’—1) sinh (’yz;rh)

’M;m{).
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We do not see any special reasons for a detailed discussion of the above
solution, because we can hardly point out any reasonable conditions at-the
supported ends, which can be described by the tangent tractions given by
(3.18); and vanishing normal displacement. One can see that in the case
of 11 large enough, the normal stress distribution given by (3.17) reveals
strong nonknearity, similar to that described in [18] for cylindrical bend-
ing of strongly anisotropic plates. We are not able however to tell, at this
stage of our consideration, if this is an innate property of all such solu-
tions (modeling, in integral sense, transversely loaded beams with simply
supported ends) or, possibly, an effect of the specific distribution, either of
tangent tractions at the ends and/or of normal transverse load. Building up
the solutions of real engineering problems as a superposition of the terms
like (3.15) may be inefficient for two reasons: first — in practical applications
the normal load is described using rather simple, piecewise linear profiles,
than the trigonometric functions, thus it may happen that a large num-
ber of terms may be needed for the description of a simple situation; the
second — a sophisticated approach may be necessary to provide simultane-
ously the proper normal load profile and stress (displacement) distribution
at the end.

In the next section we shall propose an approximate method which, being
in fact a generalized beam theory approch, makes it possible to take into
account some additional information about the end conditions (besides the
overall ones, integrated over the whole cross-section) and reproduces the
observed normal stress nonlinearity at the cross-sections, remaining at the
same time within the familiar area of the notions of structural mechanics.

4. THE POLYNOMIAL SOLUTIONS

We are looking for a displacement function in the form of the power
expansion in g, i.e. in the form

(4.1) G(r1,22) = 3 failw)o,
=0
where fyi(z1), (i = 0,. .., n) are unknown functions.

As the first question, what is usual in the case of such representations,
arises the problem of the degree of the polynomial, i.e of the order of ap-
proximation. Let us notice that, in order to find all functions fy;(z1) one
needs n+1 equations. If we introduce, as usual in the beam theory, two
boundary conditions at z; = +h — vanishing of the tangential tractions
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and the condition of the normal load distribution and two integral condi-
tions of equilibrium: for the transversal force and bending moments (¥), then
we obtain a system of four differential equations. This may suggest taking
n = 3, i.e. the 6-th order polynomials. The obtained system of equations
can be effectively solved producing oscillating solutions of decaying (grow-
ing) amplitude, which can hardly approximate monotonically decaying fields
generated by the sell-equilibrated tractions at the end cross-sections, Thus
we should take at least » = 4, i.e. the 8-th order polynomials. Here the
problem of a missing differential equation arises at once. In many problems
of bending we may expect the maximal shear stress in the vicinity of the
mediane z3 = 0, thus we propose to adopt the condition of exact fulfilling of
the second equilibrium equation (2.4); along the axis 3 = 0 as the missing
equation. Thus we have the following five conditions:

T12 =0,
zo==h
gl
022 = ——(2 ),
za=%h
h
(4.2) f(011,1 + o122)xadze = 0,
—k

k
/(012,1 + 0922) dzg = 0,
Zh

(o121 +022,2)| =0,

za=0

where g{z,) denotes the total normal load (°). Substituting expressions (2.5)
instead of (2.4) into (4.2)3, (4.2)4 and (4.2)s and expressing oy3 and 092 in
(4.2}, and (4.2); by derivatives of G(z1, z3) (1?), one arrives at the following

(®) The condition of integral equilibrinm of the longitndinal force is automatically ful-
filled due to the symmetry properties of the normal siresses generated by even powers
of zo.

(*) We assume that the normal load is equally distributed between two sides > = %h,
in many cases this restrictive condition can be omitted by a proper choice of additional
pelynomial (in both variables) terms in the displacement function “shifting” the o2z field.

(*%) Strictly speaking, the relation o12 = —G 1212 -+ const, holds true only if Eq. (2.6) is
rigorously fulfilled, while we assume, that it holds only in the integral sense, but in the
case of the expected stress profiles with high stresses at the boundaries, the condition of
integral moment equilibrium is almost equivalent to the fulfilment of (2.6) in the vicinity
of the outer surfaces,
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set of five ordinary differential equations for five unknown functions fy;(z):

5 +6fih* +15f5h* + 28 fR® = 0,

fmh + 2fmh3 + 3fmh5 + 4fﬂ'!h7 % ,

1206 + 672fh? + (7} + 73) (467 + 12/0h% + 24730
(43) wood (3 + 24004 24 S ) =0,
24 f1 + 120 £5h% + 336 f3ht
+2 (72 4+ 93) (74 + 205702 4 3004+ 4 £5'h°)
ool (8 + RN+ TN L0+ LU R®) = o,
24fi+2 (v +43) £ + R = 0.

Eliminating from the system (4.3) functions fy, f2 and f; as well as their
derivatives, after some rearrangements one can obtain the following system
of two differential equations for two functions fg an fs:

8
1203 + 672035° + 913 (gt + A h"‘)

- 2 q" 2, 0 1

4.4) 19
( 120f + 336 f5h® + i3 (gfé’ 4 —fé" h“")

2 9q
~2(yE + ¥)BFERE + 8FRY) = viyi R0h (it 2)4h3

M

Secking for the solution of the homogeneous system associated with (4 4)
(i.e for ¢ = 0) in the foﬂowmg form:

fé(ml) = kg exp (\/—7;;;)

fs(z1) = kgexp (m?)

by substituting expressions (4.5) into the reduced system (4.4) one obtains at
once the following condition of existance of nontrival solutions (characteristic

(4.5)
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equation):
(4.6) , s ps® 4 235% — 1lps + 16 = 0,

where: )

24 4t +1 y 2 s o
NZI 72’ V35~
Equation (4.6) for 4 large enough (y > 1.94) has two real roots and two
complex ones, i.e. a can assume four real values and another four complex
ones. Positive real values of @y and a3 are depicted in Fig.4 for different

values of dimensionless material constant 4. Thus in a general case we can

write

_ kt) a; I
o = E ep(\/ﬂh

!
fS—Zk exp(m )s

where constants kg) and kg) are not quite arbitrary, their ratio being de-
pendent on «y,

(4.7)

kD 3(3ef +5-315)
k( D~ T 28(af +3-315)h%

(4.8)

16

2

F1c. 4.

Knowing fe(z1) and fs(z1) and performing with care quite elementary
(however rather boring) calculations one obtains the following expressions




ON THE STRESS DISTRIBUTION IN BENDING 97

for the other three functions fo(z1), fa(z1), fa(1):
2
fo(zy) = 2h° Z [SLU ( —af &)
~

2
i +1 o T
+8R2EL) (9 — a?l——) ex “L
i v Wy

1 Ay 28 ) 14 3
—— B
157%_)’% ( 6h2 1+ 3 477 | + 00551 + D(]ivl,

8
Folza) = b3 (38 + Sk(')hz)exp(
i=1

(4.9)

\/‘_ h ) 4 A2$1 + BZ:EI)
2o (i) g i) 2 a; T\ As
f4($1) = —h E(3k6 +6k8 h )exp WI 6h2$1+B4$1-§-C4
=1 Vv

In expressions {4.9) we have omitted possible “void” constants which do not
contribute to the expressions for displacement and stress fields.
Knowing all fy;, (i = 0,...,4) one can find the displacement field by
substituting expressions (4.9) into the following equalities:
1
U = E—{(24f4 — 2w fNxg + (120 f5 — 4v f))a
1
(3365 — 60 )28 — 80 flaT),
Uz = [( Tivifa' = 2w fy) + (i fy — 120 fi)e}

+('rl V2 f4' = 300 fe)al + (M3 fE" — 56v fg)es + i S5 3).

(4.10)

Corresponding relations for the stress fields are much simpler:

g1 = 24(f:;"32 + 5f + 14fs 2./
(4.11) 0_22 ( ”f$2+2 ”’mg‘l‘s’f’” 5+4f”’2’32),
o1 = ~2(f3 + 6{z} + 15 fge} + 28f§x5).

Thus, at least in ﬁr’inciple, we have obtained a sequence of formulae
approximating the stress and displacement fields generated by the self-equi-
librated end tractions (we recall here, that we have assumed no transversal
load). The results presented above are complex enough to justify the opin-
ion that the general solutions, taking into account arbitrary tranversal load
profile, would be of no practical value.
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5. CONCLUDING REMARKS

Even a superficial analysis indicates that the crucial for our models, di-
mensionless material constant v can assume large values, e.g. for the elastic
constants of graphite/epoxy composite quoted in [12] v is greater than 7,
while v, equals about 5 and -, is approximately 0.7. This gives the decaying
slope approximetely proportional to exp{z1/h). Nonlinearity of normal stress
distribution in the considered case of simply supported beam is also evident,
however it is not drastic from the viewpoint of the load capacity estimate.
The proposed approach (using the displacement function) makes it possible
to find the beam deflection immediately from the formula (2.3). Thus the
authors can recommend the following method of solving the problems of the
stresses and deflections of these anisotropic beam structures by means of the
plane stress (plane strain) approach: first find any solution (e.g. polynomial}
satisfying the load distribution profile and the integral conditions at the end
cross-sections, then introduce the necessary corrections using the rigorous
or approximate form of the stress and displacements fields generated by the
self-equilibrated end loads. At the present stage of our knowledge we are not
able to point out any method of reasonable complexity for solving the prob-
lems of anisotropic beams using any kind of the generalized beam theory,
such as e.g. the Vlasov theory of thin-walled profiles [3]. It seems that the
problem of creation of such a theoretical model remains still open.
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