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PLANE CONTACT OF A CYLINDRICAL OPENING STIFFENED BY
A THIN SHELL (*)

D. BARDZOKAS (ATHENS) and G.E. EXADAKTYLOS (CHANIA)

In the present paper the plane contact problem is considered, concerning a circular
cylindrical hole stiffened by an elastic circular cylindricai tube (stringer) around its perime-
ter in a biaxial state of stresses at infinity. For the formulation of the interface conditions,
the elastic stringer is considered to behave as a thin shell, and its outer diameter, prior
to its insertion into the hole, may be equal or greater than the radius of the hole by a
small value of the order of the (infinitesimal) elastic displacements. The solution of this
mixed boundary value problem in plane strain conditions is found by numerical integration
of a system of a complex singular, and complex regular integral equation describing the
boundary and interface conditions of the problem, respectively. The classical method of
Kolosov — Muskhelishvili complex potentials $0(z), ¥o(z), in combination with the theory
of singular integral equations, is considered in this paper in order to obtain the solution
of the mixed boundary value problem stated above,

1. INTRODUCTION

Problems of strengthening.the bodies by thin-walled elements, such as
rectilinear or curvilinear stringers and closed cylindrical shells, belong to the
class of contact and mixed boundary value problems of deformable bodies.
Salutions of these problems yield the stress-deformation fields at the inter-
faces of a body, explain the nature of the interaction between its inhomo-
geneities, and eventually its effectiveness to carry the loads. A problem of
this type, constituting also,one of the most interesting applications of the
mixed boundary value problems in solid mechanics and rock mechanics, is
the strengthening of circular cylindrical holes by elastic circular cylindrical
tubes, For example, sufficient knowledge of the behavior of the rock mass
next to an underground ‘opening (borehole, shaft, tunnel etc.) is important
for optimum design, construction and operation of the opening.

The methods based on the complex variable function theory, developed
by MUSKHELISHVILI [1, 2], GAKHOV [3], and many others, have been applied
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effectively in the past for solving plane contact problems of the linear elastic-
ity theory. The problem of stregthening of a circular hole in an infinite sheet
by a welded elastic ring was considered by SAvIN [4, 5] and others, who
made certain simplifying assumptions concerning the interface conditions
of the problem. In the present paper, the interaction of an elastic circular
cylindrical tube perfectly bonded to a circular cylindrical hole boundary,
subject to a biaxial stress field at infinity, the radius of the tube being equal
or greater (by the order of elastic displacements) than the hole radius, is
investigated under the assumption that the tube behaves like a thin shell.
The solution of the mixed boundary value problem is found by applying
the classical method of Kolosov-Muskhelishvili complex potentials @4(z),
¥o(z), and the singular integral equations theory.

2. BASIC EQUATIONS OF THE THIN SHELL THEORY AND PROBLEM
FORMULATION

Assume that an elastic and isotropic circular cylindrical tube (a stiffener
of stringer) of length A and outside radius Ro is subjected to appropriate
forces and pressed into a cylindrical opening of radius R made in an infinite
elastic isotropic body; assume that Ky > K, Ry — R = pp where pg is a
small value of the order of the elastic displacements.

Once these forces are removed, the stringer will expand leading to an
interaction between the stringer and the material. In the absence of friction
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Fia. 1. Schematic diagram of a reinforced circular cylindrical opening.
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forces, this interaction will consist of normal forces only. The reinforced
body, which is referred to a Cartesian coordinate system z10xy with its
origin at the centre of the hole, is subjected to normal stresses o1 and a3 at
infinity, as shown in Fig. 1. Also, the part of the plane which lies to the left
of the oriented (anti-clockwise) contour of the hole y will be denoted by .5 +,
and that located to the right — by 5.

Prior to the formulation of the boundary conditions of the above problem,
the following basic relationships of the thin shell theory are given, based on
the classical Kirchhoff - Love hypotheses [6, 7, 8].

1. Equilibrium equnations:
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2. Strain-displacement relations:
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3. Relations between forces, moments and strains:
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4, Compatibility equations:
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where o, ay are the curvilinear coordinates along the middle surface of the
shell coinciding with its main curvatures, Ry, R, are the radii of curvature
of the middle surface of the shell, and A, A> are the corresponding Lamé
parameters; kg, kg, T are parameters of curvature and twisting of the middle
surface; T, N denote forces per unit length acting in the planes normal to the
middle surface of the shell, and forces per unit length acting in the planes of
the middie surface, respectively, and M are moments per unit length of the
normal sections; uy, 1y, w denote the displacement components referred to
the coordinates oy, a; and the normal to the surface of the shell coordinate
ag, respectively, Fy, vy are the Young’s modulus and Poisson’s ratio of the
shell, respectively, k is the thickness of the shell, and 7%, p*, ¢ denote the
components of the external loads on the upper (+) and lower (~) surfaces

“of the shell.
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Tor the case of a cylindrical thin shell the fo}lowmg relationships hold
true

o = s, oy = Z, az =71 =n, s = R,
(25) Al =A2=A3: ’ R1:Ra R2:00

u2:€2:n2:w:7'=0,

where s is the arc length of the middle surface of the shell, and R is the
radius of curvature of the middle surface of the shell.
Relations (2.3) take the following form if Eqs. (2.5) are taken into account

T = Eseq, Ty = Esusl, My = Dkq, My = D3Vf€1,

(2.6)
Tig =Ty = Mg = My =0,

where B £h3
-Es = —1"5 » DS = 1—2 .
1 -y 12(1 — v$)
Considering the shell stiffness in bending to be negligible (D, = 0), the
equilibrium equations (2.1) yield

107(8) _

m(6) = 77(0) — 77(8), q(ﬂ) =q7(0) - ¢*(9).

Next, by taking into account Fqs. (2.7), the boundary conditions for the
previously stated mixed-boundary value problem in the plane strain case
(length of the hole axis being much larger than any dimension in the 2102z,
plane) are expressed as follows:

n (8)

(2.7)

(i) The inner surface of the ring is free of external forces
(2.8) of —iocf =0,

where ¢ is the usual imaginary unit.

Along 7, at the interface.between the body and the elastic stringer, the
following system of mixed boundary conditions is given:

(i) According to the above formulated theory of thin shells and for the

specific case of a cylindrical thin shell, the normal and shear stress compo-
nents along the contact zone 7 of the two bodies must satisfy the relations

T(H) ot —o7) =
(2.9) DR
"ldT_@+( '""'O‘t_) =0

R
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where T(8) is the circumferential (hoop) force per unit length which acts
along the line lying in the middle surface of the cylindrical stringer, and is
given by the formula

str
£
1/2 8

Eih
1

(2.10) T(9) =

Here £§** is the circumferential component of strain along the line in the
middle surface of the ring, which can be obtained by applying Hooke’s law
for the case of plane strain

1
(2.11) eyt = — (1= v))os —m(1+ o] ;
Ey
here 05 = o, denotes the circumferential (hoop) stress component, and

o, = a, is the radial stress component (r,8 = polar coordinates).
(iii) Finally, along v the circumferential strains of the two bodies are

1
equal to 3"

(2.12) e =5 =¢€5".

Consideration of boundary conditions (ii) and (iii), together with definitions
(2.10) and (2.11), leads to the following relationship that must be satisfied

on 7y:

dt

(2.13) ER(1 —v})(o, —io; )+ Eh(1 +v) (1 - ft—)
| x[(1=v)og +07)~ 7] =0,

where t = Re'? denotes the position of a point on v, E, v denote the Young’s
modulus and Poisson’s ratio of the body, respectively, and o, = 0, 64 =
o, , since from (2.8) it follows that these are the only surviving stresses
(o} = o =0).
. Next, the complex potentials which describe the stress field are defined

by

$o(z) = P(2) + 1,
(2.14)

o(z) = P(z) + 1",

where

(2.15) &(z) = 5% jt( ;{'o(_%d‘r,
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a.l'l.d
4( 1 02):

1
I" = —5(0’1 — 0’2).

(2.16)

Combining relations (2.14) and (2.15) it is found that

(2.17) B3 () = o f AD ey

Then, if the density ¢(t) is the boundary value of a function analytic in 5~
then, according to the Cauchy formula for the infinite domain [3],

P (2) = —p(z) + (),
p(oo) =

Taking the limiting values on the contour v and making use of the Plemelj
formulae [1, 2, 3] it is found that

1
B(1) = —E}{}(’o(_—fldri—ZF,

(2.18)

(2.19) olt) = B(1).

Also, from the following boundary conditions on 7y [2]
d . dt
Q#E(wu +iv) = B(t) — k(1) + (t@’(t) +¥(1)),
(2.20)
an — iy = B(t) + (1) + (@’(t) +¥(1)),

where dt/dt = —e*?, the overbar denotes complex conjugate, Kk = 3 — 4 is
the Muskhelishvili constant of the matrix material for the plane strain case,
and g is the shear modulus-of the matrix material, it can be found that

: . d )
(2.21) (k+ 1)P(t) = (on + i0y) + Qua—t(u + ).
From the well-known relation of transformation of coordinates
(2.22) - w4 v = e~?(u, + iup)

and after some algebra, the following relation is derived:

d 1
(223)  (u+iv)= 5 [(1-rAor— (14 1)) - 3% + i% _
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Combining Fqgs. (2.21) and (2.23) we obtain
1—v a . 2p du
(224) @(t) = m(O‘n + 0'5) — 1 ! K -4

1+n+£1+m dr

= fi(t) + fo(t) — i fa(t) + ifu(t), .

where we have set

Al = ;;—:an(t) = don(t) = o:(8),
h(t) = Vcrg(t) - 409@),

(2.25)
f3(t) - ai( ) - Tré?(t):
fa(t) = i_pﬁ_du;_ft_) .

Furthermore, the initial pressure due to the difference of the stringer-perfor-
ation initial radii (go = R2 — R) is given by the following function p(¢) under
plane strain conditions [9]
4p 0
(2.26) p(t) = — 5
(1 — K- 2—)
7
where iy is the shear modulus of the shell. According to the above formula,
relation (2.24) takes the following form:

(2.27) (1) + fo(t) = fo(t) + fi(t) + fo(t) — ifs(t) + i fal2),
where fo(t) = p(t).
Integrating the second of boundary conditions (2.20) with respect to ¢
and solving for !P(z), we obtain
_ @
(2.28)  W(z)= —— f In=t0tg. L [ 20) e L T

2miS T—2z 2ri S T -2 27m (T — 2)*
¥ v

Returning to the second of boundary conditions (2.20) and substituting the
limiting value ¥(t) which can be found from (2.28) by applying Plemelj’s
formulae, one finds the following complex singular integral equation that
must be satisfied on ¥:

aw o\ B 2o e f T

v v it

%f %@(ﬂ d?} —(on —ioy) =2 [F + T+ jtf"]

where Re denotes the real part of the expression.
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Finally, substituting in (2.13) and (2.29) the values of the stresses and
of the derivatives of the circumferential component of displacement given
by (2.25), we end up with the following system of equations that must be
satisfied on the stringer-hole interface:

4 [ER(1—v?) + vEb(1+ )] fi(t) — 4BB(1 - v*) (1)

(2.30) = [ER(1=42) + vEh(1 + v)] p(1),
d v (1—v) _
E1h(1+1’)d—9 [_4f——vf1(t) + 4f2(t)] —E_Rmfs(t) =0

and the complex singular integral equation, considering also the initial pres-
sure due to an oversize in the radius of the stringer:

A(r) + H{r) = ifs(r) + i),

T—1

(2.31)

if h(r)+ fo(r) - ifs(T) +ifa(7)
T F—1

1 n — 10 t —ig 1 fo,—io
[_f td L tgr . L f tir
e .8} T2 m T
¥

_if AT+ folr) -+ ifg('r) - if4(1-)dT

T—1

h(r)+ folr) +ifs(r) - ifal7)

Filr) + fa(m) +ifs(T) - if4(T)dT

T

LRSI GEU UL ifi(r)

T—1

T

1A Jo(r) = ifalr) + iﬁl(r)df]

— df
—(on —toy) =2 (F +-I'+ Eff') + p(t).
Before proceeding to the numerical solution of the system of Egs. (2.30)
and (2.31), we investigate the limiting case of stress-free hole in the body
isotropically stressed at infinity (o1 = o3 = o). In this case Eqs.(2.30)
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are satisfied in a trivial manner, and it is valid that fi(¢) = f3(t) = 0
and f4(t) = 0, since dug/dr = 0 for an isotropic deformation of the hole.
Therefore, Eq. (2.31) can be simplified as follows:

%j{r—td _%}(Fit fzfritr t:rrﬁ%_d-l_ f 74

it Y Y

——fz.}( ! dr+~—f2.}(ldr=4f2=2(1“+?):al+02=20,
T T
¥

T T—1
¥

Thus, according to the above result and relation (2.25),, it is found that
og/o = 2, which agrees with the stress concentration factor predicted by
the classical Kirsch solution.

3. NUMERICAL SOLUTION AND RESULTS

By taking into consideration the following approximate expressions of
the functions given in [9, 10], we derive

1 2n+1 sin (2’!?. + 1)(00 -0, )
(3'1) w(t) = 2+ 1 Z . (00 — 03,) [‘Pl(tj) + "':‘PZ(tj)]

2
xlj‘((‘g(T)drw - znf:l 14 2i nnwo?—gj)sm(nH)(;O_Bj)
i) r—1t _2n~§—lj=1 . (06— 8;)

b4 sin 5

X 1 (t;) + dpa(t;)] -
Separating the real and imaginary parts of (2.31) and considering also rela-
tions (2.30), we derive the following system of linear algebraic equations by
applying the approximate relations (3.1):

1 Il sin(2n+1
(32 5y [{ER(- 1)+ ER(142)] 5 flt)
i=1 sin (95" —9;)
2
(65 plk) _ 8;)
1 251 [ \ ] sin(2n + 1)———‘—‘2————
-+ —4Elh(1 - v ) fg(tj)

2
~ [ER(L=v2) + vErh(1+ v)] p(2)
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and

2221 3 4E1hu(1 +v)

(3-3) 2n+1 1-v

=1

(kY _p. (k) _g.
ICEN G S AP )

. k
5 5 — sin n(ﬂ(() ) .. 8;)

X fi(t;)
(k) _g. I
SiIl2 (90 _HJ)
2
1 2n41
+m Z 4E1h(1+l‘/)
i=1
k) _p. (%) _g.
n CO8 (2n+1)(290 ;) sin (6 5 b) _ sin n(@ék) —65)
x 7 g, Falt5)
Sinz( o~ J)
2
(k) _g.
i 2n+41 (1 _ U12) sin (2n+ 1)(290 GJ)
+— (1+x)ER ' fa(t;) =0,
2n41 = 1-v i (gék)_gj) 3
2
and for the real part of relation (2.31),
‘ k
2n+1 8 sin (2nt 1)(26((’ )_gj)
(3.4) ——— —6cos(ly ' —0;) — 4 - At
2o+l o o (867 -6))
2
1 2n+1 (k)
tor g 2 44+ 2cos(68 - 85)] 12(t;)
: i=1
: (%) _g. (k) _g.
1 2n41 sin n(eﬂ 5 GJ) sin ("H'l)(go 93)
tonpt 20 |204) @6,
=t sin ~—¢—-27

-2

— 22 k) sin(857 —0;){ f3(t)
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(k)_ R (k)_ )
(3.4) L 2t g MO =0;) . (nt1)(65 — 85)

+ 3|4 2 2

ont. ; k
Jeont.] 2+l | L (80 )2_.%,)

+2 sin(G(()k}—Bj) fa(t;) = (o1 + 02) + (01 — 03) cos 29[()k} + p(t)

as well as for the imaginary part of (2.31),

k) 4. *)_,.
1 In+1 sin. ”(90 HJ) sin (n+1)(60 GJ)
(3.5) 2n+1 4 2 P _g 2
j=1 Sin( 0 - .T)

2

—6sin(8 —0,)| A

(k) _g. *) 4.
in n(fy ' —-6;) sin (n+1)(05" —0;)

1 2n+1 g

Im+1 > |4 2 0] 2 +25in(0(()k)—9j) fa(t)
=1 . {65 —6;)
sin —m—
2
1 2n+1 .
ForrT 2 |22+ cos(8” )+ (14 +)
. j:.'“l

() _ g,
o @t 1)(67-6))

+(1+5) 2 falt
(687 -8)) )

sin ~—2 77

2
1 2n41 . (k) .
+2n+1 Z [_2 COS(GO _93')] f4(tj) = (0'1 - 02) sin(é?(() )._91-)'
=1
Here
273 ) ) . .
i ony1 17 1,...,2n+ 1 are the integration points, and

9(()k) _ (k-

ol k=1,...,2n+ 1 are the collocation points.
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Solving the above established system of linear algebraic equations for
f1(t5), f2(t5), fa(t;) and f4(t;), we determine the complete distribution of
stresses and displacements along the boundary 7. If the number of integra-
tion points is increased, the variation of the stresses and displacements wilt
be described with higher accuracy.

In the following we shall compare in a graphical form the results given
by SAVIN {5], concerning the influence of the ratio of rigidity of the circular
cylindrical tube to the matrix material, containing a hole of radius R = 1
and stressed at infinity by a tengile axial stress ¢y = 1 MPa, upon the polar
components o,, og and 7,9 of the stress tensor at several points along the
circular contour y. For simplicity, all dimensions of the problem have been
normalized to the length of the radius R of the perforation. It is reasonable
to begin this comparative investigation from the extreme case of E1/FE =0,
that is, with no effective support of the hole. In this case ¢, = 7,4 = 0 along
4 and the circumferential stress g4 is given by the classical Kirsch solution.

Figure 2 shows that predictions of the proposed method agree very well with
the classical Kirsch’s solution.
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FiG. 2. Angular distribution of the circumlerential stress along the interface
for By fE=0.

In order to evaluate the convergence of the method, Table 1 was con-
structed containing the angular stress distribution along the interface v, for
Ey/E = /v =1and h = 0.1, and for a number of integration points n
equal to 4, 6 and 8. It is obvious from this table that when the number of
integration points increases, the variation of the polar stress components is
described with higher accuracy.
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Table 1. Angular stress distribution along the common boundary of the shell

and the perforation.
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n=4
9 Fr T Tre

(x rad) {(x10° Nm™?) {x10° Nm~?) (x10% Nm~2)
0 --0,01388744 —(1.14234650 —0.00236107
+1/9 0.07318417 0.75013810 —0.43572980
+2/9 0.19256280 1.97376800 —0.16643650
+*3/9 0.15413280 1.57986100 0.35396130
+4/9 0.02889781 0.29620240 0.27011450

n==5
0 ~0(.02153770 —0.22074100 —0.01893179
:!:1/13 0.02784573 (G.28541860 —0.37904500
+2/13 0.12839200 1.316019060 —0.42930510
:|:3/13 0.19745690 2.02393460 —0.12696040
:i:4/13 0.17939760 1.83882500 (.26910780
+5/13 0.09272188 0.95039930 3.42358730
+6/13 0.01343439 0.13770230 0.21164690

n=28
0 —0.021523640 —0.22061740 0.00589600
+1/17 0.003799718 0.03894717 —0.27995220
+2/17 0.068100550 0.69803060 -—0.41656340
+3/17 0.137224600 1.40655300 -0.33221280
+4/17 0.174469760 1.78831500 —~0.07100409
:|:5/17 0.159827700 1.63823400 0.23018940
+6/17 0.1060503700 1.03016400 0.41322080
+7/17 0.027215940 0.27896340 0.38135190
+8/17 —0.021806580 —0.22351770 0.14992020

Next, three different ratios of the tube-to-matrix material elastic moduli
are considered for £,/ FE = 0.5 (soft support), E4/E = 1.0 (support material
is the same as in the matrix), and E; / E = 10.0 (stiff stringer). In all the cases
examined above the ratio vy /v was equal to 1, & was equal to 0.1 and the
number of integration points n = 16. Figure 3 shows the angular distribution
of the circumferential stress oy at the interface predicted by the shell theory
and Savin's method for the case of Iy /E = 0.5. As it can be seen, the results
obtained by the two methods compare very well, the same holds also true for
the radial stresses, while it was found that the predictions of the two methods
concerning the shear stresses are different. In Fig. 4 the predictions for oy of
the two methods are compared for Ey/F = 1.0. As it can be observed from
Figs. 3, 4, both the methods predict the decrease of oy (and the consequent
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FiG. 3. Angular distribution of the circumferential stress

for By /E = 0.5.

along the interface

| Savin

6
angle fradl

Fic. 4. Angular distribution of the circumferential stress along the interface
for £ /FE.= 1.0 and for two values of go = > — 1.

increase of o, and 7,¢) when the ratio Iy /F increases. In Fig. 4 the angular
distribution of the circumferential stress for go = Ry — R = 0.001 is also

given, In this figure it is shown that: (a) Savin’s method overpredicts (by a
small amount) the magnitude of oy for the angle ¢ close to /2 and 37/2,
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and (b) — the initial pressure exerted on the perforation due to an oversized
stringer radius leads to a better support of the opening. It was also found
that for the same elastic moduli, the shear stresses predicted by the two
methods agree better when compared with the previous case of the softer
support.

Finally, in Fig.5 the angular distribution of og for Ey/E = 10.0 is pre-
sented. In this case both methods predict approximately the same shear
stresses, while Savin’s method overestimates the magnitude of the radial

and tangential stresses in the direction perpendicular to the direction of ap-
plication of the remote load, and underestimates the magnitude of both these

components of the stress tensor in the direction parallel to the direction of
the external normal stress (oq).
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Fia. 5. Angular distribution of the circumferential stress along the interface
for E1/E = 10.0,

From the above comparison it is concluded that, although the results
given by Savin and the present method are quantitatively comparable for
the rigidity of the stringer being not very large compared to the matrix,
they give quantitatively different results for the magnitudes of the radial
and circumferential stresses for a more rigid support. More specifically, as
the ratio E;/FE increases from zero, the difference between the maximum
values of oy predicted by the two methods {which is most critical for the
design of the support of a perforation) increases monotonically, with the
shell theory to predict always the lower value, This may be attributed to
the consideration of the shell effect in supporting the hole.
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4. CONCLUDING REMARKS

The method developed in this paper yields the solution of the plane strain
elastic problem of a circular cylindrical opening stiffened along its perimeter
by a thin shell, which may be oversized prior to its insertion into the opening.
The solution of the problem was achieved by forming a system of two regular
and two singular integral equations, which are further reduced fo a system
of linear algebraic equations. The numerical solution of this system gives the
angular stress and displacement distribution along the contact boundary of
the stringer and the perforation. A comparison of the method with Kirsch’s
and Savin’s solutions for various ratios of the elastic moduli of the stringer
to the matrix material was presented, and the convergence of the method
was evaluated. From this comparison it was concluded that, although the
results given by SAVIN [4, 5] and the present method were quantitatively
comparable in cases of the rigidity of the stringer being not very large com-
pared to the matrix, they give different quantitative results for the magni-
tudes of the radial and circumferential stresses for much more rigid support.
This may be attributed to the consideration of the shell effect in supporting
the hole.

The mixed boundary value problem of interaction of the hole support
(stringer) with internal cracks in the matrix material is currently under
development, and the results will be presented in a future article. It is worth
noticing that the above problem has not been solved yet even for the case
of simple interface conditions (continuity of stresses and displacements).
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