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ON REGULARIZATION OF PLASTIC FLOW LOCALIZATION
IN A SOIL MATERIAL
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P.PERZYNA (WARSZAWA) and E. STEIN (HANNOVER)

Density-dependent critical state line (Cam-Clay type) model is regularized by vis-
coplastic formulation to assure the mathematical well-posedness of the initial Cauchy
problem. In computations this reduces the so-called Primary Mesh Dependence which is
defined in the paper. Several numerical examples of two-dimensional plane strain pillar
problem confirm the validity of the proposed formulation and its usefulness in numerical
calculations.

1. INTRODUCTION

In many practical engineering problems the knowledge of post-critical
behaviour of the system under consideration significantly helps to predict
its safety. The detailed information on both global (e.g. force-displacement
relations) and local (e.g. the distributions of strains) levels are very impor-
tant. The localization of deformations, which is experimentally a very well
observed physical phenomenon, is characterized by appearing of large strains
in relatively narrow zones of the specimen. This phenomenon nearly always
accompanies the failure in ductile (metals, polymers) as well as in brittle
materials (concrete, ceramics), including soils. The width and directions of
the localized zones depend significantly not only on the material parameters
but also upon the shape of the specimen and the initial and boundary con-
ditions. One should also stress here two important qualitative results, and
namely:

e the width of localization, being very narrow in some experiments, is
always finite, even for very fast processes,

e the width and directions of the zones of concentrated strains signifi-
cantly depend on the type of loading and its velocity. The localization pat-
terns are usually different for quasi-static and for dynamic types of defor-
mations.
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To present the motivation which is based on the experimentally observed
physical facts and to define the background of this presentation, several
levels of the treatment of the localization are presented in Box 1.

Box 1

Experimental Results

Mathematical Formulation of the observed
Physical Phenomena

— Statistical Mechanics
— Microlevel Description
— Continuum Mechanics Description

— Continuum Damage Mechanics
— Fracture Mechanics
- Plasticity with softening

— Smeared Crack Models

— Higher Gradients Models

— Embedded Models

— Cosserat Models

— Rate-Dependent Models
— others

If we concentrate on the continuum-mechanical basis, one can notice
that the phenomenon of localization which starts from the microlevel, is not
directly observable on the purely phenomenological level of description. It -
seems to be natural that we have to introduce the additional information
which allow us to model more precisely the problem of nucleation and grow-
ing of microdefects which are macroscopically observable as a localization.

One of the used descriptions is based on the rate-independent plasticity
and introduces the strain-softening effect which smeares out the localization
strains over the certain domain. In fact, the softening modulus used in this
formulation is not measure-invariant in the sense that it is dependent on the
strain measure. This approach drives, in turn, to apply materials which do
not satisfy the Drucker material stability conditions.

Finally, if one would restrict the attention to the strain-softening rate-in-
dependent materials, the local Cauchy problem as well as the initial-bound-
ary value problems become not well-posed after the critical loading has been
reached. The loss of ellipticity or hyperbollicity of the system of the govern-
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ing equations which can be associated with the localization phenomenon,
can appear as a result of lack of normality of the plastic flow (nonassociated
flow) or through the introduction of the strain softening effects.

The analysis of the localization phenomena has been performed by many
authors, beginning with the works of HiLL [11], MANDEL [22], RUDNICKI
and RICE [33] or RICE [32]. Two important questions must be answered
before solving any initial-boundary value problems with localization. First,
on the level of mathematical modelling one has to be able to predict when,
where and in which direction the localization zones will appear and what
will be their width. Also, the problem of well-posedness has to be the sub-
ject of interest. Second, from the viewpoint of numerical simulation, one
should not avoid the discussion on mesh-dependence (see for example [20]).
This is particularly important because in some presentations, the notions of
unusually high mesh sensitivity of the results of calculations appear.

In Box 1 we have indicated different possible treatments of the problems
of localization of plastic flow which exhibits softening. They are different
from each other, however all of them introduce implicitly or explicitly the
length scale that plays the role of a regularization parameter. This ensures
the well-posedness of the so-called abstract Cauchy problem which is the
necessary condition of uniqueness of the solution of the initial boundary
value problem (IBVP); e.g. see [15].

Among other possible methods of regularization which are briefly indi-
cated in Box 1, we will use the viscoplastic one.(!) We will concentrate our at-
tention on the regularized formulation and numerical implementation of the
rock/soil/clay model of the material of the so-called critical state line type.
Two-dimensional plane strain examples without and with regularization are
presented and discussed. The idea of the primary and secondary mesh de-
pendence is introduced and numerically verified. The numerical results are
obtained by means of the user subroutine option UMAT in ABAQUS pro-
gram.

The aim of the paper is to propose, for IBVP which use the soil-like mate-
rials, the viscoplastic method of regularization, in particular for plastic flow
localization which accompanies the dynamical load cases. Another goal is to
discuss the numerical aspects of sensitivity of the results to the finite element
mesh used in computations when the softening occurs, see also LODYGOWSKI
[20]. The method which we have proposed here guarantees the stability and

(*) For a thorough discussion of the concept of viscoplastic regularization for polycrys-
talline solids see PERZYNA [29, 30], and for geological materials DUSZEK-PERZYNA et al.
[7]. The review of the theory and numerical treatment of the localization phenomena in
geomaterials will be presented by DUSZEK-PERZYNA et al. in [8].
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uniqueness of the obtained results; being not purely mathematical, it has
also the physical arguments in the definition of the model parameters.

The paper is organized as follows. First, we present the rate-independent
soil model to show in examples the significant and not acceptable mesh
dependence of the obtained numerical results. Then, after formulation of
the primary and secondary mesh dependence, the viscoplastic regularization
of the plastic flow localization is presented. Next, we specify the consistent
matrices for 2-D plane strain cases. Numerical studies of pillar examples
which show a significant reduction of the primary mesh sensitivity and the
conclusions close the paper.

2. RATE-INDEPENDENT FORMULATION

2.1. Notation

Let us introduce the well-known multiplicative decomposition of the de-
formation gradient F in the form (see LEE [16])

(2.1) F = F*F”,

where F(X,t) = 0x(X,t)/0X and F¢, F? are the so-called elastic and plastic
deformation gradients, respectively. The velocity gradient L can be then
decomposed into the elastic and plastic parts

(2.2) L =L +17,

and each of them can be further presented as a sum of its symmetric and
nonsymmetric parts; for example, the elastic part is written as

(2.3) L° = D + W,

The symmetric part of L, namely D, represents the stretching tensor and
W the spin tensor.

Next, let us define the bar form of the selected second order tensors with
respect to the group of rotations Q° by the following transformations (see
GURTIN [10])

(2.4) Eal LB el 0 1Q5%

where T represents the Cauchy stress tensor and Q°(t) defines the group of
time-dependent rotations through the initial value problem

(2.5) Q°=WeQ°, with Q°%0)=1,
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where 1 is the identity tensor and ( )T denotes transposition. This rotational-
-neutralized (pull-back) tensorial quantities which are introduced here (see
also GURTIN [10]) will be used to define the convenient framework for inte-
gration of the constitutive model. With these definitions, the time derivative
of the Cauchy stress tensor satisfies the equation

(2.6) T=QTlT"Q =T",

and is objective in the sense of material frame-indifference (cf. TRUESDELL
and NotL [38]), i.e. is invariant with respect to any superposed rigid motion.

2.2. Rate—independent material model

Let us summarize some basic assumptions of an elastic-plastic model of
soil-like material with the yield conditions which depend upon the hydro-
static pressure and changes of porosity. This material model belongs to the
so-called critical state models (see WooD [39]) and was originally introduced
by PIETRUSZCZAK and MRz in [31] to model granular and rock materials.
Let us assume also that the yield condition is a function of stresses and
depends on the irreversible part of porosity or density variation 7, which is
the internal state variable. Hardening and/or softening behaviours are intro-
duced through the evolution of this internal scalar state variable. The model
which is presented intends to simulate, contrary to the known Cam - Clays,
the constitutive behaviour which is not restricted to the purely cohesionless
materials. Similarly to the other Cam - Clay-type models, yielding depends
on the hydrostatic pressure and critical state line separates two regions of dif-
ferent behaviours: hardening or softening (for detailed discussion see WooD
[39], LoRET [21], DRESCHER [6], ADACHI and OKA [2] et al.). In this model,
on the so-called “dry” side the material dilates and, in a consequence softens,
while on the so-called “wet” side it hardens what accompanies compaction.
Main property of this model is that on the critical state line the material
can yield at constant shear stress with no volume changes. The other im-
portant property is that the yield is influenced by the mean principal stress.
We restrict our attention to the one-phase material model.

The relative bulk density, that is the introduced scalar variable, is de-
fined by

2.7 =L
(2.7) jertr

where p denotes the mean bulk density, and pg the intrinsic material bulk
density at a reference, in general, unloaded configuration, respectively. The
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porosity which could be defined as
Vy
(28) B =
Vi

in which V, and V; denote the volume of voids and the total volume of the
representative specimen, can play also a similar role of an internal state
variable. 77 can be expressed also as

AR Fm
LTY, T

(2.9) =1-4,

where additionally V,, describes the material volume. The change of the
internal state variable 7 is given by

I
2.10 = —.
(2.10) o
From the continuity condition
(2.11) o0+ odivv =0,

where v denotes the velocity, we arrive at
(2.12) o= —otr (ﬁ) ,

and after the decomposition of D into elastic and plastic parts we obtain

(2.13) i = —ntr (D) = ntr (DP).
AT I R i
e "

The second term of the right-hand side of (2.13) #? is the irreversible rate
of change of porosity. Finally, the set of equations for the rate-independent
material model expressed in transformed form with respect to rotation group
Q is as follows:

¢ Evolution equation for the Cauchy stresses
(2.14) T=cC:(D-D"),

where C = 2GI+ (K —(2/3)G)1 ®1 is an elastic material tensor; D” is the
tensor of the rate of plastic deformation which has the form
af

. Dp': .N _Z—'_
(2.15) (AN, N 5
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and where
(/\)_ A if f=0 and N:C:D >0,
0 if . f3 0 oniaf i@ o andio N D SA,

f is the yield function which depends, like in the critical state line type
models, upon deviatoric stresses, mean pressure and also on the introduced
internal state variable 7 and its evolution (2.13). The yield function is as-
sumed in the form

~ I {82 pec\?
2 c
. = = — - | — o <
1) f=REna=0-0*+3(3) - (%) <o
and the following notations are used:

(2.17) B =2v8:8 Sz dev (T) , p=-—tr (T)/3.

The geometrical interpretation of this yield function in (S,p) space and
its evolution are discussed in many papers, e.g. see DRESCHER [6]. Also
following this work we have adopted the material function ¢ in the form

(2.18) c=e(n’)=a(mp+1")-co

as well as the constant parameters a, 79, co used in numerical calculations.
The system of equations which describes the constitutive relation consists of
Eqgs. (2.13)—(2.18). Different values of parameters ¢, d, . define in (5, —p)
space different yield surfaces for which, contrary to the well documented
Cam - Clay models, carrying of small tensile stresses is also possible. As an
alternative of the discussed yield function f, that one which defines the
modified Cam - Clay can also be used. For the latter model the yield surface
consists of two elliptical segments in the (5, p) space

(2.19) %(5—1)2+<%)2—1=0,

where 1 is a constant used to modify the shape of the yield surface on the
“wet” side of the critical state, M is the slope of the critical state line and
defines the position of the yield origin along the axis of mean pressure value
p, a is a constant. The response on the “dry” side of the critical state for both
the above models expressed in the (.9, ) space (7 is the shear angle) exhibits
the softening behaviour, while on the “wet” side it tends to some limit value
with no negative slope. The detailed discussion of the models can be found
in PIETRUSZCZAK and MRrOzZ [31], WooD [39]. Some practical applications
as well as the discussion of the used parameters one can find in the papers of
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ApAcHI and OKA [2, 3]. For rate-independent formulation one can expect
the ill-posed problems and, as a consequence, in numerical computations the
significant mesh sensitivity, when the yielding enforces the shrinking of the
yield surface (softening) (see discussion in the work of PERZYNA [30] and
also the study of DE BORsT [5], SLuys [34] and LobyGcowskI [20]).

Application of the viscoplastic model to the cases involving soil materials
may be criticized. But one has to agree that all the formulations indicated
in Box 1, and used to describe the localization, have their advantages and
drawbacks. We believe, that each soil-clay material exhibits certain amount
of viscosity, and in particular for the dynamical load cases, application of
viscoplasticity is justified and finds its experimental confirmation; e.g. see
the works of TAVENAS et al. [36, 37] or LEROUEIL et al. [17].

For this purpose, the viscoplastic regularization is proposed to overcome
the ill-posedness and to assure invariability of the type of the governing
operator for the whole process, even in the post-critical states.

3. REMARKS ON MESH-DEPENDENCE

In many papers the problem of unexpected mesh-dependence of the nu-
merical results obtained for rate-independent plasticity was discussed (for
example, see [24, 29, 18]). Obviously, the numerical formulation and calcula-
tions always lead, in view of the algebraic character of the finite element tech-
nique, to approximate solutions. But for well-posed BVP the results obtained
by FEM should converge to the real analytical solutions. Of course, this is
true under the condition that the problems are mathematically well-posed.
For ill-posed problems, one can expect extremely strong mesh sensitivity in
computations and the results become meaningless.

For the purpose of this:presentation let us accept now the following two
definitions:

3.1. Definition 1

Mesh dependence of the first order (primary mesh dependence — PMD)
is the one which follows directly from the mathematical ill-posedness of the
BVP.

For ill-posed problems the uniqueness and the stability of the solution
can not be proved.

As a simple consequence, when the algebraic solution based on ill-posed
formulation is constructed, a serious mesh sensitivity can be easily observed
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in computations. The results which are obtained in these cases exhibit dif-
ferent responses (particularly in the post-critical range), when the analysis
is started from a changed mesh. If this kind of mesh dependence appears
(PMD), it should be recognized as an effect of ill-posedness of the original
mathematical formulation. For ill-posed problems the results of numerical
calculations are sensitive to the finite element mesh in an unexpected man-
ner, without the possibility of estimation of the errors that appear.

3.2. Definition 2

Mesh dependence of the second order (secondary mesh dependence SMD)
reflects the well-known influence of spatial and time discretization.

For well-posed problems it approaches in the limit the analytical solution
when finer meshes are used.

In this paper we are going to avoid only the mesh dependence of the first
order PMD which, in our opinion, is the most important aim in case we are
dealing with plastic localization and softening problems.

The mesh dependence of the second order SMD can be always avoided by
applying different sophisticated numerical techniques (eg. adaptive remesh-
ing) and can be taken into consideration only if the primary problems are
satisfied. All the methods of regularization which are shown in Box 1, in-
troduce, in fact, in a different way, a length scale parameter. It is achieved
for example explicitly in embedded elements and in Cosserat formulation,
or implicitly for nonlocal theories. The length scale parameter which is in-
troduced in the formulation assures the well-posedness and the possibility of
continuation of the analysis after the localization criterion is satisfied and it
influences the width of the localization zones as well. For the methods men-
tioned above which introduce the length scale parameter, one can observe
that the value is chosen almost arbitrarily (it can depend on the grain size).

It seems to be natural that, basing on the experimental observations
which show that all the materials have some viscous properties, we choose
PERZYNA’S viscoplasticity [26, 27, 28] as the tool of regularization.

4. RATE-DEPENDENT FORMULATION

The rate-dependent material model which is expressed in a form trans-
formed with respect to the rotation group Q can be performed in the fol-
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lowing manner
(4.1) T=c:(D-D"),

where D? is the viscoplastic rate of deformation tensor and is assumed
as [26]

=up ¢
(4.2) D™ = o(¢(5,p, 7)) o5 -

oT

In the above formula ¢ denotes the viscosity and the associative type of
plasticity is taken into account, ¢ is empirical overstress function and (-)
denotes the Macauley bracket which is understood as

(4.3) <¢(F)>={¢(F3 PE

The viscosity ¢ is sometimes denoted by ¢ = 1/T,,, where T}, is relaxation
time for mechanical disturbances. The relaxation time which can be used
for soil-like materials is of the order of 10=3s. The evolution equation for
the irreversible part of the porosity changes is

(4.4) 7P = —ntr (D).

The important feature derived from the viscoplastic formulation of the prob-
lem for numerical calculation is the existence, uniqueness and stability of the
abstract Cauchy problem. The discussion of this problem, after the condi-
tion had been specified by KaTo [14] and HuGHES, KATO and MARSDEN
[13], was presented by PERZYNA in [29, 30].

Since in numerical calculations we restrict our attention to 2-D plane
strain problems, let us now specify the necessary expressions which describe
the constitutive model for this case. The matrix C takes now the form

(4.5) C=2GI+(k-G)191,

where k=K +(1/3)G, and the function ¢ is expressed similarly to Eq.(2.16)
as

(4.6 s=o-or+3(3) - (&),

with the material function ¢ given by (2.16). The viscoplastic part of the
rate of deformation is now represented by

(4.7 DY = o(6(5.0P) [ - (p- 1]

where @ = S/85.
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5. NUMERICAL SOLUTION
5.1. Numerical integration of constitutive relations (Gauss point level)

To approximate the value of any function y in the vicinity of certain point
where it is equal to yo, one can adopt the general form of the well-known
trapezoidal operator such as the relation

(5.1) ¥ =90 +t(1-0)f(y0,0) + O f(y,1)],

for 0 < ©® < 1, where t represents the time interval and f — the time
derivative of y. Using the limit values of ©® we arrive at the so-called fully
implicit (for @ = 1) or fully explicit (for @ = 0) estimates, respectively.
Particular application of this trapezoidal operator produces the following
numerical approximation of Kirchhoff stresses

(5.2) Toagi = Ty 1 1= 0)T, + @im] :

where subscripts n and n + 1 denote the two neighbouring states. Assuming
the evolution of stresses as in (4.1) and viscoplastic rate of deformation as
(4.2) in (5.2) for 3-D case, one can arrive at

= Ppre
T

n41
A

(53)  Tny1 = Tn + 2GAT + kAe -1 -2G - 1(1 — )57,

—2G104, 5, T, 0<0 <1,
where A€ = D-t, tr(D)-t = tr(A€) = Ae and Y = ¢(¢n(+)). If we
apply the full backward operator (@ = 1), and after the decomposition of

Kirchhoff trial (elastic predictor) stresses into deviatoric and mean pressure
components, we obtain

(5 4) §n+l = gv?—iel o 2Gt"7;?+1 *Npyr,
Pnt1 = Dpy1 T+ kAe™.

The first trial (elastic predictor) step of numerical algorithm gives

Tt = Tn +2GAE + kAel,
(5.5) 8r = 8, 4 1GAe,

Pot1 = Pn — kAe.
Evaluating the estimation of porosity and using the same way as before
(backward operator), we arrive at

(5.6) Mgy =1 —n-t-tr (D) =02 - nAe,
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where 7 could be obtained directly from the evolution law 7 = —5trD by
exact integration. So we have

(5.7) n = noe”4°.

It is more convenient to present the last result in terms of pl’;, then in
the short form Ae using the last equation of (5.6). Then the evolution of
porosity 1 has the form as follows

(5.8) Mgt = 1 - ePhs1=P)/k

Instead of cumbersome integration, the problem reduces now to the solution
of the following nonlinear system of equations

Snt1 = Spp1 — 2Gt0(bng1( ) Tns,
(5.9) Pnt+1 = pﬁfl + kAe*,

pre _ 2)/k
Mgt = NpePrir=Pr)/k,

Let .us observe that after multiplication of the first equation of the above
system by M, 4, we arrive at the purely algebraic following system of equa-
tions

_S_TH'I = ?5_:_61 = 2Gt¢<¢n+1( : ))7
(5.10) Poi1 = Poy1 +kAe],
Mnt1 = nne(pf‘rjl —Pn)/k

The last equation of (5.10) can be directly used in Egs. (5.10); and (5.10),
because ¢4 is the function of 9,11 and also Ae;h, = tr(A€*?)=t-tr(D ") =

t-tr (99(45( ))g—i), so finally we will use the system of only two algebraic

equations.

The system of equations, which has to be solved at each integration point
at all iterations, can be highly nonlinear, so we have to be sure that we are
able to obtain a good convergence of results for a wide class of nonlinear
expressions. For this purpose the BROWN solver [9] of nonlinear system of
algebraic equations was tested for a lot of sophisticated functions, and finally
applied to the general elastic predictor — plastic corrector algorithm. It was
numerically proven that even for very difficult and almost singular nonlinear
functions, starting from the arbitrary point the solver achieved the solution
with good accuracy after only a few iterations. One can imagine, that the
efficiency of this solver, which has to be used several times at each integration
point and at each increment, is crucial for the finite element calculations.
According to the numerical experience collected with this solver, we have
never observed any difficulties with its convergence.



ON REGULARIZATION OF PLASTIC FLOW LOCALIZATION 457

This integration procedure which is performed on the level of the Gauss
point was included into the definition of the user subroutine UMAT that
includes users own constitutive law in the commercial program ABAQUS
[1]. In this case ABAQUS serves as the finite element framework to the
solution of nonlinear mechanical problem. This attractive possibility which
allows to include our own material law through subroutine UMAT requires
the definition of the constitutive Jacobian matrix. It can influence the speed
of convergence, for example the quadratic one, if a consistent linearization is
used; (see Sec.6). In the other formulations of constitutive Jacobian matrix
one can expect a slower convergence, but it should not influence the lack of
generally convergent properties of the algorithm. The summary of the main
steps of constitutive algorithm is shown in Box 2.

Box 2

Summary of the constitutive algorithm

1. Calculate the trial stress and normal mean pressure

pre pre

m re 1 m
Tn+1 =T, + (C[AEnH]a pg+1 = ‘3”( n+1)

2. Deviatoric trial
=pre —T—pre pre T

n+1 = n+1 + pn+1

3. If #(-) < 0 then the deformation is elastic
the constitutive algorithm is complete
else
continue
4. Solve the system of algebraic equations (Eqs. (5.10))
5. Calculate the radial return factor A, 4,
6. Update stresses

— =pre
Tn-H = ’\n+1 Sn+1 +Pﬁf11,

m T
Tot1 = Qu41Trn41Qpyg -

5.2. Numerical integration of the equations. Level of BVP

The method of regularization which is used in the paper, namely the
viscoplastic one, requires fully dynamical formulation. ABAQUS offers the
dynamic analyses both the explicit and implicit operators to solve the in-
cremental problem. Explicit schemes determine the values of quantities at
time t,4; based on the available values at time t,, but the procedure is
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only conditionally stable and the length of time increment that defines the
stability limit is approximately equal to the time for an elastic wave to
cross the smallest element dimension in the model. Implicit schemes remove
this bound on the time step size but nonlinear system of equations has to
be solved. Usually in structural problems, implicit integration schemes give
good solutions with the time steps by one or two orders of magnitude larger
than the stability limits of the explicit version. In the finite element cal-
culations of the dynamic boundary value problems we have used the wide
spectrum of ABAQUS possibilities.

6. CONSISTENT JACOBIAN MATRIX

In the finite element procedures which use the nonlinear constitutive
model the weak form of the equilibrium equation is used to describe in-
cremental motion which serves to calculate the values of stresses T and
porosity n at the end of the increment. If these values do not satisfy the
balance equations at the end of the increment, the iterative procedure starts
and is continued until these requirements are fulfilled to within the assumed
tolerances. As it was emphasized by HuGHES [12], the Consistent Jacobian
Matrices are used only in searching for the incremental motion, but have no
effect on the final accuracy of the solution. However, in order to speed up
the convergence (quadratic is characteristic for Newtonian methods), it is
important to evaluate accurately this linearized form (see NAGTEGAAL and
VELDPAUS [23]).

For 2-D plane strain case the Consistent Linearized Constitutive Opera-
tor J of our visco-plastic, density-dependent soil-like model is
dAT
where C = 2G1 + (k — G)1 ® 1 is used. The following notation, where E is
Young’s modulus and v is Poisson’s ratio is adopted in the formulae

(6.1) J=

E ] E
QO Sadayios S i)
S E
(6:2) b ek §‘G 21 -20)14v)’

where ¢t denotes the increment of time.
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Finally we obtain
(6.3) J=CPPI1+C;P191+C3neu+CP1@u+ CPfa®

where the coefficients C;” have the form

C? = 2G(1 - a%;—A'y),

CP¥ =k-G+ ——(2G)2A7 + k%a 636 - ng—¢2kGAe”
(6.4) CP = —(2G)%a am + (2G)2 = - ng 552647,
6A P 0P
vp __ _ i ot AP ol 7k P
C;f = —2Gka 25 " 35 2GkAeP,
cr = QGkaaaA7 % 2Gk-§3A7

7. NUMERICAL EXAMPLES

Let us examine a set of examples concerning a 10 m by 10 m pillar prob-
lem treated as a 2-D plane strain case under different mesh density. Basically
we will use three meshes 10*10, 20*20 and 40*40 of rectangular elements of
a linear shape functions. The results for both the rate-independent (without
regularization) and rate-dependent models are presented and discussed. We
will show the critical mesh dependence (sensitivity) of the first order for a
rate-independent model in static or dynamic cases, and significant improve-
ment of the results by using regularized viscoplastic dynamic formulation.

The interpretation of the mesh dependence is, according to 7YCZKOWSKI’S
classification [40], presented on the level of structure (force-displacement
space) and on the level of point (distribution of the equivalent plastic strains

e =/\/§DP : DP dt).

The data accepted according to DRESCHER [6] in the finite element cal-
culations reflect the parameters for medium granular sand: £ = 29.4 MPa,
v =03, a=4.905n = 0.58, co = 7.8, o = 1.64 g/m”>.

The results presented here concern mainly the 4 node bi-linear reduced-
integration elements with hourglass control.
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7.1. Rate-independent model

The purpose of presenting the results for non-regularized (rate-indepen-
dent) model is to gain the numerical evidence of the significant sensitivity
of the final results to the mesh used in computations.

7.1.1. Statics. Let us consider the boundary value problem of a pil-
lar presented in Fig. 1, and assume the perfect interaction of the specimen
with the rigid plates on its top and bottom sides. Let us assume also the
displacement-controlled process in such a way that the top side moves down
preserving the same displacements of all its nodes. Arc-length method was
used to control the incremental process.

I TOP i

displacement
or velocity

PILLAR SPECIMEN
10.0m

BOTTOM
y —_—
x’ | 10.0 m |

| |

F1G. 1. Two-dimensional plane strain pillar problem.

Concentration of the plastic deformation is clearly visible along the diag-
onals of the pillar. The results of plastic shear strains for different types of
elements CPE4 (linear 4-node quadrilateral element) and CPE4R (bi-linear
4-node with reduced integration quadrilateral) obtained under 10*10 ele-
ments discretization are presented in Fig.2a. We can compare the concen-
tration of plastic strains with the results obtained for 20*20 mesh (Fig. 2b).

It is natural that for this rate-independent formulation, the width of
localization should tend to zero. The tendency observed in numerical ex-
periments confirms this expectation and shows more concentrated strains
around the diagonals for finer meshes. The confirmation of a strong mesh
sensitivity on the global level is shown in Fig. 3, where the diagram of the to-
tal forces versus the displacement of the top side of the pillar is plotted. For
the static case, the different meshes used in the calculations lead to different
behaviour in the post-critical states (after the peak load has been reached),
and also predict different maximal values of forces that the structure can
carry.



a) Plastic Shear Strain, t=0.432, CPE4

b)

FI1G. 2. Distribution of plastic shear strain under static loading for 10*10 meshes and
20*20 mesh; a) CPE4 (bi-linear elements) and CPE4R (bi-linear elements with reduced
integration) 10*10 meshes, b) CPE4 (bi-linear elements) 20¥20 mesh.
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FI1G. 3. Mesh dependence for static case on the global level. Total force vs. displacements.

7.1.2. Dynamics. The same specimen was loaded in a dynamical way.
The top side moves with the constant velocity v = 3.125m/s so that after
t = 0.16 s the displacement of this side is 0.5 m. In this case, contrary to the
static one, the localization does not propagate symmetrically but it starts
first from the top side. One can also observe the influence of the elastic wave
propagation which in the whole process runs over the pillar, reflects from
the bottom side and comes back to the top. This wave plays the role of
imperfection, so no other artificial disturbances are necessary to enforce the
place of localization.

In Fig. 4 we can observe the development of equivalent plastic shear strain
zones obtained for the 40*40 mesh calculations. Comparing the results of
distribution of the plastic equivalent shear strains for two meshes at the
same time ¢ = 0.16's, one can easily recognize the significant difference (see
Fig. 4d and Fig.5) which is the result of PMD.

7.2. Rate-dependent viscoplastic model

Let us now examine our pillar problem using a regularized model. The
main goal of this part of presentation of numerical results is to show the
effect of minimization and to avoid the strong primary mesh sensitivity. Only
the dynamical calculations are taken into consideration and the conditions
are such as those defined in Sec.7.1.1. The relaxation time which was used
in calculations was of the order of T, = 1073s. In Fig.6 we present the
distribution of the plastic equivalent strains for two meshes of 10*10 and
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regularization for 40 * 40 mesh. Development of localized strains zones in time:
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of movement of the top side v = 3.125m/s.
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regularization for 20 * 20 mesh and ¢ = 0.16s. (For comparison with Fig.4c).
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20*20 elements. The three-dimensional plots of these strains confirm the
good agreement of both results for the specific time step ¢ = 0.16s. The
results for the plastic equivalent strains are close from both the qualitative
and the quantitative points of view. Additionally, very good convergence of
the obtained results can be seen in Fig. 7 where the values of plastic strains
for 3 meshes are compared along the cross-section z = 8 m. The difference
obtained for 20*20 and 40*40 meshes do not exceed the value of 5%.
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F1G. 7. Comparison of the distribution of plastic equivalent strains along the pillar
specimen for z = 8.0 m for meshes 10*10, 20*20 and 40*40 (regularized case).
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F1G. 8. The effect of viscoplastic regularization for dynamic case total force vs. time
(velocity driven problem).
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One can observe that for a viscoplastic model the localization zones are
diffused. Their widths do not tend to singular lines like those for rate-inde-
pendent models. The degree of diffusion of those zones depends significantly
on the viscosity (relaxation time) used in calculations.

In Fig.8 we present the result of the viscoplastic regularization in the
space of forces and displacements for which the effect of reduction of the
Primary Mesh Dependence PMD is evident.

7.3. Rate-dependent large deformation ezample

Now we can analyse the example which exhibits large deformations. As
numerical evidence let us show the results for the pillar problem, its depth
being reduced by 40 %. The initial conditions are the same as before, i.e.
velocity of the top side is given but the duration of the process is extended.
Figure 9 shows the deformed mesh and the distribution of equivalent plastic
strains at the final stage of the process. It is seen from the deformed mesh
that for some regions the original rectangular shape of the elements is sig-
nificantly changed. To avoid this type of the deformation one should include
an adaptive technique to get away from the Secondary Mesh Dependence
SMD (see STEIN et al. [35]), what is now not the aim of this presentation.

8. CONCLUSIONS AND FINAL REMARKS

The main aim of this presentation was to investigate numerically the pos-
sibility of the viscoplastic regularization procedure for plastic flow localiza-
tion phenomena in a soil-like material. This method of regularization is one
of the possible methods that were indicated in Box 1, but it seems to be at-
tractive, especially for dynamical cases, because of its physical justification.

The numerical results obtained in this paper and discussed herein empha-
size the attention that should be paid to the well-posedness of the boundary
value problem which results in avoiding the significantly strong mesh depen-
dence of the first order. The well-posedness of the Cauchy problem which
was discussed in several works [14, 13, 29, 30] plays a central role but it does
not assure the well-posedness of the whole boundary value problem (see BE-
NALLAL [4], NEEDLEMAN and ORTIZ [25], LODYGOWSKI [19]), nevertheless
it is the first step to be done when working on localization problems.

The numerical results confirm that the viscoplastic regularization pro-
cedure of plastic flow used here is an efficient computational tool for the
description and numerical calculation of localization of plastic strains.
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Particularly, in the examples presented in this paper, a significant re-
duction of the so-called Primary Mesh Dependence PMD, as the result of
mathematical well-posedness via viscoplasticity, is clearly demonstrated.
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