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A STUDY OF THE NUMERICAL CONVERGENCE
OF RAYLEIGH-RITZ METHOD FOR THE FREE VIBRATIONS
OF CANTILEVER BEAM OF VARIABLE CROSS-SECTION
WITH TIP MASS

N.M. AUCIELLO (POTENZA)

A numerical study on the convergence properties of the Rayleigh-Ritz method is pre-
sented, for the dynamic analysis of beams with continuously varying cross-section. The
beam is assumed to be slender, the Euler-Bernoulli hypotheses are accepted, and some
particular cases are considered, for which a closed-form solution is available in terms of
Bessel functions. The comparisons between exact and approximate results can give some
hint about the usefulness of the approximate method in more complex situations, for which
the exact solution is not attainable.

NOTATION

A cross-sectional area of the beam,
A matrix, Eq. (2.20),
a; coefficients of trial functions,
b width of the beam,
By defined in Eq. (3.2)1,
Ch defined in Eq. (3.2)1,
C; constants,
Cr defined in Eq. (2.16),
d nondimensional parameter, Eq. (2.8),
d* eccentricity of tip mass,
E modulus of elasticity,
G(¢) function defined in Eq. (3.4),
h depth of the beam,
H(¢) function defined in Eq. (3.4),
I second moment of cross-sectional area,
I.,Jn Bessel function of first kinds,
Ju  second moment of tip mass,
k nondimensional parameter, Eq. (2.8),
ki; elements of stiffness matrix,
kr stiffness of the rotational spring,
L length of the beam,
M tip mass,
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m;; elements of mass matrix,
mr total mass of the beam,
n coefficient of tapered cross-section,
N number of trial functions,
p frequency parameter,
¢a frequency parameter,
¢i constants, Eq.(3.1),
r(z) weight function,
w transverse displacement,
y Cartesian coordinates,
Z defined in Eq.(2.9).

Greek letters

taper ratio = ha/h1,

nondimensional length,

trial function defined in Eq.(3.1),
nondimensional length = z/L,
functional of the problem,
nondimensional parameter, Eq. (2.8),
mass density,

nondimensional length,

natural frequency of the beam,
taper ratio = b /b;.

AE S ENmewm R

1. INTRODUCTION

One of the most frequently used structural models is the cantilever beam
with non-uniform cross-section. In fact, a great number of structural bearing
systems can be approximately reduced to this simplified scheme, so that it
is quite important to deduce exact and approximate methods of analysis
which can correctly reproduce the dynamic behaviour of this beam.

Exact analyses can be performed, mainly for single-span, nonuniform
beams in the presence of various boundary conditions [1, 2] by expressing
the solution in terms of Bessel functions, or by using the Frobenius method,
or else by means of the transfer matrix approach, as recently developed
by TAN et al. [24]. On the other hand, the variational approach has given
excellent results for stepped beams, beams with intermediate constraints and
more complex systems [3, 4, 18]. For example, LAURA et al. [14] employed
an optimized version of the Rayleigh quotient [10], in order to deduce close
upper bounds to the fundamental free vibration frequency of a cantilever
beam with eccentric tip mass. More recently, an accurate Rayleigh - Ritz
solution has been obtained by Grossi et al., even for higher frequencies, by
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using the Gram -Schmidt procedure [13, 23] in order to deduce a set of
orthogonal polynomials which can be conveniently used as trial functions.
In this way all the differentiations and integrations are greatly simplified
with respect to other, similar approaches [3, 8].

In this paper the dynamic behaviour of beams with continuously vary-
ing cross-section is examined, following two complementary approaches. In
the first case an exact method is employed, solving the differential equa-
tion of motion in terms of Bessel functions, whereas in the second case a
Rayleigh - Ritz procedure is adopted, using as trial functions the orthogonal
polynomials suggested in [13].

As an example, a cantilever beam with varying rectangular cross-section
has been used, as sketched in Fig. 1. The same structure has already been
studied in [14] by means of the optimized Rayleigh method, so that useful
numerical comparisons can be shown, in terms of nondimensional parame-
ters.

2. EXACT APPROACH

Let us consider the variable cross-section beam shown in Fig. 1 obtained
by assembling, in a continuous manner, a constant cross-section beam with
a linearly varying cross-section beam. If the properties of the beam are
w, (x) w, (y)

bY
L 2
M h,
b2

l2e7]. L | Lo-p) |

F1G. 1. Sketch of the beam under study.

compatible with Euler-Bernoulli beam theory, and the beam is undergoing
a small amplitude free bending vibration, the differential equations may be
written in the form

d*w A
(2.1) d;fz) + %Ilwzwl(ﬂv) =0, 0<z<pBL,

2

(2.2) 7

[Efy(y)%] oAy )M 0, 0<y<(1-p)L,
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where wy(z), wa(y) are the transverse displacements of the beam axis. After
introducing the dimensionless variables
T a—1
2-3 —_— e 1 ——

the cross-sectional area and the moment of inertia for 0 < y < L(1— B) are
given by

(2.4) Ayy) = A", I(y) = Lip"*?

where the coefficient n describes the taper of the cross-section. Forn = 1 =

(¢ = b2/by =1, a = ha/hy) whereas, for n = 2 = (a = by/b) = hy/hy).
Using the dimensionless variables (2.3), and substituting Eqs. (2.4) into

Eq.(2.2), the governing differential equations become

d*w
(25) Fl —P wp = 0
diw dBw d*w
n* d,’42 +38n dnsz +12 dn22 —qqwz =0, 1<n<a, forn=2,
(2.6) s P A o 4
) dnt + 67 dn? +6d_772—qaw2 =0, 1<p<a, forn=1,
where
Ay BA 1-8
4_ 2441 -
(2.7) Pl=e’pr  wW=piTy

To simplify the analysis, it is assumed that the mass density g of the beam
is constant and the influence of the tip mass is considered by means of the
following parameters

g M Im
2. d=— = — k= ——
( 8) L ’ M mT ) L2M y
with mr denoting the total mass of the beam

n—1)a’+a+1
n+1

(29)  mr =oAL [ﬂ +1= ﬂ)( = oA LZ.

The boundary and continuity conditions, in term of dimensionless variables,
areat z =0, (£ =0):

d2'w1

(2.10) e

[k2+d2] uZp* fia? — pZdp*w; = 0,

&3
T zapt P L zpte, = 0

(2.11) = =
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at point z = 3L, (§=F)and y=0,(n=1):

dwl a—112 d?w, a-1713 dBw,
e @-m+aliT] T[] T e
d?w, a—112 d?w,
i dw; a—1dw, g
(214) wp = wy, dE _l—ﬂdn =0

at point y = L(1 - 8),n = a:
dw, oa-1_ d*w,
(2.15) @ t 198
where Cr = EI,/krL.
The general solution to the differential equatlons (2.5) and (2.6) can be
written, respectively, as

(2.16) wyi(€) = C1cosh(p€) + Cysinh(p€) + Cs cos(p€) + Cysin(pé),
(2.17) wa(€) = 17" CsJu(a) + Co¥a(a) + Crln(a) + CsKa(a)},

where a = 2¢,n%% and J, Y, I, K are Bessel functions of, respectively, the
first, second, modified first and modified second kinds.

The C; are arbitrary constants to be evaluated from the eight condi-
tions in Egs.(2.10)-(2.15). Upon substituting Eqgs.(2.16) and (2.17) into
Eqgs. (2.10)—(2.15) one obtains an 8 X 8 matrix characteristic equation for
the eight unknown constants C;. For a non-trivial solution, the determinant
of the coefficient matrix is set equal to zero, yielding the frequency equation:

(2.18) det A =0,

where the elements of the matrix A are given in the Appendix I. These
non-trivial solutions of the characteristic equation may be obtained numer-
ically by utilizing the False Position Method [12].

3. RAYLEIGH-RITZ METHOD

The so-called Rayleigh-Ritz method is a general procedure to obtain ap-
proximate solutions of problems expressed in variational form. The deflec-
tion shapes are approximated by a linear combination of suitably chosen
functions

N
(3.1) w(z) & Zqiqbi(x),
1=1
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where the coefficients ¢; are constants to be determined, and the functions
¢i(z) are usually chosen to satisfy the boundary conditions (2.10), (2.11),
(2.15) for any choice of the g;. It is essential to satisfy the geometrical bound-
ary conditions, [9, 13, 14].

The following set of polynomials {¢;,$2,...¢n} is orthogonal on [0,1]
with respect to the weight function r(z), and they are constructed by em-
ploying the Gram - Schmidt procedure [13, 23]:

4
hi(z) = Zaia:i, with ap =1,

(3.2) :
én(z) = (2 — Br)dh-1(z) — Chpn—2(z), for h>2,
where
L L
[ zr(z)[pn-1(2)])?d [ar(z)ph-1(z)pr_2(z)dz
Bh = OL ) Ch =2 7
ofr(z')[¢h_1(a:)]2d:c ({r z)[ph—2(z)]%dz

and r(z) = Az is a weight function.
With the approximation (3.1), the functional takes the form [14]

m2

] BL N m2 L N
wo m=gifon[(Ee)] o o[ (Ene)]
0 1=1 BL =

2 N '/ N
[(Z%%(L))] +w’Md* (Z%‘dh’(o)) (qubi(o))

i=1 =1

i=1

where (') = d/dz, and

(3.4) o {[Cg:ll ki f:llfg] [aﬂﬁ—_ll * ?__;f]} = A1G(6),

x-h{[C'B C_lé][aﬁ_1+a_1£]3}=I1H(§).

l-ﬂ il —I=p
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In terms of the nondimensional parameters (2.8), (2.9) and after some alge-
bra, Eq.(3.3) can be written

I1?

(35 M= E—I; 7(%‘11'452') “ d£+/1H(§) (%qidn) d¢
2L 0 s=1 B 3=1

N r B, N 2 1 N 2
+—HC(—;) (; Qi¢i(1)) ~ipt 0/ (;qida') d¢ + ﬁ/ G(¢) (2 q,.¢,.)

I2

N N 2
ez ] (L) 02 (Lo

N I N
-pZd (Z Qi¢i(0)) ( Qi¢i(0)>:| }
with () =dldé.

The minimum of this functional can be found from the condition
omn
04i

Equations (3.6) yield a set of N homogeneous linear equations for the un-
known constants g;, which can be written as:

(3.7) (K- p'm)q =0,

(3.6) 0.

where

B 1
JE 1" 1" 1 H(1) , ’
by = 0/ #1 de + ﬁ/ H(©)614] d€ + 2611 (1),

I¢] 1
mij = [ g5 d€ + [ G(€)0is; e + nZ(d® + K)(0)9}(0)
0 B

+Z:(0)6(0) — pZd[$:i(0)6}(0) + $;(0)¢(0)].

We note that the coefficients are symmetric; k;; = kji, m;; = mj;. More-
over, the stiffness matrix K and the mass matrix m are positive definite.
Hence, all the eigenvalues p; are real and positive. Solving Egs. (3.7), N ap-
proximate p; values can be determined. It is obvious that the accuracy of
the Rayleigh - Ritz results depends on the number N of the assumed mode
shape functions ¢;.
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As a first example, the first five nondimensional free vibration frequencies
of the beam in Fig.1 have been calculated, both with the exact approach
and the Rayleigh - Ritz method. The results are given in Tables 1 — 3 for
an increasing number of coordinate functions, and they confirm that the
approximate method gives upper bounds to the true frequencies, and the

N.M. AUCIELLO

4. RESULTS AND DISCUSSION

discrepancies tend to zero for increasing N.

Table 1. Nondimensional coefficients p;, i =1,...5 for Cr =0, a = 1.1, d =0,

B =0.25, p =1, and various k; (E) Exact values, (R-R) Rayleigh-Ritz method,

[14] Rayleigh-Schmidt method.

k 21 P2 P3 P4 Ps N

0 1.310636 | 4.143697 | 7.282355 | 10.458012 | 13.643175 | — E
1.310637 | 4.144217 | 7.292440 | 11.096015 | 17.548356 | 5 | R-R
1.310636 | 4.143711 | 7.286029 | 10.596085 | 14.414860 | 6
1.310636 | 4.143703 | 7.282489 | 10.476452 | 14.024560 | 7
1.260952 T - = 2 [14]

0.3 | 1.255657 | 2.561903 | 5.077380 | 8.139947 | 11.296547 | — E
1.255659 | 2.561926 | 5.077764 | 8.244081 | 11.672985 | 5 | R-R
1.255658 | 2.561923 | 5.077464 | 8.143291 | 11.648398 | 6
1.255657 | 2.561912 | 5.077910 | 8.141582 | 11.314325 | 7
1.212436 = o - = [14]

0.6 | 1.125851 | 2.050211 | 5.016769 | 8.125441 | 11.291127 | — E
1.125854 | 2.050223 | 5.017178 | 8.228496 | 11.667264 | 5 | R-R
1.125853 | 2.050223 | 5.016837 | 8.128815 | 11.641913 | 6
1.125851 | 2.050216 | 5.016779 | 8.127034 | 11.308920 | 7
1.100000 =t = - s [14]

0.9 | 0.993803 | 1.901521 | 5.005729 | 8.122779 | 11.290127 | — E
0.993807 | 1.901530 | 5.006142 | 8.225635 | 11.666209 | 5 | R-R
0.993806 | 1.901530 | 5.005794 | 8.126158 | 11.640717 | 6
0.993804 | 1.901525 | 5.005739 | 8.124364 | 11.307923 | 7
0.979796 = = = - [14]

For N =5, the first three nondimensional frequencies show a percentage

error within 0.6%, and, moreover, this error decreases for increasing k.

For N = 7, the approximate upper bounds are always very close to the
true nondimensional frequencies, and at the same time the computational
cost is acceptable, so that the choice of N = 7 seems to be a good compromise

between accuracy and feasibility.
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Table 2. As Table 1 for 8 = 0.5 and various k.

383

k P1 P2 P3 P4 Ps N R-R
0 1.372476 - - - - 1
1.302049 4.705504 - - - 2
1.300096 4.154607 8.808805 - — 3
1.299995 4.138507 7.373859 13.571768 — 4
1.299930 4.133170 7.300342 10.762210 19.093173 5
1.299928 4.132752 7.262593 10.569321 14.396046 6
1.299917 4.132620 7.258857 10.425858 13.99948 7
1.299912 4.132569 T7.257972 10.403565 13.568826 Exact
0.3 1.84744 - - - - 1 R-R
1.247127 2.570042 — - - 2
1.245418 2.569443 5.102448 - — 3
1.245361 2.567491 5.09940 8.247609 - 4
1.245297 2.567458 5.076202 8.237415 11.655622 5
1.245296 2.567408 5.076093 8.118060 11.632402 6
1.245285 2.567405 5.075519 8.117109 11.261233 7
1.245279 2.567397 5.075449 8.113387 11.237672 Exact
0.6 1.125697 - — - - 1 R-R
1.118304 2.056142 - - - 2
1.117102 2.055782 5.040611 =3 - 3
1.117092 2.054599 5.036272 8.232502 - 4
1.117035 2.054599 5.014063 8.221342 11.649681 5
1.117035 2.054568 5.013914 8.103149 11.625680 6
1.117025 2.054568 5.013372 8.102130 11.255613 7
1.1170191 2.054565 5.013301 8.0984693 11.23206 Exact
0.9 0.988134 - - - - 1 R-R
0.987566 1.906357 — - - 2
0.986722 1.90551 5.029357 - — 3
0.986722 1.904472 5.024758 8.229732 - 4
0.986674 1.904470 5.002739 8.218391 11.648586 5
0.986674 1.904444 5.002583 8.100413 11.624439 6
0.986665 1.904444 5.002046 8.099382 11.254577 T
0.986659 1.904442 5.001975 8.095732 11.231025 Exact

In Table 1 the p; parameters are also reported, as obtained in [14] by
means of the optimized Rayleigh quotient approach. It is immediately seen
that these values do not give upper bounds to the true results, probably
because of numerical instabilities and truncation errors.
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Table 3. As Table 2 for d = 0.4.
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k 21 P2 P3 Pa Ps N

0.3 1.027437 - - - - 1 R-R
1.017921 2.743763 — - — 2
1.016667 2.376756 5.411609 - - 3
1.016659 2.732156 5.410509 8.483562 - 4
1.016659 2.732156 5.410509 8.483562 11.847336 5
1.016608 2.732054 5.374444 8.334514 11.843373 6
1.016598 2.732051 5.373602 8.334261 11.422235 7
1.016593 2.732043 5.373524 8.329403 11.397314 Exact

0.6 0.965018 - - - - 1 R-R
0.961179 2.288277 - - - 2
0.960136 2.288229 5.148701 - — 3
0.960134 2.286193 5.147198 8.301470 - 4
0.960086 2.286193 5121222 8.294988 11.702219 5
0.960086 2.286152 5.121123 8.168381 11.685179 6
0.960077 2.286152 5.120502 8.160502 11.301168 i
0.960072 2.286148 5.120429 8.163638 11.27734 Exact

0.8 0.916352 - - - - 1 R-R
0.914836 2.125093 - - — 2
0.913937 2.124980 5.095878 - - 3
0.913937 2.123424 5.093202 - - 4
0.913892 2.123424 5.068980 8.261595 11.678775 5
0.913892 2.123390 5.068855 8.138749 11.658780 6
0.913884 2.123390 5.068272 8.137864 11.280903 i
0.913879 2.123387 5.068200 8.134034 11.257202 Exact

1 0.868307 — - - - 1 R-R
0.867902 2.023784 - - — 2
0.867126 2.023395 5.069741 — — 3
0.867126 2.022068 5.066382 8.255018 — 4
0.867084 2.022066 5.042996 8.245543 11.667713 5
0.867084 2.022037 5.042858 8.124484 11.646244 6
0.867076 2.022037 5.042293 8.123546 11.271272 i §
0.867071 2.022034 5.042221 8.119783 11.247627 Exact

For a taper ratio @ = § = 1.4 and for N = 7 the influence of vari-
ous control parameters is reported in Table 4. In all the examined cases,
the agreement between the exact and the approximate results seems to be
excellent.



Table 4. As Table 2 for o = ( = 1.4 and various k and d.

d k P1 P2 P3 P4 Ps
0.4 0.3 1.099224 2.871888 5.628017 8.751734 12.005972 E
1.099260 2.872076 5.628337 8.753567 12.100708 R-R
0.6 1.025908 2.385761 5.392442 8.609704 11.906935 E
1.025948 2.385894 5.392678 8.611277 12.001050 R-R
0.9 0.940385 2.169849 5.334875 8.578956 11.886483 E
0.940427 2.169955 5.335096 8.580495 11.980422 R-R
0.8 0.3 0.924807 2.933698 5.841787 8.970905 12.202877 E
0.924844 2.933871 5.842214 8.973555 12.298625 R-R
0.6 0.890276 2.576993 5.529228 8.708361 11.982542 E
0.890314 2.577131 5.529507 8.710101 12.077407 R-R
0.9 0.843940 2.339327 5.410326 8.628611 11.923145 E
0.843979 2.339442 5.410566 8.630212 12.017500 R-R

Table 5. Approximate nondimensional frequency for a =1.4, (=12, §=10.5

and Cr = 0.

i d k P2 P3 Pa Ps
0.5 0.2 0.3 1.368165 3.056673 5.634578 8.661169 11.898079
0.6 1.255789 2.534250 5.423743 8.546146 11.825337
0.9 1.132205 2.331193 5.376987 8.522786 11.810998
0.4 0.3 1.240350 3.056740 5.776883 8.814624 12.030156
0.6 1.165143 2.633240 5.499110 8.603660 11.868796
0.9 1.074593 2.412816 5.415877 8.550441 11.831360
0.8 0.3 1.053822 2.993444 5.900715 9.017613 12.250954
0.6 1.016910 2.743714 5.644804 8.744598 11.989575
0.9 0.966730 2.544843 5.511208 8.630452 11.895516
1 0.3 0.984939 2.963054 5.922323 9.069802 12.318963
0.6 0.957829 2.770116 5.701402 8.811055 12.053157
0.9 0.919496 2.592868 5.559351 8.676551 11.935121
1 0.2 0.3 1.168939 2.760406 5.439289 8.523803 11.797874
0.6 1.066682 2.241971 5.296498 8.453499 11.755547
0.9 0.957751 2.058088 5.267303 8.439846 11.747456
0.4 0.3 1.053529 2.848604 5.581841 8.641322 11.887599
0.6 0.986895 2.366765 5.351430 8.490151 11.781501
0.9 0.907999 2.146974 5.293821 8.456826 11.759310
0.8 0.3 0.890364 2.889795 5.769784 8.859918 12.089404
0.6 0.858515 2.544490 5.480780 8.594130 11.862261
0.9 0.815443 2.309825 5.366563 8.509907 11.798860
1 0.3 0.831128 2.886524 5.819776 8.936130 12.172124
0.6 | 0.807892 | 2.601927 | 5.542369 | 8.652038 | 11.911000
0.9 0.775138 2.377581 5.408107 8.543412 11.825059

[385]
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Finally, in Table 5 the free vibration frequencies of a cantilever beam
for which @ # (¢ and { # 1 are given, as obtained with the Rayleigh - Ritz
method, whereas the exact solution does not seem to be available.

5. CONCLUSIONS

The dynamic behaviour of a cantilever beam with continuously varying
cross-section and with a tip mass has been studied both in an exact way and
by means of the Rayleigh - Ritz approximation method. In the first case the
solution of the differential equation of motion has been expressed in terms of
Bessel functions, whereas in the second case a set of orthogonal polynomials
has been used.

The numerical results show a good agreement between the exact values
and the approximate upper bounds, and this is a very useful property for
all the cases in which an exact solution is not attainable.

APPENDIX. TERM OF THE MATRIX A, EQ.(2.18)

apn =1- #dez, a2 = #Z(d2 T kz)P3a a;3=-1- #de2»

a4 = a2, a5 = a1 = a17 = a1g3 =0,

apy = —pZp,  axp=1+pZp,  ax=—plp,
ayy = -1+ ,ude2, ags = age = Q27 = agg = 0,

az; = cosh pg, azz = sinh pg, asz = cos pf,
azq = sin pg, ass = —Jn(24.), asze = —Yn(24a),
az7 = —In(24¢a), aszs = —Kn(2¢a),

ag; = sinh pg, asp = cosh pg, asg3 = —sin pg,
ass = cospf, ass = Jn41(2¢0), ase = Yn+1(2¢a),

asy = cosh P, a5y = sinh pﬂ, as3 = — COS pﬁ>
asy = —sinpf, ass = —Jn+2(2¢a), ase = —Yn+2(24a),
as7 = —Int+2(29a), asg = —Kn42(2¢a),

ag1 = psinhpB,  aey = pcoshpB,  ae3 = psinpp,
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ags = —psinpB,  aes = pJnt3(2¢a) — (n + 2)(11__;Jn+2(2%)’
age = pYn+3(2¢a) — (n + 2)%Yn+2(2qa)’

dar = ~Ploya(28e) - (1 + 275 ns2(200),

des = PKnsa(200) = (1 + 2§ Knsa(200),

ars = pCrIn42(aa) — a®*Jyy1(aa),
ats = PCRYn42(aa) = 6® Yoy (aa),
ar7 = pCrIn42(aa) + 010'5In+1(aa),
azs = pCrKn42(aa) — a®°Kpyq(aa),
ags = o’ Jn(aa), age = a’Y,(aa),

agy = a2In(aa), agg = o’ K, (aa),

with aa = 2¢,a%5.
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