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POLYNOMIAL BOUNDARY PERTURBATION FOR OPTIMAL
PLASTIC DESIGN OF HEADS OF PLANE TENSION MEMBERS

W. EGNER (KRAKOW)

The paper presents the boundary perturbation method applied to optimal plastic shape
design. Perfect plasticity is assumed. The procedure consists of two steps: determination
of a class of fully plastic solutions in the limit state, and then the choice of the optimal
shape from among those solutions. A trigonometric polynomial with n terms is assumed
for the general solution. Final results are given for a binomial. Moreover, a further step
towards optimization is done by using extrapolation. The results are verified by the ADINA
program.

1. INTRODUCTION

The method of boundary perturbation is rather seldom applied to.op-
timal shape design. In a series of papers by Kordas and her collaborators,
started in 1970, the boundary perturbation method was used to investigate
the fully plastic states at the stage of collapse of various perfectly plastic
structural elements. KORDAS and ZyczKowsKI [10] considered noncircular
shapes of cylinders under pressure; KORDAS [5] discussed pipe-lines of vari-
able diameters; KORDAS and SKRABA [9] analyzed cylinders under pressure
with bending; KORDAS [6] presented a general approach to the problem un-
der consideration; KORDAS [7] considered noncircular shapes of disks under
pressure; DOLLAR and KORDAS [2] discussed the problem of frame corners
subject to bending, tension and shear; KORDAS and POSTRACH [8] analyzed
the rotating disks. Full plastification at the stage of collapse is the first step
towards optimization, since the material in rigid or elastic zones at the stage
of collapse is not properly utilized. In many cases, however, the above con-
dition is not sufficient, and then certain additional optimization proves to
be necessary.

Examples of such additional optimization have been presented in the pa-
pers by BoCHENEK, KORDAS and ZyczkowsKi [1], and by EGNER, KORDAS
and ZYCZKOWSKI [3]. The second paper is devoted to the optimal design of
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yoke elements, and namely to plane problems of plasticity with two bound-
ary conditions along each contour; it turns out that they all may be satisfied
simultaneously, and optimal shape ensuring the limit load-carrying capacity
to reach a maximum can be found. In both problems the circular (annular)
shapes were subject to perturbations.

In the present paper, optimal plastic design of heads of plane tension
members, shown in Fig. 1 is discussed, result of the paper [4] being general-
ized. Assume plane strain conditions and suppose that the stress in the ten-
sion member is at the yield point. Then the force transmitted is determined.
The transversal dimension (thickness) h is large, the external boundary is
stress-free and minimal volume of the head is looked for.
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Fi1G. 1. Shape of a plane head to be optimized.

Two simple solutions of this problem were given by SzCZEPINSKI and
SzLAGOWSKI [11]. The simplest one is based directly on the solution for a
circular cylinder without perturbations. Assume that inside the semi-circle
(0<r<a, —-7/2 < 0 < 7/2), the uniform triaxial tension o, = gy =
0, = 200/+/3 is necessary to make the tension member fully plastic; then,
considering the cylinder a < 7 < b to be fully plastic we find b/a = e, and
the volume equals

(1.1) V= %b2h = 11.61a2h.

Another solution given in that paper for a rectangular head is based
on piece-wise uniform stress fields. Under the assumption of six such stress
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fields, five of which correspond to fully plastic states, the authors obtained
the volume

(1.2) V = 4a?h ctg 22.5° = 9.66a’h,

i.e. by 16.8 percent smaller than the volume given by Eq. (1.1).
W. EGNER, Z. KORDAS and M. ZyCZKOWSKI obtained in [4] the volume

(1.3) V= 0.835%e2ah = 9.69ah,

being by 16.5 per cent less than the basic result.

The result (1.3) is not particularly valuable from the point of view of
optimal design, since the volume obtained is even slightly larger than (1.2).
There are two reasons for that: first, in the series determining the boundary,
one term only was retained and it was not sufficient to describe properly
the optimal shape. Second, no extrapolation procedure was employed and
hence the small parameter in the perturbation method was very strongly
limited, namely the condition |a| < 0.2 was assumed. In the present paper
these drawbacks are removed. First, we consider a polynomial perturbation,
much more flexible even if two terms only are retained. Second, we use an
efficient extrapolation procedure and much larger small parameters are then
admissible. Hence, the final result will be much better than (1.3), namely
the volume will be much smaller.

2. ASSUMPTIONS

In this paper the boundary perturbation method will be used to deter-
mine the optimal shape of the head. We adopt the following assumptions:

¢ the material is perfectly plastic and incompressible, subject to the Hu-
ber - Mises - Hencky yield condition;

¢ small strains are assumed throughout the paper;

o Hencky - Ilyushin or Levy - Mises constitutive equations are employed;

o the head is in plane strain conditions.

Then from the law of similarity of deviators we obtain 0, = o, (mean
stress), the stress o, may be eliminated and the problem becomes statically
pseudo-determined. After this elimination, two equilibrium equations and
one yield condition determine three unknown stresses o,, og, Tr¢. In this
case, the yield condition is given by

(2.1) (0, — 09)2 4+ 472 = 47
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Consider now a circular shape of the head as the basic solution. Under the
assumption of uniform radial loading along the inner contour r = a and
stress-free outer contour r = b, we find the stress distribution in the fully
plastic state

2 r

0, = ———=0pln - o ——ia (1+lnr-)
- \/50 b, 6 — \/30 b 9

2 1 r
0'z=—%0'0 §+hl-b- ) T,-o=0,
and the strain distribution is as follows

(2.3) Er = ¢ £

vy EREIT By

(2.2)

€z = Tro =0,

where 09 = T9V/3 is the yield-point stress at uniaxial tension and C is
an arbitrary constant. The limit internal pressure may be found from the
boundary condition at the internal contour r = a, namely

2 a 2
2.4 o soveTgE T O
( ) p \/ﬁaonb \/g

and b = ea. The solutions (2.2) and (2.3) with the volume V given by
Eq. (1.1), will be regarded as the basic solution for subsequent perturbations

and will be labelled by the additional subscript “0”.

g0,

3. BOUNDARY PERTURBATIONS

Consider now general cylindrical perturbations of the circular shape of
the external boundary of the head. This perturbed shape will be given by
b = b(8). A more general case of perturbation b = b(6,z) was discussed
in [4]. Expansions into power series of a certain small parameter a will be
introduced. Namely, we write these expansions in the form

(3.1) X= iXia‘,
where %

Y 5
(32) X = [04(r,6), 00(r,6), T+a(,6), b(9)] -

The equations of internal equilibrium are linear, hence for all terms of the
series (8) they retain their original form

60‘,-' + 181-,9 + — 0y; _ 0,
(3.3) or r 06 T
07'1'0.' 4 1600 + 2 =0,

or r 00
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whereas the nonlinear yield condition (2.1), in view of 7,490 = 0, is subject
to linearization

(3.4) oy, — 06, = [i (Uro’ Ogs++s Ori_yy T6;_y» Tr0.'_1)

with 1 =1,2,....
For the first two corrections we have
1 72

1'01

(3.5) h=0, fa=

To

Boundary conditions at the free boundary b = b(6) with the unit normal n
are

o, cos(nr) + 7.9 cos(nd) = 0,
(3.6)
7,9 cos(nr) 4+ o4 cos(nd) = 0,

and after expressing the cosine functions in terms of the function b = b(9)

(KorDAs and ZyczKowsKI [10]), we obtain
b(8)a, — b'(8)r6 = 0,
(3.7)
b(o)Trg b b’(o)a'g =0.

Both these equations determine — in the case of full plastification — one
function b(#) as well as the boundary values of stresses.

Expansion of Egs. (3.7) into power series of a is more complicated, since
the boundary itself is subject to perturbation. The increment of the inde-
pendent variable Ar equals

(3.8) Ar = Ab = f: b;(0)a’

and hence, replacing multiplication of series by a multiple series, we obtain

o [Zb (O)a’]

00 00 00 . bg(g)amrro ; Ned .m

i=1
76, = by = 0 and similarly for the second Eq.(3.7). In the case under
consideration, these expansions (16) are essentially simplified.

= = ok bi(0) 0™ o, k(r,0)

(39 L2 20" g

1=1 k=1 m=0

r._
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4. FIRST-ORDER PERTURBATIONS

For j = 1 the Eqs. (3.3) with the yield condition (3.4) and (3.5) resulting
in 0,1 = 01 may be reduced to one homogeneous hyperbolic equation

%19 %19 0Trg
2 ro, ro L) B .
(4.1) L 502 + 3r 3 0
Solution of this equation may be assumed in the form
(4.2) Tr0, = D fi(r)sin A6,

t=1
where the terms with cos A\;# have been disregarded due to the symmetry
requirements.

In the paper [4], just one term of this series was used and hence the results
of optimization were not quite satisfactory. Here we consider a trigonometric
polynomial with n terms; the final results will be given for a binomial, n = 2.
Making use of [4] we present the solution in the following form

n
(4.3) Tel, = % ; (Aislyi + Bjcly;)sin \;0

where, for the sake of brevity, we have introduced the notation

sl.; = sin (\/)\? -} in ZT—) ,
0

cly; = cos ( A2 —1ln bi) ; ti=1; 25
0

and ); denote the separation constants.
The relevant corrections for normal stresses are

| LY o |
(45) Op, =09, = ; Z [,\—' (A,'Slri + BiClﬂ') Cos /\,9

=1
SN =1
+T (A,'Cl"' - B;sl,.,') cos ;0| + C4,
1

(4.4)

where C is an integration constant (an additional index i is not needed in
this case).

The boundary conditions for the first-order perturbations are found from
Eq.(3.9) by equating the coefficients of a at both sides. Substituting Egs.
(2.2) we obtain

20‘0 20’0 ’

(4.6) —\/—g—bl(O) = —boor,|,—4, » 7 1(8) = boTra, |, —p, -
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They determine the unknown constants in Egs.(4.3) and (4.5) and, first
of all, the function b(6) corresponding to full plastification of the body.
Fulfillment of both Egs. (4.6) is possible if A; = Az = 0. Finally we obtain

(4.7) Trgy 2 Z B;cl,;sin \;0,

r—l
VA2 -1
———)‘_—B;sl,; cos \;0 3y +Cq,

1 1
Oy, =09, = ; Z {}‘—iB,'cl,-,' COoSs /\,'0 -

V3 1 bO\/_
(4.8) bi(8) = _E,EA_;B' cos \;0 — 200

5. SECOND-ORDER PERTURBATIONS

Equations (3.3) take now the following form:

0?19, 0%1rg 3Tra 32f2 ofa
2 ro2 2 2
(5:1) "o oz T or ~5r08 98-

Expanding the right-hand side of Eq. (5.1) we obtain n(4n—1) various terms,
since the function f;, proportional to 72, introduces many new terms due to
coupling of the individual terms of 7%, . So, we give here just an approximate
solution assuming uncoupling: individual terms of the first approximation
will be followed by respective terms of the second approximation whereas
the cross-products will be omitted. The number of terms n(4n — 1) will then
be replaced by a much smaller number 3n. In the case of a binomial, we
replace 14 by 6 and we assume that the most important second-order effects
will be taken into account.

The boundary conditions for the second-order corrections, resulting from
the expansions of (3.9), are much more complicated. However, many terms
vanish and finally we obtain

200 0o, 0o
—b -I-b Ory + bob ! blTrG r=bo — 07
(5 2) \/— 2 0Yry | =bg oY1 a -y bo\/_ 1 ‘ bo
. 0Trg 200
bob1 81‘1 o + 007r0; |r=py— %b = 5106, 1,4, = 0.
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For each term 7 of such a polynomial with n terms we obtain

s Bicl\/§ 2 % ;
Toly; = —W\//\- — 1sl,,;sin \;8

Bz\/_ 2 2 .
300,\ Saana? 14+ \/z\ — 1slyy; + (2/\5 - 1) Clg,..-] sin 2);0,

(53) o4 = 200,\ . \//\,- —1sly; + (A{ — 1)cly;| cos \;0
2
B v3 [ 227 4 (222 = 1)4/A? = 1 slp,, — (3X2 - 1)c12,,] cos 2);0

80 A2r2
B2
+SU;% (3 - 3= o, + cla,) +Ca,

__Bcv3 2 2 ] .
(54) o4, =-— e [\/)\,- =1 sl + (Af = 1)el,,;| cos ;0

2
85 /\\f,'_,g [(2A2 o l)v ’\2 .1 Ser (/\ = 1)612,-‘] cos 2/\ 0
BW‘ [ A2
800A2r2
< (_ 3B? | 3B}

ba(8) =
(0) § 1603bo ' 1602bo

-1 slg, (2)? - 1)c12,,] +Cs,

2
cos 2/\.-0) + 3boC2'1 - boC2v/3 ,
80§ 209

where C; is a new constant (an additional index ¢ is also not needed in this
case).

6. THE CONDITION OF CONSTANT TRANSMITTED FORCE

Let us now use the condition of constant force transmitted by the cross-
section = m/2, 0 < r < a, equal to the force acting on the area § = 7/2,
a < r < b(r/2) (half of the force transmitted by the tension member), to
determine the parameters C; and C3. The force calculated from the condi-
tion of full plastification of the tension member, and the reaction force are
given by

b(r/2)
2 o ;
(6.1) P = —hagoo = —h / ae,(r,7/2)a’ dr,

ao
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where 7 = 0,1, 2... and the upper limit of integration is given by the power
series for b. In what follows, we restrict the polynomial (4.3) to a binomial,
n=2.

After integration we demand all the corrections of the reaction force to
be zero (coefficients of subsequent powers of a, necessary to satisfy (6.1))
and we obtain

aly

1.) A8 T
(62) Cl = —;(; {YI'COS (Al 5) [ﬁ + Clal}
(04 ( 7r) sl
——cos (M=) | 2= +¢l, ,
G (1) | s e |

Formula for C; is very complicated, and will not be given here.
In view of two independent constants B; and B appearing in the bi-

C, = Cz(Al, A2, S, C,H).

nomial, we introduce their “intensity” /B? + BZ; the shares of By and B;
in this intensity are denoted by S and C, and the new dimensionless small
parameter a will also include this intensity.

3\/B? + B?
TN T 0 e uq

—_———, ———,  @=
VB + B3 \/B? + B 200bo

Then we construct the statically admissible stress fields for the semi-circle
r < ag, —7/2 < 8 < 7 /2. They have to satisfy the conditions of equilibrium,
the continuity conditions along the arcr = ap and along the segment 6 =
7/2, and finally the yield condition. Particular solution of this problem is
given in the paper by EGNER, KORDAS, ZYCZKOWSKI [4], for a monomial;
however, for a binomial a similar procedure may be used. There are no
troubles in satisfying the yield condition (2.1) as an inequality, since in the
basic solution corresponding to (2.2) we have o, = 0y = 0, = 20¢/+/3, and
the effective stress is simply equal to zero.

7. OPTIMAL SHAPE DESIGN

Now we can formulate the optimization problem. We look for minimal
volume V of the head, under the basic constraint P = const. The volume is
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determined by the integral

/2

o 2
(7.1) V= 2h / (Zb,-(o)a") df .

1=0

After calculating the integral we obtain V = V(Ay, Ay, S,C, ), with ad-
ditional constraint $? + C? = 1 eliminating for example the parameter C.
Then we have four free parameters. In the first variant we look for a minimal
volume V without any additional constraints, it means with a, Ay, Az, S as
the design variables. Numerical optimization yields A; = 2.39, A\, = 3.72,
S = 0.58, a = —0.30. Minimal value of V amounts to

V =0.71V,

what means that it is by 29 percent smaller than the basic, unperturbed
solution (1.1). In the obtained shape we can observe concavities which are
ascribed to poor convergence of the series for |a| = 0.30. Then, in the second
variant we impose additional constraint || < 0.20. Optimum solution occurs
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s
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FIG. 2. 1 - unperturbed solution, 2 - solution from paper [1], with constraint b'(x/2) = 0,
V =0.90V,, 8 - solution from paper [1], without any constraints, V = 0.84Vj,
4 — solution without extrapolation (A; = 2.38, A2 = 3.72, @ = —0.2), V = 0.74V},
5 - solution with extrapolation (A1 = 2.29, A2 = 3.71, @ = —0.2), V = 0.70V5.
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for A\ = 2.38, A\, = 3.72, S = 0.72, a = —0.20, and the minimal volume is
equal
Vi= 074V0,

i.e. is by 26 percent smaller than the basic one. The solutions are shown in
Fig. 2. In this figure, the shape of the head shown by the external curve,
presents the unperturbed solution, it means b = by = age. The next two
curves present the solution derived in the paper [4]. The first of them (No. 2)
shows the solution with constraint &’(7w/2) = 0, and the second one without
any constraints. These solutions were obtained by using only one term of the
trigonometric series (4.2). In the present solution we have used two terms of
that series.

Finally we impose additional constraint b’(7/2) = 0 (vertical tangent at
the point of the contact) and |a| < 0.20. Then we arrive at the following
solution: A; = 2.31, A, = 3.66, S = 0.62 and @ = —0.193. The minimal
volume:

V =0.75V,

is by 25 percent lower than the basic one.

8. EXTRAPOLATION

Convergence of the power series (3.1) in the vicinity of the optimal solu-
tion is rather poor, and calculation of the subsequent perturbations seems
to be very cumbersome, even under the assumption of uncoupling as it was
done in Sec.5. However, making use of three consecutive terms of a series
we may look for an extrapolation leading to a more accurate evaluation of
the sum of this series than just the partial sum of its three terms.

Denote by b,z™ the terms of a series, n = 0,1,2..., and by a, the terms

n

of the sequence of partial sums of this series, a, = Z biz*. We look for
k=0
an approximation of a.,. Chances of extrapolation are connected with the

model series employed to be as regular as possible. The most known is
Aitken’s formula based on the geometric series

b2$ ((Il = a0)2
o = b —1-—- = el =Sy e
(8 1) oy v it bl - bg:L' i 201 — ag — ag

Three first terms of this series coincide with bg, byz, boz2. A certain deficiency
of (8.1) is seen in the case b; = bsz, then ay, — oco0. We use here another
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formula, proposed by ZyczkowsKI [12] and based on binomial power series,
also with three terms coinciding with bg, b;z, byz?, namely

bz 1™ b?
(82) aoo—bo[].-‘l-m N m—m.
In our case, where b; = by(0), b, = b2(0), and «a is a small parameter,
extrapolation (38) takes the form

_ b1(9) il = (b, (O)F
(8.3) b(6) =bo (1 + m(0)boa) ) m(f) = [61(8)]% — 2boba(8)

This approach was applied first to the last but one solution of the previous
paragraph. The result is shown in Fig. 2 (the most internal curve). Here we
can observe that this solution yields smaller volume than the previous one.
In what follows, we shall apply the extrapolation formula (8.3) to larger
values of |a| as well.

9. VERIFICATION OF THE RESULTS OBTAINED BY FEM PROGRAM
“ADINA”

Finally, the solutions obtained earlier by the boundary perturbation
method, are verified using the finite element method. It was done making use
of the program ADINA. In order to model the structure, 2D solid element
was used. This element is in plane strain conditions. The material is perfectly
plastic, subjected to the Huber - Mises - Hencky yield condition. Each node
of the element has two degrees of freedom (u,v) and moreover, £, = 0,
Tzy = 0 and 7, = 0 (axis z is here perpendicular to the lateral surface of
the element). The structure is loaded by the forces acting on the tension
member. Moreover, along the line § = 7/2, ap < r < b(w/2) a surface
without friction is assumed. The basic problem was solved first, it means
the circular shape not corrected, b = age (Fig. 3). It is seen from this figure
that the carrying capacity is limited by the tension member (head too large).
As the next example, a smaller circular shape was taken with the condition
b = 2ao (Fig.4). In this case we can see that the carrying capacity is limited
by the capacity of the head. Both the presented solutions are not optimal
and have drawbacks which result from the circular shape of the head, as
well as from wrong proportions between the head volume and volume of the
tension member.

As a further step toward optimal solution, non-circular shapes were con-
sidered, obtained earlier by using the boundary perturbation method. As
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FIG. 5. 1 — unperturbed solution, 2 — solution with first perturbation (A1 = 2.38,
A2 = 6.09, @ = —0.35), 3 - solution with both perturbations (A1 = 2.38, A2 = 6.09,
a = —0.35), V = 0.60Vp, 4 — solution with extrapolation (A1 = 2.33, A2 = 3.71,
a =-0.35), V = 0.58V.

the first solution, the solution obtained by applying the extrapolation for-
mula with constraint |a| < 0.35 was taken. This constraint is weaker than
those used earlier (&« = —0.30, @ = —0.20 and a = —0.193) because it
turned out that the volume of the head was still too large. It means that
the tension member of the structure will be in a fully plastic state earlier
than the head. These shapes are presented in Fig. 5. The solution mentioned
above (a = —0.35) is shown in Fig.6, 7, 8. In Fig.8 where stresses 7., are
shown, the line of damage of the head is presented. This shape satisfies the
condition of simultaneous damage in both parts of the construction. From
Fig. 6 it is seen that the top part of the head is in elastic state. So, finally, a
correction of the shape was done, namely the upper part of the head was cut
off by a straight line. The result is shown in Fig. 9, 10. This head is evidently
the best from among those considered in the present paper (the elastic zone
is the smallest, and the force is kept constant). The head cannot be lower
in view of the shearing stresses to be transmitted.
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