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ULTIMATE LOAD AND POSTFAILURE BEHAVIOUR
OF BOX-SECTION BEAMS UNDER PURE BENDING

M. KOTELKO (EOD%)

In this work the load-carrying capacity and plastic collapse mechanisms of thin-walled,
rectangular and trapezoidal box-section beams subject to pure bending are investigated.
The postbuckling elastic analysis is carried out using the effective width approach while
the plastic buckling load is evaluated using the total strain theory. The failure of the beam
is assumed to be initiated by buckling in a flange so that the flange mechanism of failure
is expected. The analysis of plastic collapse mechanisms is carried out using basic assump-
tions of the rigid-plastic theory. The true (kinematically permissible) plastic mechanisms
are taken into consideration. Three different theoretical solutions concerning the plastic
moment capacity at a yield line are taken into account. Corresponding formulae for plas-
tic moment at yield lines situated both in flanges and webs of the thin-walled beam are
evaluated. The energy method is used in order to evaluate the bending moment capacity
in terms of rotation angle of a global plastic hinge. The total energy of plastic deforma-
tion absorbed during rotation of the global plastic hinge is formulated and the bending
moment is derived from this formula. For both rectangular and trapezoidal cross-section
beams the idealized geometry of a global plastic hinge is based on the results of experi-
mental tests. In the case of elastic buckling, the ultimate bending moment is determined
approximately at the intersection point of two curves representing the bending moment
in terms of the rotation angle: the postbuckling curve based upon approximate nonlinear
analysis and the post-failure curve derived from the collapse mechanism analysis. Bending
moment - rotation angle diagrams based on numerical results of the theoretical analysis,
are compared with graphs recorded during experimental four-point tests.

1. INTRODUCTION

Four separate phases are observed in the behaviour of a thin-walled beam
in the complete range of loading, from zero up to and beyond the ultimate
load (Fig.1). The first phase is the pre-buckling one. The second phase is
the nonlinear, post-buckling behaviour. Assuming that the buckling load of
a particular plate member of the beam is less than that corresponding to
the yield stress which is regarded to be equal to the limit of proportionality,
after exceeding the buckling load, the local buckling and also the interaction
of different buckling modes occurs. Since deflections of plate members are
relatively large and, simultaneously, constitutive relations between stresses
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and strains are still linear, the second phase can be regarded as an elastic,
post-buckling behaviour. The third phase is initiated by the first yield in one
of the plate members and is the elasto-plastic one, in which both geometrical
and physical relations are nonlinear. At the highest point of this phase, the
bending moment is at its ultimate value and, at the same instant, the last,
post-failure phase begins. The propagation of yield regions proceeds and, in
consequence, the plastic mechanism of failure is created.
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Fi1G. 1. Exemplary load-deflection graphs of the thin-walled structure;
a) elastic buckling, b) plastic buckling.

Also four phases can be observed in the beam’s behaviour, when the
plastic buckling occurs: the pre-buckling elastic phase, the elasto-plastic one,
the buckling plateau and the post-failure phase.

The post-buckling, elastic behaviour of thin-walled beams considered as
plate assemblies has been analysed by many authors, starting from von
Kérmdn fundamental publications [1]. Analytical solutions as well as numeri-
cal procedures concerning the post-buckling behaviour of thin-walled girders
were published in [2, 3]. The interaction of different buckling modes was anal-
ysed in [3, 5]. An interactive buckling analysis was also carried out by Koi-
TER and PIGNATARO [4] who investigated a nonlinear, post-buckling path of
thin-walled structure (beam, column) using the second order approximation
based on the linear analysis. This approach enables us to determine ap-
proximately a load-carrying capacity on the basis of a simplified threshold
criterion. The method was further developed by KorLAKOwsKI [17] and can
be classified as a lower bound solution. The effective width approach was
applied by RHODES [6] in order to analyze the post-buckling behaviour of
plates.

The elasto-plastic behaviour of plates under compression was analysed in
[2]. There are very few publications concerning the thin-walled columns as
plate assemblies [7] in the elasto-plastic range. Since the theoretical analysis
of the problem is extremely complicated, efficient analytical solutions of the
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elasto-plastic post-buckling behaviour of thin-walled beams have not been
found in practice. The plastic buckling of separate plates was analysed by
VoLMIR [1] and very comprehensively discussed in [2].

The post-ultimate collapse behaviour of thin-walled box-section beams
was analysed in [8, 9]. Both authors applied the rigid-plastic theory in order
to describe the kinematically permissible plastic mechanisms of failure. The
same approach was presented in [10] where plastic collapse mechanisms in
thin-walled beams of triangular cross-section were described.

The principal aim of the present work is the approximate evaluation
of the load-carrying capacity of a thin-walled beam by means of combined
results of nonlinear, post-buckling analysis with the analysis of plastic mech-
anism of failure. This approach leads to an upper bound estimation of the
load-carrying capacity. The method enables us not only to solve the ulti-
mate load problem but to answer the question of postfailure behaviour of
the structure as well. The second information is particularly desirable if a de-
signer wants to know whether the collapse of the structure happens rapidly
or proceeds slowly with warnings preceding the catastrophe. From the other
point of view, the presented approach allows us to avoid the extremely com-
plicated analysis of the elasto-plastic range of loading.

An evaluation of the plastic moment capacity at yield lines situated not
only in beam members subject to compression but also to in-plane bend-
ing, when different theoretical models of stress distribution in the yield line
cross-section are taken into account, was the second problem to be solved
since no effective solution of the problem has been known so far. The solution
obtained within the present work leads to a higher level of collapse curve
approximation which is of great importance as far as the upper bound esti-
mation of load-carrying capacity, carried out by means of method mentioned
above, is concerned. The comparative analysis of different theoretical models
of collapse mechanisms of thin-walled, box section beams is an additional
aim of the paper.

2. THE SUBJECT AND BASIC ASSUMPTIONS OF THE ANALYSIS

The subject of investigation was the thin-walled, rectangular and trape-
zoidal box-section beam under pure bending (Fig. 2). The beam cross-section
was a rectangle or an isosceles trapezoid. The bending moment was acting
in the plane created by the axis of the cross-section symmetry and the lon-
gitudinal axis of the beam.
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Fi1G. 2. Thin-walled beam under pure bending.

The analysis was carried out on the basic assumptions which were as
follows:

o the failure of the beam was initiated by buckling of the flange subject to
compression and also the first yield was assumed to occur in the compressed
flange or, in a particular case, in the flange in tension (see Sec. 3.1), so that
the flange mechanism was expected,

e kinematically permissible (true mechanisms) were taken into account
only, i.e. plastic mechanisms were assumed to be well developed and mem-
brane strains in walls of the global plastic hinge were neglected [11],

e plastic zones were concentrated and could be regarded either as sta-
tionary or travelling yield-lines of the global plastic hinge [8, 10],

e wall continuity was assumed in two main sections: in the cross-section
of the global plastic hinge and in the axial, longitudinal section of the beam,

o the rigid-perfectly plastic behaviour was assumed for beam’s material
as far as the plastic mechanism analysis was concerned.

3. APPROXIMATE ANALYSIS OF THE POST-BUCKLING BEHAVIOUR

3.1. Elastic buckling

The post-buckling, elastic behaviour of the beam (when the buckling load
is less than that corresponding to the yield stress) was analysed using the
effective width approach. The buckling stress of the flange in compression as
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well as its effective width in terms of actual, post-buckling stress was deter-
mined using approximate formulae proposed by RHODES [6]. The buckling
stress was evaluated using the following expression:

(3.1) O = kn?D/d’t,
where

k=17-[1.8(b/a)/(0.15+ b/a)] — 0.091(b/a)®, D = Et*/12.
The effective width was determined as follows:

(3.2) ae = a[l + 14(y/0, /e — 0.35)%] 702

The corresponding formulae concerning the effective cross-section (centroid
and second moment of area) are given in Appendix A.

Since the effective width decreases due to the increase of the actual bend-
ing moment and subsequently — to the increase of the compressive stress in
the flange, the second moment of area is a function of the increasing load.
In order to calculate the rotation angle in terms of the bending moment
capacity of the beam, the following numerical procedure was applied.

The ratio

T == Oy
(where o was the actual average stress in the flange under compression)

was calculated for a certain value of the bending moment, while one of two
possible equations was used with regard to one of the following possibilities:

Case 1 (first yield occurs on the side in compression)

(3.3 M - nog Lee =0,

zmax

CAsk 2 (first yield occurs on the side in tension)
(33)2 M - Fg(n,a'c,.) =0,

Relation describing F,(n, 0. ) is given in Appendix A.

Knowing the ratio n it is possible to take the second step of the procedure
— calculation of the actual effective width and second moment of area. Sub-
sequently, the rotation angle and deflection of the beam may be evaluated
using simple formulae derived from the beam theory.



234 M. KOTELKO

3.2. Plastic buckling

The post-buckling plastic behaviour of a beam of relatively compact
cross-section was analysed on the assumption mentioned in Sec. 2, i.e. buck-
ling and the first yield were expected in the flange under compression.

A theory of plastic buckling of plates based on the total strain theory was
developed by VoLMIR [1]. The plastic buckling stress of a simply supported
rectangular plate, derived by Volmir, is as follows:

(3.4) O = k'v2D/a%t,
where

k' = 0.25[13(1 - r) + 3],

r = fi(E./E), s = fo( E¢/E).
Coefficients r and s depending on secant (E,) and tangent (E;) moduli
may be evaluated from a stress-strain diagram of the plate material. Since
beam’s flange under compression buckles in the plastic range, the beam
cannot carry any additional bending moment. Thus the ultimate bending

moment is obtained as follows:
I,

Zmax

(3.5) Mult = O¢r

4. THE COLLAPSE MECHANISM ANALYSIS
4.1. Plastic mechanisms of failure

A survey of different theoretical models of true collapse mechanisms in
thin-walled beams is given in this paragraph. The first theoretical model of
the true plastic mechanism in the thin-walled beam of rectangular cross-
section was evaluated by KECMAN [8].

The geometry of Kecman’s mechanism is shown in Fig. 3 and denoted by
R1. The mechanism applicable to beams with a relatively high width - to-
depth ratio (b/a), typically for values above 2, was evaluated by KROLAK and
KoTELKo [16]. It is also shown in Fig.3 and denoted by R3. A quasi-mech-
anism observed during tests [13, 14] carried out on long, both rectangular
and trapezoidal cross-section beams (of relatively thick walls) was presented
in [14]. In this paper a simplification of this model (a true mechanism) has
been evaluated. It is shown as R2 in Fig.3. It may be regarded as a transi-
tion between the Kecman’s mechanism R1 and the mechanism R3. Details
concerning the geometry of this mechanism are given in Appendix B.
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F1G. 3. True plastic mechanisms in a beam of rectangular cross-section.

KRrOLAK and KOTELKO [16] considered the bending collapse mechanisms
in trapezoidal cross-section beams. Three different mechanisms according to
different b/a ratios were evaluated (Fig.4). The first one was the Kecman
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F1G. 4. True plastic mechanisms in a beam of trapezoidal cross-section.

mechanism (T1), two others were found in cross-sections of a relatively high
b/a ratio (b/a > 1.5). The mechanism T3 was considered to be theoretically
possible for beams with relatively closely spaced diaphragms.
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The analysis of the collapse behaviour was carried out using the energy
method [8, 10].

The total energy of plastic deformation, absorbed during rotation of the
global plastic hinge was evaluated as a sum of two components, in terms of
the angle © - an actual angle of the global hinge rotation:

(4.1) w(9) = zn:(md.-ﬂ,-) + > Fy(m,r,0),

i=1 =1

where m was the plastic moment capacity at a yield line.

The first component was a sum of the energy absorbed during relative
rotation by angle 3;(@) of two hinge walls along a stationary yield line of
the length d;(@). Fy and F, are components of the deformation energy of
local plastic hinges [8], 10] absorbed during relative rotation of hinge walls
along travelling yield lines, where r(0) is a rolling radius of a travelling yield
line [8].

The bending moment of the global plastic hinge was derived from the
total energy of deformation, using the numerical procedure:

W(0 + AB) — W(8 — AB)

(4.2) M(8) = 3

4.2. Plastic moment capacity at the yield line

The evaluation of the plastic moment capacity m at a yield line is of
substantial importance when the mechanisms approach is applied. In the
papers [8—10] the plastic moment at a yield line was determined as a fully
plastic moment:

(4.3) m, = a,t?/4.

However, the formula (4.3) does not account for the reduction of the
plastic moment due to the simultaneous action of bending and compression
on a yield line which is inclined to the direction of normal stresses induced
by the bending moment and compression load. The problem of a separate
plate under compressive load was widely discussed by ZHAo and HANCOCK
[15] and also mentioned by SIN [9]. In Fig.5 three theoretical models of the
stress distribution at the yield line, quoted by ZHAO and HANCOCK [15] and
also SIN [9], are presented.
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F1G. 5. Stress distribution at the yield line; a) fully plastic moment, b) Mouty,
c) Murray (1984) and Sin (1985).

4.2.1.Plastic moment at a yield line in a plate member under compres-
sion. The plastic moment capacity at a yield line in the compressed plate
(Fig.6) may be evaluated in the following way:

(4.4) m = myPi(o/0y,7),

where P; is a function depending on the theoretical model applied, o is a
compression stress acting on the boundary of the plate (Fig.6), and oy is
the yield stress.

Gcl’
5 yield line
JR—— —
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I

F1G. 6. Plate under uniformly distributed compressional stress.

According to three theoretical models shown in Fig. 5, functions P; are
as follows:

o fully plastic moment:
(4.5)1 Pii= 1,
e Mouty’s model [15]:
(4.5)2 Py =1-(0/a,)?cos?,
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e Sin’s model [9]:

1—(a/ay)
4.5 P = .
ol h \/1 —0.75(c /oy)? sin? y[sin? v + 4(1 — sin? v)]

Formulae (4.5); and (4.5)3 are based upon the Huber and von Mises yield
criterion.

4.2.2. Plastic moment at a yield line in a plate member subject to in-plane
bending. The same problem concerning a plate as a member of a more com-
plex section (box-section beam) has not been evaluated so far. Consequently
the approach presented above could not be applied to the beam as a whole.
The problem was elaborated in the present paper and a proposal of an ef-
fective solution is given below. The flanges are considered to be subjected
to uniformly distributed stresses of magnitude equal to the buckling stress,
thus a compression stress o is assumed to be equal to the buckling stress
(o = ocr). The plastic moment at a yield line situated in a flange is expressed
as follows:

(4.6) my = mpPi(Ucr/ayv'Y)a

where P; are given by formulae (4.5) at the assumption of o = o,.

The web is assumed to be an assembly of strips of unit width which are
subjected to either compressive or tensile stresses of various magnitudes,
depending on its location relative to the neutral axis of bending (Fig. 7).

ds ( Ccr
s

="
6'

X b neutral axis

yield line Y

F1G. 7. Plate subjected to in-plane bending.

The magnitude of the plastic moment at an inclined yield line in a strip
located at a distance y from the neutral axis, as shown in Fig. 7, is given by

(4.7) Myy = mpPi(as/ayv 7)a

where
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After integrating with respect to s and, subsequently, to y,

My = mp/P;(a,/ay,'y)ds,
the following relation was obtained:
(4.8) My = mp-Qi(o'cr/va 7),
where 2; is a function depending on the theoretical model applied and on

the shape of the cross-section. For the rectangular box-section, functions §2;
are as follows, according to the formulae (4.5) applied:

o fully plastic moment

(4.9 Ty
e formula based on Mouty’s stress distribution
(4.9); 22 =1—(1/3)(0er/0y)? cos? v,
¢ formula based on Murray and Sin’s stress distribution
(4.9)s 025 = = =2 [(C) - (€],
where
ay = arcsin(Cyan,/2),
ag = arcsin(—Cyapo/2),
Cy= \/gsin('y\/s_i_n_27 +4(1 —sin’y),
g = Ofoy .

4.3. The total energy of plastic deformation

According to the general expression (4.1) of the total energy of plastic
deformation and formulae of the plastic moment at yield lines situated both
in the flanges and webs of the beam (derived in 4.2), the energy absorbed
at the collapse is expressed as follows:

m n 2
(4.10) W) =Y mygidiBi+ Y murdiBi + Y Fi(mui,t,0),

9= k=1 $=1
where m; — plastic moment at a yield line situated in a flange, myk, My —
plastic moment at a yield line situated in a web, m — number of stationary
yield lines in the flanges, n — number of stationary yield lines in the webs.

The expression given above is a general one for all mechanisms described

in Sec.4.1. Details concerning the total energy of plastic deformation for
plastic mechanism R2 (evaluated in this paper) are given in Appendix B.
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5. THE LOAD-CARRYING CAPACITY

As far as the elastic buckling of the flange in compression is concerned,
the ultimate bending moment capacity of the beam was evaluated approxi-
mately by combining the solution based upon the effective width approach
(Sec.3.1) with the results of plastic mechanism analysis (Sec.4.1). Thus the
ultimate bending moment was determined at the intersection of two curves
representing the bending moment in terms of the rotation angle of the beam
at the middle of the span: the post-buckling curve plotted using the nu-
merical procedure based on formulae (3.1)-(3.3) and the postfailure curve
derived from equations (4.1)—(4.10). Coordinates of the intersection point
were determined by the iterative bisection procedure.

In the case of the plastic buckling of the flange under compressive stress,
the formula (3.5) was applied in order to evaluate the ultimate bending
moment capacity.

The bending moment capacity in terms of the rotation angle at the middle
of the span was plotted in the whole range of loading from zero up to and
beyond the ultimate bending moment. The pre-buckling state was evaluated
using the beam theory, while the elastic, post-buckling curve or the plastic
buckling plateau was derived using the procedures mentioned in Sec.3.1 or
3.2, respectively.

6. DISCUSSION OF THE RESULTS

The procedure discussed above was applied for both rectangular and
trapezoidal cross-section beams. Three mechanisms of failure: R1, R2 and
R3 were taken into account in the rectangular cross-section as well as three
mechanisms: T1, T2 and T3 were considered in the case of trapezoidal
cross-section. Each postfailure curve was plotted in three variants, corre-
sponding to three formulae (4.5) and (4.8) concerning the plastic moment
at a yield line situated in the flange or in the web, respectively. Diagrams
plotted on the basis of numerical results of the theoretical analysis were
compared with numerically processed load-deflection graphs recorded dur-
ing experimental, four-point tests carried out on rectangular cross-section
beams of relatively slender walls [12], as well as on both the rectangular and
trapezoidal, compact cross-section beams (relatively thick walls) [14].

In Fig.8 and 9 diagrams concerning rectangular cross-section beams of
relatively slender walls are presented. In Fig. 8 theoretical curves of mecha-
nisms R1, R2, and R3 respectively, calculated from the fully plastic moment
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FiG. 8. Rectangular box-section beam of slender walls; a = 110 mm, b = 140 mm,
oy = 250 MPa. Comparison of different models of plastic mechanisms with

the results of experiments.
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FIG. 9. Rectangular box-section beam of slender walls (data as in Fig.8). Elastic
buckling. Comparison of different models of plastic moment capacity at a yield-line
with experimental results.
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equation (4.8) at a yield line are presented. The asterisks indicate results
of experiments. On the basis of the diagram shown it can be said that the
mechanism R1 (Kecman’s) is the most adequate model of all those reviewed,
although the curves R1 and R2 are very close to each other when this par-
ticular, rectangular cross-section beam is considered.

In Fig. 9 the theoretical pre- and post-buckling paths are presented as
well as three curves of the mechanisms R1 corresponding to three different
formulae of the plastic moment capacity at a yield line. Theoretical results
are compared with the results of experiment. The theoretical and experi-
mental values of the ultimate bending moment are indicated.

In Fig.10 theoretical curves of mechanisms R1, R2 and R3 are com-
pared with the results of experiments carried out on rectangular, compact
cross-section beams [14]. Both in this case and in the case of the beam
of relatively slender walls the most adequate model proved to be the first
one (R1).

2 1600

tz
- Theoretical collapse curves'

L BTV o8 U I R R R I A R

PTG S A  BY Ny .

..............................

1 000

BT

800 - -/-

ki G e s w Yy m @ il e e woe oo

.B T. -

600 -

|II|IIII|I|III11|

* Ri(mp)

400 —

T

200_' . RAmp) | T
. R3(mp),
0 } + t t } } t + }

0 0.5 1 1.5 2 2.5 3 3:5 4 4.5 5
6 [deg]

FIG. 10. Rectangular compact cross-section; a = 50 mm, b = 60 mm, oy = 168 MPa.
Comparison of different models of plastic mechanisms with results of experiments.

Figure 11 presents the same experimental results compared with the the-
oretical, prebuckling path and plastic buckling plateau, as well as theoretical
curves of the mechanism R1 calculated by means of three different formulae
for the plastic moment capacity at a yield line.

In Fig. 12 diagrams for trapezoidal, compact cross-section beam are pre-
sented. Theoretical curves of mechanisms T1, T2 and T3 (fully plastic mo-
ment at a yield line) are compared with experimental plots [14]. The curve
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FIG. 11. Rectangular compact cross-section (data as in Fig. 10). Plastic buckling.

Comparison of different models of plastic moment capacity at a yield-line with results
of experiment.
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F1G. 12. Trapezoidal compact cross-section; a = 60 mm, b = 40 mm, d = 35 mm,

oy = 168 MPa. Comparison of different models of plastic mechanisms with results
of experiments.

T1 happens to lie the closest to the results of experiment. The plastic mecha-
nism T3 was mentioned only in passing since this purely hypothetical model
was never observed during experimental investigation.
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7. FINAL CONCLUSIONS

A good agreement of theoretical and experimental values of ultimate
load obtained for beams of relatively slender walls (Fig.9) has been ob-
tained in the case of elastic buckling. It confirms that the combination of
the approximate, nonlinear post-buckling analysis and the analysis of plastic
mechanisms of failure can be applied in order to evaluate the load-carrying
capacity of the structure. It has to be underlined that since the energy ap-
proach was adopted to analyse true plastic mechanisms, the approximate,
theoretical value of the ultimate bending moment can be classified as an
upper bound solution. In the other extreme, an alternative lower bound ap-
proach which enables us to determine effectively the load-carrying capacity
of a structure, is that developed in [17]. Both approximations — presented
in this paper and in references mentioned above — allow to avoid an ex-
tremely complicated analysis of the elasto-plastic behaviour of a structure.
The detailed comparison of both approaches is given in [18].

In the case of plastic buckling (Fig.11) the agreement between the the-
oretical plastic buckling load with an actual ultimate load was very good.
In the other extreme, when elastic buckling was the case, an actual load
for beams of relatively slender walls was higher than the upper bound esti-
mation, which seems to be a result of neglecting the work-hardening effect.
The mechanisms R1 and T1 based on Kecman’s mechanism proved to be
the most adequate models of plastic mechanisms of failure.

The other variable analysed in this paper was the yield line moment ca-
pacity. All the three solutions reviewed have shown to lead to underestima-
tion. Close to experimental plots (particularly in the vicinity of the ultimate
load) are the results obtained from the fully plastic moment equation and
modified Mouty’s equations, which account for the inclination of hinge lines
and both the bending and compressional effects, but neglect the shear stress
in the yield line cross-section. The modified Sin’s equations give the highest
underestimation although they account for the shear stress. However, the
point to be underlined here is that the mechanism approach used neglects
all work hardening and membrane strain effects which both tend to raise
the bending moment capacity.

When examining the diagrams it can be noted that the bending moment
capacity of the collapsing beams in the experiments were not reduced as
rapidly as predicted by the theoretical models at the final stage of failure.
In the other extreme, in the vicinity of the ultimate load the agreement of
theoretical and experimental post-failure curves is much better (Fig.9). This
again shows that the work hardening effect is of significant importance in
the final phase of mechanism development.
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Finally, it should be said that true mechanisms (assumed for all models in
this study) which are relatively simple to analyse, can be regarded as a good
approximation of actual mechanism of failure, but to obtain a solution of
high accuracy, a quasi-mechanism which incorporates regions of membrane
strains should be used. Strain hardening effects are also recommended to be
taken into consideration.

APPENDIX A. EFFECTIVE CROSS-SECTION CALCULATION

A. Yielding in the boundary fibre in compression

a

172 a
. no.,

zmlx

Fic. Al.

Position of neutral axis of effective cross-section:

bsina(b + d)
a.+2b+d

Zmax =

Effective second moment of area:

L. = aetzf,[mx + (1/6)b3t sin2a + 2bt(0.5b sina — z,m,,()2 + dt(bsina — zmax)z.

B. Yielding in the boundary fibre in tension

Neutral axis position:

noer sin a(b — by)
Oy + NOcr

f:
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a
12 a, nG
I
(03 {
I
b
I
N2
/ l
d by oy
FiG. A2.
Width of the yield strip in tension:
b — noce(ae + b) — oy(d +b)
L Oy + N0y y
Function F3(n,o0.) — see Eq.(3.3)s:
F(nyoq) =1t [(f2/3 sin @)noe,
o [(5— b, )5t f][l(b b—L) % +d]]
ay [( y)sina — F T Hire +(2by + d)| |

' APPENDIX B. PLASTIC MECHANISM R2
All quantities describing the geometry of the mechanism shown in Fig. B1
were expressed in terms of the rotation angle 6 of the global plastic hinge
except for two independent parameters ¢ and h which were evaluated on the
basis of experimental observations [14]. Thus, basic quantities characterising
the geometry of the mechanism are as follows:

v = cos™! [%+§cos(0+e)], R=/b2+4 (c—h)?,

where
b2 -2

2b

€ = arctg [c—f—h] 3 U=

and
I = Rsin(@ + €) — csiny, € = arctg (u/l).



248 M. KOTELKO

2C¢ \
| \\
p 3 | E
\\ N / ~ &
\ > A
b // ~ A /
N K
S Sy

SN
0\(2h
7
o '
/(
FiG. B1. Mechanism R2.

b — = Bt — e

| |
IC k]

Gl IK
| |

! |
o — —2h— — —=f

F1G. B2. Mechanism R2 - front and side view.

The rotation angle n of the wall ACG and the undeformed part of the
web is expressed as follows:

A1Ay + B1By + C1C,
VA + B +C3 AR+ Bl CE

cosn ==
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where Ay, A2, B, B, C; and C; are coefficients of two planes ACG and
the undeformed part of the web, determined in three-dimensional coordinate
system. These coefficients are:

1
A = -5ae siny — u(l + ¢sinvy),

By = u(h — ccosy) — —;—accos'y,
Cy, = hesiny + lecosy,

)
Ay = 5“ sin 6,

B; = %accosﬁ,
C; = (14 csiny)ccosf — c? cosysin @ — hesin 6.

According to the general formula (4.10) given in Sec. 4.3, the components
of the energy of plastic deformation are expressed in terms of angle 6 and
are as follows: :

m
Wy = Z my;d;B; = WaB + Weps... + WeH+... + Wek+... + WeoE+...
Jj=1

= my1(a + 2u)2y + mya2a(y — 0) + my32a0 + myadh€ + mys2em,

W2 =Y murdifr = WoGs.. = m{)4R(x — n);
i=1
W3 = Fi(my,,0) = Wag+... = gmg)%
is the energy absorbed during rotation of two walls of the global plastic
hinge along the travelling yield lines AG and AKj;
’ mPeu
Wy = FZ(mw1ra 0) = WAC+ =4

-
is the energy absorbed at the local plastic hinges A and B,

where 9
r=. (0.07 — g)

is the rolling radius [8], and

w=/(b—u)?+ h.

The total energy of plastic deformation is a sum of four components given
above:

W(0)=W1+W2+W3+W4
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