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THREE-DIMENSIONAL SLIP-LINE FIELD THEORY
WITH ROTATIONAL CONTINUITY

R.L. BISH (MELBOURNE)

For cold-worked metal bodies undergoing plastic deformation along well-defined load-
ing paths, a three-dimensional slip-line field theory is developed, taking into account the
new principle of rotation-rate continuity. It is shown that the slip-line network is always
confined to one of the three families of principal stress surfaces and that the strain rate nor-
mal to those surfaces vanishes. Further, the ratio of the radii of curvature of the slip-lines
in the plane tangent to the net remains constant. This condition, in turn, imposes restric-
tions on the geometric configurations that are allowed for the net boundary. The velocity
hodograph always has one of these configurations.

1. INTRODUCTION

Any region within a plastically deforming metal body, if that region is
small enough, will exhibit mechanical anisotropy and, conseqeuntly, will ro-
tate so as to keep its crystallographic planes of slip aligned with the prin-
cipal shear surfaces. From this hypothesis, a fundamental principle emerges
to complete and extend the classical slip-line field theory, and this principle,
very simply, states that the (vector) rate of rotation within the deforming
body must remain (spatially) continuous. Otherwise, any two adjacent de-
forming elements of the body could not maintain their slip-planes parallel
to the local surfaces of principal shear stress which, by equilibrium, are re-
quired to remain smooth. This new principle of plasticity serves to resolve a
long standing question, and represents one of the principal reasons for the
present paper.

PRANDTL [2], in 1920, in publishing the first solution to a slip-line field
problem, that of the plane-strain compression of a metal mass, utilized cy-
cloidal slip-lines. Some three decades later HiLL [3] published a second and
(geometrically) very different solution to this problem. Books [4, 5] concern-
ing the subject of plasticity and published before or during the 1950’s, con-
tinued to present Prandtl’s solution to the plane-strain compression problem.
On the other hand, most of the books [6] published after that period present
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only Hill’s solution to the plane-strain compression problem. We shall learn
that Hill’s solution, unlike that of Prandtl, complies with the new principle
of continuity of the rotation rate although, of course, Hill could not had
known this principle when he published his equiangular slip-line net.

There are many problems of plastic deformation of industrial significance,
that are three-dimensional while, most luckily, with the inclusion of the
new hypothesis, a three-dimensional slip-line field theory forms a natural
development. The theory to be presented here is, for these reasons, quite
general.

2. YIELD CONDITIONS AND THE FLOW RULE

Tresca’s yield criterion will govern the process of yielding in a cold-worked
metal body in which the crystal-grains are aligned with their crystallographic
slip-planes parallel to the surfaces of principal shear. The yield surface, in

o;j-space, will therefore be a hexagonal cylinder having plane faces described
by

oy — oy = 2k, o9 > 03 > 01,
0, — 09 = 2k, 01> 03 > 09,
o3 — o0y = 2k, o3 > 01 > 03,
(2.1) oy — 03 = 2k, gy > 01 > 03,
oy, — o3 = 2k, oy > 09 > 03,
o3 — oy = 2k, o3 > 09 > 01,

where k is the shear yield stress of the solid.
On the other hand, by PRAGER’s flow rule [7], if

h(O'l, g2, 03) =0

denotes the yield surface in o;;-space, then

oh

(22) d&',‘j = 6_0',;

dX,

where ) is a multiplier. From (2.1) it therefore follows that
(23) d83 =0 for g1 — 092 = :l:2k,

(24) d€1 =0 for gy — 03 = :t2k,
(2.5) deg =0 for o3 — o1 = 12k.
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Thus deformation is such that the Hencky - Prandl net lies in a principal
surface in the solid, while the strain-rate normal to that surface vanishes.
Cases where the stress-point lies on an edge of the yield surface are included
in the analysis [8]. We may write, in place of (2.3)-(2.5),

(2.6) énn =0,

where n is the coordinate normal to the principal surface in the deforming
body, on which the net lies.

It is clear that the von Mises yield condition must also be applicable to a
system such as that under consideration, since this criterion stipulates that
yield commences when the shear elastic energy per unit volume within the
deforming body reaches a critical level. Thus if

J2 = 5TijTij s

where 7;; is the stress deviation tensor, (2.2) leads [9] to

deij = g%r,-jd,\,
whence, by (2.6),
Tan = 0,
or
(2.7) ) = o

where o equals one half of the sum of the two principal stresses acting in
the plane tangent to the principal surface, of normal n, within the deform-
ing body. Moreover, substituting this result back into the von Mises yield
condition, we recover Tresca’s yield condition.

3. STRESS-EQUILIBRIUM

Let the n-surfaces contain principal shear lines along which a and 3
denote the coordinates. Moreover, let hy,, hy and hg denote the scale factors
for the (n,a, ) system of coordinates. Then, according to (2.6) or to the
results established in an earlier article [10], the distance between any two
n-surfaces must remain constant. Since h, dn equals the distance between
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two n-surfaces, corresponding to n-values of n and h,, dn, it follows that the
conditions for this constancy or spacing are:

Oh,
(3.1) o =0,

Oh,
(3.2) 25 = O

We also note that
Ona = Ong = 0,
while we write
Oag = T, Oaqa = 033 = 0.
The stress-equilibrium equation (A.3) then becomes
00nn | (Opn — 0)Ohy  (Opn — o) Ohg 4!
on 2 Ry on t ha on

while by (B.11), (B.12) and (2.7), Eqgs. (A.1) and (A.2) and this equation
lead to

0,

do 0¢ or
(3.3) Fada  Thada  hpap =
do 09 or
(3.4) moop H 205 T g =
do
(3.5) e 0,
where ¢ is the net angle, measured anti-clockwise about the n-axis (Fig. 1).
% ¢
R
B
s

F1G. 1. Principal stress surface containing the a- and B-slip-lines. The net angle, ¢,

is measured in the anti-clockwise sense.

In the case of an ideal solid, the yield condition takes the form 7 = k,
where k is the shear yield-stress of the solid, and substituting this condition
into (3.3) and (3.4) leads to

0% 3
0adpB
On the other hand, the new principle of continuity of the rotation rate pro-
vides an independent second equation governing ¢ to be considered below.

(3.6) 0.
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4. HARMONIC CHARACTER OF ¢

If w denotes the rotation-rate vector, it may be shown [10] that
(4.1) curlw = 0,

and using the formulae (in which v denotes the velocity vector of a contin-
uous velocity field that replaces the actual velocities):

giv sk T
=3 grad v + (grad v) },

divv =0,

w = (1/2)curl v,
Eq.(4.1) leads to
(4.2) dive = 0.
Using the conditions

éna = énﬂ = 0,
and writing

éaﬁ o ';'1
Eq. (4.2) reduces, by (3.1) and (3.2), by analogy with th equations of Ap-
pendix A, to

Oe 2y 0Ohg 0y
(4.3) hoda ¥ ha;ylﬂ ap b hpgﬂ =0;
0c . % ohg 07 _ .
hgdB = hohg o heda
aénn + (énn f e) aha + (énn - é) 6hg "
on ha on hg  On

On the other hand,

(4.4)

(4.5) 0.

2+ €épn =0,
so that, by (2.6)

(4.6) é=0,
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and (4.5) is satisfied, while from (4.3) and (4.4) we obtain
2 (Loh)_ 2 (13
da \hy, 08 ) 0B \hg 0a |’
or, on subsituting from (B.11) and (B.12),

hg (?d)) ho ¢\ _
4.7 9a (h 3a) Y op\ns05) ="
Because, moreover, n is measured along the principal axis and ¢ denotes an
(actual) physical rotation it follows, since there can be no torsion along the
n-axis, that
o¢
on
From Egs. (3.1), (3.2), (4.7) and (4.8) it follows, from the three-dimensional
expression, (B.15) that

(4.9) Vi = ’0.

(4.8) =0.

5. CONSISTENCY

Let us now let R and S be equal, respectively, to the radii of curvature
of the curves that are formed by intersections of the slip-surfaces with the
local plane tangent to the n-surface (Fig.2). Then, if we subsitute for the
derivatives of h, and hg in (4.9) (in view of (3.1), (3.2), (4.6) and (4.7)),
the results (B.11) and (B.12), and, if we substitute the scale factors from
(B.13) and (B.14), we obtain

o RS-

If we now write

S
(5.2) i G
C denoting a constant, then (5.1) becomes
1\ 9%
(0+2) g5 ="

which is the same as (3.6) because C is required to remain real. Therefore
(5.2) is the condition that ensures the consistency between (4.9) and (3.6).
We are led, therefore, to the study of Eq. (5.2).
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FIG. 2. Three-dimensional extension of Mikhlin’s coordinate system.

6. RADII OF CURVATURE

213

Differentiating (B.13) with respect to 3 we obtain, by (3.6) and'(B.11),

OR ¢
+h
(Bﬂ ) B
while, differentiating (B.14) with respect to a leads, by (3.6) and (B.12), to
liM) 99
(52 + ") 33 £=o.
If R and S remain finite, these equations demand that
OR
(6.1) 5 + hg =0,
(6.2) Z—S + ho =0,
and substituting for hg in (6.1), the result (B.14), we obtain
OR 09
. (3)s

while from (6.2), on substituting from (B.13), we also obtain

s (20)s
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Differentiating (6.3) with respect to a we get, by (3.6) and (6.4),
’R 04 0¢
r 0
(0:8) 5ap * (5a38) 7 -
while, differentiating (6.4) with respect to § we obtain, by (3.6) and (6.3),

i) 090
(6.6) e (52 2 ag) o,
Dividing these equations by the factor
99 d¢
da 3,8

we obtain, using (3.6), the telegraphy equation. The two independent vari-
ables in this equation equal ¢ measured along the a- and (-lines. Setting
#(0,0) equal to zero it then follows by (C.3) that at (a,3) = (a,bd)

R = r1Jo{2/(#(a,0)$(0, )}

- / Jo{2/(3(a,0) = #(2,0))6(0,1)} g

ﬂ_

b
+ [ Jof2y/6(a,00600.0) - 40,9)) gds

a=0

§ = r2Jo{2\/#(a, 0)¢(0,b)}

i / To{2/($(,0) — (@, 0))6(0,5)} 9= de

;9_

b
+ [ Jof2y/6(e,0)(6(0.8) — (0, )} 5748

a=0

where r; = R(0,0), r; = 5(0,0). Inspection of these equations reveals that
(5.2) is satisfied if, either

QIE _as i
Oa 0 o

OR
. —— -_—_.._ < & —
(6.8) aﬂ/rl 5 T2, 0<B<b, a=0,

(6.7)
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or
as OR
. — —— < < =
(6.9) 90 0, 9% 0, 0<a<a, A=1;
as OR
3 _— = —_— = < < = V.
(6.10) 55 =% 35=% 05ASh  a=0
From (6.7), on substituting for 0.5/0a from (4.6), we obtain
OR _ ™ 8¢ _
(6.11) = (E) 2R =0,
while, on substituting for dR/0f from (6.3) into (6.8), we get
a5 _ T2 (9(25 _
(6.12) 5= (rl) 555 e=o

In the case of a plane net, equations (6.11), (6.12) describe logarithmic
spirals, but in order to study the nets associated with (6.9), (6.10) we turn
to the use of nodal coordinates.

7. NODAL COORDINATES

A three-dimensional extension of the system of nodal coordinates due
to MIKHLIN [3] is that in which the coordinates of a nodal point of three-
dimensional net equal s, ¢t and f measured, respectively, along the axes
parallel to the a-, 5- and n-lines. Now (cf. Fig. 2) we define unit vectors I, m
and n in these respective directions at the nodal point so that the position
vector of the node

(7.1) r=sl+tm+ fn;
on differentiating with respect to a, this equation leads, by (B.1), to
dl  0s Om 0t - _0On Of
hal-s-a_a+3—al+t3_a+6_am+f3_a+6_an°
Taking the scalar product with m, by (B.3), we then get
d¢ Ot

In the same way, differentiating (7.1) with respect to # and taking the scalar
product with 1, we obtain, by (B.2) and (B.4),
¢ 0Os

(73) _téﬁ + % - 0
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By taking the scalar products of the a- and S-derivatives of (7.1) with =,
on the other hand, we obtain a pair of equations governing the shape of the
principal surface containing the net. Differentiating (7.1) with respect to n
and taking scalar products with / and m we obtain, by (4.8),

0s
(7.4) e 0,
ot
(7.5) i 0,

and these equations reveal the fact that the n-lines are straight. Differenti-
ating (7.2) with respect to 3, we obtain, by (3.6) and (7.3)

e+ (3e58) =0

while on differentiating (7.3) with respect to a, we get by (3.6) and (7.2)

Lo (B20)0m0

(7.6)

(1.7)

By virtue of (3.6), Egs. (7.6) and (7.7) are again instances of the telegraphy
equations in which the two independent variables are the angle ¢ measured
along the a- and (-curves. It is convenient, in view of this fact, to let a
be equal to ¢ measured along a-lines, and to chose 3 equal to ¢, measured
along the fB-lines. Then since s(0,0) = 0, t(0,0) = 0, we obtain from (7.6),
(7.7) and (C.3)

(7.8)  t(a,b) = / Jo{2/(a-a )b}a—da+ / Jo{2y/a(b - ﬂ} dB,

p_

(79)  s(a,b)= / J0{2\/ a——a)b}a—da-i- / J0{2\/a(b B) }
p..o a—O

In the case of a plane slip-line net (6.9), Eqs. (6.10) describe orthogonally
intersecting circles and, if ry, v, are the respective radii of these circles
(describing a- and f-lines), the nodal coordinates on these circles are given
by (see Fig.3)

s = rysina + ro(1 — cos 3),

t = rosin 4 r1(1 — cosa).
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a (B =0)

FiG. 3.

On substituting into (7.8), (7.9) we obtain
(7.10) = wj ]Jo {2\/((1 - a)b} sin a da
0
- rg/bJo {2\/a(b - ﬂ)} cos 3dg,
0
(7.11) 8=y /a Jo {2\/(11 - a)b} cos a da
0
+ rg/bJo {2\/a(b - ﬂ)} sin B df3.
0

The axes 1 and m, along which these coordinates are to be measured are
found as indicated in Fig.4 [11]; the deviation A¢ equals the interval in ¢
between any two neighbouring nodes; the l-axes are parallel at the nodes A,
C and F. For a net in which all the deviations between consecutive nodes
are equal, this property extends to the family of nodal diagonals such as
AC'F, so that we need to determine only | and m at the nodal points on the
boundary in order to determine these vectors at all the nodal points of the
slip-line field.



218 R.L. BISH

E
F1G. 4. Method of finding axes for the measurement of the nodal coordinates s and .

8. THE VELOCITY HODOGRAPH

The velocity vector has only two components: u parallel to the a-lines
and v parallel to the f-lines. Thus the velocity may be represented on a
series of two-dimensional hodographs. By (D.2), (D.3) and (B.11), (B.12)
we have

ou 09
(&1) G

v 09
(82) 5t 'a5 ="

which, for plane slip-line fields, become GEIRINGERS equations [12]. If we
differentiate (8.1) with respect to # and substitute from (8.2) and (3.6), we
obtain

0%u 0909\

(8.3) 535 * (a58) "=

while differentiating (8.2) and proceeding in a similar way we get
0% 0604\

(84) 555+ (5eg) ="

Once again, due to (3.6), (8.3) and (8.4) are instances of the telegraphy
equation. If we wish to use the hodograph, and OA, OB in the slip-line net
of Fig.5a are boundary lines, then, since only the direction of the velocity
vector can change along these lines, OA and OB give rise to the circular
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arcs O’A’ and O'B’ in the velocity hodograph (Fig.5b). The vector shown
by the solid arrow in Fig.5b has components u and v parallel, respectively,
to the a- and SB-lines in the hodograph. We should note in this connection
that, since @ and 8 may represent angles, the transformation from Fig.5a
to Fig.5b is not only isogonal but is also conformal. It is clear that, in
view of (6.9) and (6.10), the hodograph will have the same form as the net,
although, as is well known, all line elements in the hodograph lie at right
angles to the associated line element in the slip-line net. ’
a) b)

Fi1G. 5. Transformation from a slip-line net to its hodograph.

9. REsuLTS

We define

F(a,b) = / & {2,/(a 3 C)b} sin ¢ de,
0

a

Gla )i / % {2\/((1 " c)b} cos Ll

where I is the Bessel function of zero order and imaginary argument. Then
(7.10), (7.11) become, for negative b (OB in Fig.3),

(9.1) t = riF(a,b) + r2G(b,a),
(9.2) s = 11G(a,b) + r2F(b,a),

I

while similar equations give u and v on the hodograph.
The integrals F(a,b), G(a,b) were computed numerically to within the
accuracy of four decimal places, and the results of these computations are
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given as entries in Tables 1 and 2. The net shown in Fig. 6 was constructed
using these tables.

F1G. 6. Plane equi-angular net associated with a boundary consisting of two equal
orthogonal circles.

a

Table 1. F(a,b) = / Io {2\/((;?)7;} sin ¢ d¢.

0

a |b=15°|b=30°|b=45°b=60°|b="75°[b=90°|b=105°|b=120°

15° | 0.0348 | 0.0356 | 0.0364 | 0.0373 | 0.0381 | 0.0390 | 0.0398 | 0.0407
30° |0.1402 | 0.1467 | 0.1534 | 0.1603 | 0.1676 | 0.1753 | 0.1827 | 0.1907
45° [0.3139 | 0.3361 | 0.3593 | 0.3838 | 0.4096 | 0.4367 | 0.4651 | 0.4949
60° | 0.5491 | 0.6017 | 0.6580 | 0.7182 | 0.7826 | 0.8512 | 0.9245 | 1.0026
75° [0.8350 | 0.9374 | 1.0488 | 1.1703 | 1.3016 | 1.4443 | 1.5989 | 1.7662
90° |1.1576 | 1.3328 | 1.5268 | 1.7413 | 1.9781 | 2.2389 | 2.5258 | 2.8407
105° | 1.5013 | 1.7742 | 2.0828 | 2.4300 | 2.8195 | 3.2553 | 3.7420 | 4.2841
120° | 1.8465 | 2.2458 | 2.7048 | 3.2302 | 3.8295 | 4.5108 | 5.2830 | 6.1560
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Table 2. G(a,b) = /Io {2\/ (a — C)b} cos ¢ d(.
0

a [b=15°b=30°|b=45°|b=60°|b="75°|b=90°|b=105°|b=120°

15° | 0.2678 | 0.2770 | 0.2865 | 0.2961 | 0.3060 | 0.3161 | 0.3264 | 0.3368
30° [0.5359 | 0.5734 | 0.6125 | 0.6536 | 0.6968 | 0.7427 | 0.7884 | 0.8373
45° | 0.7865 | 0.8715 | 0.9626 | 1.0598 | 1.1637 | 1.2744 | 1.3924 | 1.5181
60° | 1.0032 | 1.1529 | 1.3186 | 1.4987 [ 1.6951 | 1.9089 | 2.1412 | 2.3934
75° | 1.1721 | 1.4039 | 1.6637 | 1.9541 | 2.2772 | 2.6364 | 3.0345 | 3.4747
90° | 1.2821 | 1.6077 | 1.9816 | 2.4089 | 2.8953 | 3.4467 | 4.0698 | 4.7717
105° | 1.3274 | 1.7544 | 2.2585 | 2.8483 | 3.5345 | 4.3287 | 5.2435 | 6.2927
120° | 1.3033 | 1.8374 | 2.4840 | 3.2594 | 4.1819 | 5.2717 | 6.5517 | 8.0467

10. DISCUSSION AND CONCLUSIONS

The new principle leads to three-dimensional slip-line surfaces charac-
terised by certain boundary configurations. In fact, in the case of a cold-
worked metal the Hencky - Prandtl nets, if we may still so refer to these
fields, are located on one of the three families of principal stress surfaces in
the deforming solid. These surfaces may be curved or plane and the normal
strain rates vanish. The slip-lines themselves are, in consequence, inextensi-
ble.

Equations (3.1) and (3.2) describe the deformation for which the distance
between the n principal stress-surfaces remains constant, and Egs. (7.4) and
(7.5) confirm this fact by showing that the n-lines are straight. Moreover,
from Eqgs. (3.3) and (3.4) it follows that for an ideal solid, o obeys the same
equations as in the classical theory, provided that a and [ are suitably
re-defined.

Yet again in mechanics we encounter the Laplace equation in the form
(4.9). Consistency with this new Eq. (3.6), which represents the requirements
of stress equilibrium under the yield condition, demands that the ratio of
the curvatures of the slip-lines, as measured in the tangent planes to the
principal surfaces containing the net, must be constant. In the case of a
plane net this condition requires that the boundary to the net should con-
sist of either a pair of orthogonally intersecting logarithmic spirals, or of a
pair of orthogonal circles. In the latter case the net has the form shown in
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Fig. 6. The hodograph associated with this slip-line-field has the same form
as the net; the fact is already known, although this is not the case when
the boundaries are logarithmic spirals. The net shown in Fig. 6, when super-
posed over HILL’S equi-angular net [3], is found to match the latter precisely.
HiLL used his net to solve the plane strain compression problem [3] and he
put forward a solution to this problem entirely different from that proposed
by PRANDTL [2]. Prandtl’s solution is not consistent with Eq. (5.2), and so it
cannot describe the plane-strain compression of a cold-worked metal, while
Hill’s solution, on the other hand, does confirm to Eq.(5.2), and so it is
consistent with the principle of continuity of the rotation rate. The material
needs to be cold-worked for reasons that are outlined in Appendix E.

APPENDIX A. STRESS-EQUILIBRIUM

By considering the equilibrium of forces acting on the faces of a small
prism, of side lengths h,da, hgdf3, h,dvy, and taking scalar products with the
unit vectors 1, m and n directed along the respective a, # and 7 lines, we may
obtain by means of (B.5)—(B.10) the three equations of stress-equilibrium,
which also express the solenoidal property of the stress tensor. The I-, m-
and n-equations, so obtained, are

000a 00,3 004y  (0aa —0p) Ohg L (Caa — Oyy) Oh,

(Ad) hoOa ~ hgdB * h,0y hohg  Oa hohy  Oa
poon (2 0ha | 100 | 0wy (2 0k, 10ke)
hg \ha 08 " hy 0B ) " hy \ha @y " hg Oy )

dagp | 99py | 09pa | (988 — Ovy) Oy | (9pp — Taa) Oha

(A2) 7008 T B0y Thala T Ahe 98 T  habs. 08

opy [ 2 Ohg 1 Oh, a'go, 2 Ohg ia_h,1 D

+h.,(h58—y+h Wbt W, Ak P Chgda pT

(A.3) 00yy | 00ya | 00yg | (0yy = Oaa) Oha | (04y — 9pp) Ohg

hy0y = ho0a ~ hgdp KL =10y hyhg Oy

Oyo (2 0hy | 1 0hg\  oys (20hy | 10ha) _
b (h 90 Thoa )t he \B 0B Tho 08 ) ="
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APPENDIX B. CURVILINEAR COORDINATES

If a, B and v are coordinates measured along orthogonal curves, then the
scale factors, hy, hg and h., for those respective curves, are defined so that
hoda, hgdf, and h.dy are length increments. Moreover, if r is the position
vector of a point, then the unit vectors 1, m and n, which lie parallel to the
respective a-, 3- and <-curves, are given by

or
(B.1) 1= hoa’

or
(B2) m = W’

or

dm

sp|m
L

FiG. 7.

The vectors 1 and m and their increments are shown in Fig. 7, from which
we see that for a small displacement along the a-lines

m -6l = §¢,

where ¢ is the net angle, or the rotation about n. From this equation we
obtain, on dividing by the associated increments in o and proceeding to the
limit,

ol 99

1 Ba 0a
while in a similar fashion, we get for 3-lines

- om _ 08

B 9B

(B.3)
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These equations serve to illustrate the sign convention that we use in con-
nection with the slip-lines according to which the curvature of a slip-line is
counted positive if its centre of curvature lies in the first quadrant of the
plane tangent to the n-surface; otherwise the slip-line has negative curvature.
Applying the law of vector addition to the sides of a small loop in the
n-surface with its sides parallel to the a- and f-lines, we may show that

0 0
5 (hem) = F5(haD),

and, on carrying out the dfferentiations and taking scalar products with m
and 1, we obtain, respectively,

Om Ohg
(BS) l'a—ﬂ- = _haaa ’
al Ohy
(BG) m'a—a = _W )
while in a similar fashion it may also be shown that
On _ Ohy
(B.7) m'5’7 - _hﬂaﬂ’
Om _ Ohg
(BS) n-—-a—ﬂ— = hA,(?'y ,
and
7)) Ohg
(Bg) n-(—,)—(; = _h.,a’)’ y
On _ 0Oh,
(B.10) l.% T hada
From (B.3), (B.4), (B.5) and (B.6) we obtain
Oha 0¢
(B.11) _67 = —hpaa 4
Ohg . 09
(B.12) B ho a5

The scale factors may be related to the radii of curvature as follows.
Letting R denote the radius of curvature of the a-lines in the plane tangent
to the n-surface, it is clear from Fig. 7 that

Ré¢ = hoda,
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or

34’
aa

In the same way, if S denotes the radius of curvature of the §-lines, we may
show that

(B.13) = hq.

o¢
op
We require, in addition to the above formulae, the equation for the Lapla-

cian. This is obtained by evaluating the divergence of a gradient. Thus we
obtain

d (hghy @\, 9 (hyha ) 0 (hahg d
8. 2 {0 4
(B.15) hahgh,V —aa( he 0 )+6ﬂ( hs 3ﬂ)+ ( 5 37)

APPENDIX C. RIEMANN’S METHOD

(B.14) S— = —hg.

The telegraphy equation,
o*f
0adf

may be solved by Riemann’s method as follows [2]. If f and g are two
solutions of (1) then

(3£ 5e) dar- (gff fﬂ)ﬂ

will be a total differential as the reader may readily verify. On integrating
this expression around a contour made up of a- and fS-lines, such that o = 0,
0<B<band 8 =0,0<a<2are boundary lines, we obtain

G (- r)uan [ (35 s28)

0
] (120 [ (- s28)

Moreover, we may choose for g the function

g=Jo{2/(a-)b-8)},

(C.l) + f — 0,
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where Jo(t) is the Bessel function of the first kind and zero order because
this function satisfies the equation obtainable from (C.1):

Ty + 394(0) + Jo(t) = .

We then have

g=1 for a=a,
g=1 for B =0,

dg 5
B_a_o 16t =58,

dg _
%—0 for a=a,

while in (C.2) we may integrate

a b
9g dg
/ [oeda  and / F5518
0 0
by parts, obtaining

(C3)  f(a,b) = Jo{2vab} (0,0)

a b
+/J0{2\/(a— a)b}?—ida-{— /Jo{.‘l\/a(b—ﬂ) g—édﬂ.

This equation provides the value of f at the point (a,b) of the net in terms of
the boundary values of the derivatives of f along the boundary lines a = 0,
0<p<band f=0,0<La<a.

APPENDIX D. STRAIN RATES

If v denotes the velocity vector associated with a point in a deforming
body and de is the vector representing the extension rate of the straight
line connecting two neighbouring points in the body, while the rigid body
rotation rate, w, is defined by

w = (1/2) curlv,

then the difference of the vector velocities of two neighbouring points of the
body is equal to

(D.1) dv = de + w X dr.
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Thus, noting that é,4 is the coefficient of hyda in lde and £gg of hgdB in
m de, we obtain, on taking the scalar products of (D.1) with I and m and
using (B.5), (B.6), (B.8) and (B.9), the equations

0vy vg Ohy iz Qe

(D) faa = 1 86 " hahp 0B | hahy 07 '
5 dvg vy Ohg vo Ohg
(D-3) €00 = 108 T Tty 0y | hahp Oa

APPENDIX E

As a metallic body is cold-worked, its crystal grains begin to rotate so as
to align their planes of crystallographic slip parallel to the principal shear
surfaces within that body. Of course, the crystal grains cannot rotate rigidly,
but they turn by means of double- (or multiple-) slip, on two (or more) in-
tersecting planes of crystallographic shear. Each crystal-grain rotates as an
assemblage of small sliding (or “slipping”) rigid (more accurately elastic)
bodies. During deformation the crystal grains, by this process, continue to
maintain a state of alignment in which each active crystallographic slip-plane
within a crystal-grain remains instantaneously parallel to a surface of prin-
ciple shear. That is why the rotation rate remains spatially continuous in
a heavily cold-worked metal undergoing plastic deformation; however, this
principle cannot be applied to an annealed metal in which the crystal-grains
are not mutually aligned.

Simple expriments have been described in [10] by means of which the
hypothesis of continuity of the rotation rate may be tested, although the
very first observations on the subject of crystallographic alignments in cold-
worked metals were made early in this century, the experiments described by
ROSENHAIN [13] being particularly noteworthy. More recently, the spectac-
ular photomacrographs obtained by FRENCH and WEINRICH [14], showing
cascades of shear-lines in the necked regions of slowly deforming tensile test
samples, testify to the truth of the assertions on which the principle of con-
tinuity of the rotation rate rests.

REFERENCES

1. R.L. BisH, Plane-stress deformation of a flat plate by slip between elastic elements,
Arch. Mech., 46, 3-12, 1994.



228

R.L. BISH

L. PRANDTL, Uber die Harte plastischer Korper, Nachrichten von der Kéniglichen
Gesellschaft der Wissenschafen zu Gotingen, Mathematisch-Physikalische Klasse,
13, 74-85, 1920.

3. R. HiLL, The mathematical theory of plasticity, Oxford University Press, 1950.
4. A. NaApAl, Plasticity, McGraw-Hill, 1931.
5. W. PRAGER and P.G. HoDGE, Theory of perfectly plastic solids, Chapman and

Hall Ltd., 1951.

W. JouNsoN and P.B. MELLOR, Plasticity for mechanical engineers, D. van Nos-
trand Co. Ltd., 1962.

W. PRAGER, Recent developments in plasticity, J. Appl. Phys., 20, 235-241, 1949.

8. W.T. KOITER, Stress-strain relations, uniqueness and variational theorems for

10.

11:

12.

13.

14.

elastic-plastic materials with a singular yield surface, Quart. Appl. Math., 11,
350-354, 1953.

P. PERZYNA, The constitutive equations for rate-sensitive plastic materials, Quart.
Appl. Math., 20, 321-332, 1963.

R.L. BisH, Transverse deflection of a cold-worked metal plate clamped around its
edge, Arch. Mech., [accepted for publication].

R. VON MISEs, Bemerkungen zur Formulierung des mathematischen Problems der
Plastizitdtstheorie, Zeits. fir Angew. Math. und Mech., 5, 147-149, 1925.

H. GEIRINGER, Beitrag zum vollstindigen ebenen Plastizititsproblem, Int. Congr.
Appl. Mech., 3rd proceedings, Comptes Rendus. Verhandlungen. Stockholm, 2,
185-190, 1930.

W. ROSEHAIN, An introduction to the study of physical metallurgy, Constable and
Co. Ltd., London 1915.

L.E. FRENCH and P.F. WEINRICH, The tensile fracture mechanisms of fcc metals
and alloys - a review of the influence of pressure, J. Aust. Inst. Metals, 22, 40-50,
1977.

AERONAUTICAL AND MARITIME RESEARCH LABORATORY,
MELBOURNE, AUSTRALIA.

Received November 23, 1995.



